

User Manual

APM32F405/415xG

APM32F407/417xExG

Arm® Cortex®-M4 based 32-bit MCU

Version: V1.4

Contents

1	Introduction and document description rules	8
1.1	Introduction	8
1.2	Document description rules	8
2	System architecture	12
2.1	Full name and abbreviation description of terms	12
2.2	System architecture block diagram	12
2.3	Memory mapping	15
2.4	Startup configuration	15
3	FLASH memory	17
3.1	Full name and abbreviation description of terms	17
3.2	Introduction	17
3.3	Main characteristics	17
3.4	Flash memory structure	18
3.5	Flash memroy functional description	18
3.6	Register address mapping	25
3.7	Register functional description	25
4	External Memory Controller (EMMC)	30
4.1	Full name and abbreviation description of terms	30
4.2	EMMC Overview	30
4.3	SMC Introduction	30
4.4	SMC Structure Block Diagram	31
4.5	SMC Functional Description	31
4.6	SMC register address mapping	37
4.7	SMC register functional description	38
4.8	DMC introduction	47
4.9	Main characteristics of DMC	47
4.10	DMC structure block diagram	48
4.11	DMC functional description	48
4.12	DMC register address mapping	50
4.13	DMC register functional description	
5	System configuration controller (SYSCFG)	55
5.1	Main characteristics	55
5.2	I/O compensation cell	55
5.3	Register address mapping	55
5.4	Register functional description	55

6	Reset and clock (RCM)	60
6.1	Full name and abbreviation description of terms	60
6.2	Reset management unit (RMU)	60
6.3	Clock management unit (CMU)	63
6.4	Register address mapping	70
6.5	Register functional description	71
7	Power management unit (PMU)	101
7.1	Full name and abbreviation description of terms	101
7.2	Introduction	101
7.3	Structure block diagram	102
7.4	Functional description	102
7.5	Register address mapping	109
7.6	Register functional description	109
8	Nested vector interrupt controller (NVIC)	112
8.1	Full name and abbreviation description of terms	112
8.2	Introduction	112
8.3	Main characteristics	112
8.4	Interrupt and exception vector table	112
9	External Interrupt/Event Controller (EINT)	120
9.1	Introduction	120
9.2	Main Characteristics	120
9.3	Functional description	120
9.4	Register address mapping	123
9.5	Register functional description	123
10	Direct memory access (DMA)	126
10.1	Introduction	126
10.2	Main characteristics	126
10.3	Functional description	126
10.4	DMA register address mapping	133
10.5	Register functional description	133
11	Debug MCU (DBGMCU)	142
11.1	Full name and abbreviation description of terms	142
11.2	Introduction	142
11.3	Main characteristics	142
11.4	Functional description	143
11.5	Register address mapping	144
11.6	Register functional description	144

12	General-Purpose Input/Output Pin (GPIO)	149
12.1	Full name and abbreviation description of terms	149
12.2	Main characteristics	149
12.3	Structure block diagram	150
12.4	Functional description	150
12.5	Register address mapping	154
12.6	Register functional description	154
13	Timer overview	159
13.1	Full name and abbreviation description of terms	159
13.2	Timer category and main difference	159
14	Advanced Timers (TMR1/8)	162
14.1	Introduction	162
14.2	Main characteristics	162
14.3	Structure block diagram	163
14.4	Functional description	163
14.5	Register address mapping	180
14.6	Register functional description	181
15	General-purpose timer (TMR2/3/4/5)	200
15.1	Introduction	200
15.2	Main characteristics	200
15.3	Structure block diagram	201
15.4	Functional description	201
15.5	Register address mapping	214
15.6	Register functional description	214
16	General-purpose timer (TMR9/10/11/12/13/14)	231
16.1	Introduction	231
16.2	Main characteristics of TMR9/12	231
16.3	Main characteristics of TMR10/11/13/14	231
16.4	TMR9/12 structure block diagram	232
16.5	TMR10/11/13/14 structure block diagram	233
16.6	Functional description	233
16.7	TMR9/12 register address mapping	240
16.8	TMR9/12 register functional description	241
16.9	TMR10/11/13/14 register address mapping	250
16.10	TMR10/11/13/14 register functional description	251
17	Basic timer (TMR6/7)	258
17 1	Introduction	258

17.2	Main characteristics	258
17.3	Structure block diagram	258
17.4	Functional description	258
17.5	Register address mapping	260
17.6	Register functional description	261
18	Watchdog timer (WDT)	265
18.1	Introduction	265
18.2	Independent watchdog timer (IWDT)	265
18.3	Window watchdog timer (WWDT)	267
18.4	IWDT register address mappin	268
18.5	IWDT register functional description	269
18.6	WWDT register address mappin	270
18.7	WWDT register functional description	270
19	Real-time clock (RTC)	272
19.1	Full name and abbreviation description of terms	272
19.2	Introduction	272
19.3	Main characteristics	272
19.4	Structure block diagram	272
19.5	Functional description	273
19.6	Register address mapping	279
19.7	Register functional description	280
20	HASH processor (HASH)	296
20.1	Introduction	296
20.2	Main characteristics	296
20.3	Functional description	296
20.4	Register address mapping	297
20.5	Register functional description	297
21	Digital camera interface (DCI)	302
21.1	Full name and abbreviation description of terms	302
21.2	Introduction	302
21.3	Main characteristics	302
21.4	Structure block diagram	303
21.5	Functional description	303
21.6	Register address mapping	307
21.7	Register functional description	308
22	Universal synchronous/asynchronous transceiver (USART)	314
22.1	Full name and abbreviation description of terms	314

22.2	Introduction	314
22.3	Main characteristics	314
22.4	Functional description	316
22.5	Register address mapping	330
22.6	Register functional description	330
23	Internal integrated circuit interface (I2C)	338
23.1	Full name and abbreviation description of terms	338
23.2	Introduction	338
23.3	Main characteristics	338
23.4	Structure block diagram	340
23.5	Functional description	340
23.6	Register address mapping	347
23.7	Register functional description	347
24	Serial peripheral interface/On-chip audio interface (SPI/I2S)	357
24.1	Full name and abbreviation description of terms	357
24.2	Introduction	357
24.3	Main characteristics	358
24.4	SPI functional description	359
24.5	I2S functional description	370
24.6	Register address mapping	382
24.7	Register functional description	383
25	Controller area network (CAN)	390
25.1	Full name and abbreviation description of terms	390
25.2	Introduction	390
25.3	Main characteristics	390
25.4	Functional description	390
25.5	Register address mapping	399
25.6	Register functional description	400
26	Secure digital input/output interface (SDIO)	418
26.1	Full name and abbreviation description of terms	418
26.2	Introduction	418
26.3	Main characteristics	418
26.4	Functional description	418
26.5	Register address mapping	441
26.6	Register functional description	441
27	USB_OTG	453
27.1	Introduction	453

27.2	OTG_FS global register address mapping	453
27.3	OTG_FS global register functional description	454
27.4	OTG_FS host mode register address mapping	.468
27.5	OTG_FS host mode register functional description	469
27.6	OTG_FS device mode register address mapping	475
27.7	OTG_FS device mode register functional description	476
27.8	Full-speed OTG power and clock gating control register (OTG_FS_PCGCTRL)	491
27.9	OTG_HS1 global register address mapping	492
27.10	OTG_HS1 global register functional description	493
27.11	OTG_HS1 host mode register address mapping	510
27.12	OTG_HS1 host mode register functional description	.510
27.13	OTG_HS1 device mode register address mapping	.518
27.14	OTG_HS1 device mode register functional description	.519
27.15	High-speed OTG power and clock gating control register	
(OTG	_HS1_PCGCTRL)	537
27.16	OTG_HS2 register address mapping	538
27.17	OTG_HS2 global register functional description	.538
28	Ethernet	540
28.1	Introduction	.540
28.2	Main characteristics of Ethernet	.540
28.3	Functional description	.543
28.4	MAC register address mapping	.572
28.5	MAC register functional description	573
28.6	MMC register address mapping	.589
28.7	MMC register functional description	.589
28.8	PTP register address mapping	593
28.9	PTP register functional description	593
28.10	DMA register address mapping	.598
28.11	DMA register functional description	.598
29	Analog-to-digital converter (ADC)	610
29.1	Full name and abbreviation description of terms	610
29.2	Introduction	611
29.3	Main characteristics	611
29.4	Functional description	612
29.5	Register address mapping	623
29.6	Register functional description	624
30	Digital-to-analog converter (DAC)	635
30 1		635

30.2	Introduction	635
30.3	Structure block diagram	635
30.4	Functional description	635
30.5	Register address mapping	639
30.6	Register functional description	639
31	Random number generator (RNG)	645
31.1	Introduction	645
31.2	Main characteristics	645
31.3	Functional description	645
31.4	Register address mapping	646
31.5	Register functional description	646
32	CRYP	649
32.1	Introduction	649
32.2	Main characteristics	649
32.3	Interrupt	649
32.4	DMA	650
32.5	Register address mapping	650
32.6	Register functional description	650
33	Cyclic redundancy check computing unit (CRC)	655
33.1	Introduction	655
33.2	Functional description	655
33.3	Register address mapping	655
33.4	Register functional description	655
34	Chip electronic signature	657
34.1	Introduction	657
34.2	Register functional description	657
35	Version History	658

1 Introduction and document description rules

1.1 Introduction

This user manual provides application developers with all the information about how to use MCU (micro-controller) system architecture, memory and peripherals.

For information about Arm® Cortex®-M4 core, please refer to Arm® Cortex® -M4 Technical Reference Manual; please refer to the corresponding datasheet for detailed data such as model information, dimension and electrical characteristics of the device; for all MCU series models, please refer to the corresponding datasheet for memory mapping, peripheral existence and their number.

1.2 Document description rules

1.2.1 "Register functional description" rules

- (1) Control (CTRL) registers are all "set to 1 and cleared to 0 by software", unless otherwise specified.
- (2) The control registers are usually followed by verb abbreviations to make a distinction. The verbs can be: EN-Enable, CFG-Configure, D-Disable, SET-Setup and SEL-Select
- (3) The state register abbreviation is usually followed by FLG to make a difference.
- (4) The value and data registers usually include V, VALUE, D and DATA, which are not followed by verbs, such as: xxPSC and CNT.

1.2.2 Full name and abbreviation description of terms

Table 1 Abbreviation and Description of R/W Modes

R/W mode	Description	Abbreviation
read/write	read/write Software can read and write this bit.	
read-only	read-only Software can only read this bit.	
write-only Software can only write this bit, and after reading this bit, reset value will be returned.		W
read/clear	The software can read this bit and clear it by writing 1. Writing 0 has no effect on this bit.	RC_W1
read/clear	The software can read this bit and clear it by writing 0. Writing 1 has no effect on this bit.	RC_W0
read/clear by read	The software can read this bit and reading this bit will automatically clear it to 0, and writing this bit is invalid.	RC_R

R/W mode Description		Abbreviation
read/set	The software can read and set this bit, and writing 0 has no	R/S
reau/set	effect on this bit.	K/5
read-only write trigger	The software can read this bit and writing 0 or 1 can trigger an	RT W
read-only write trigger	event but has no effect on the value of this bit.	K1_vv
toggle	The software can flip this bit only by writing 1 and writing 0 has	т
toggle	no effect on this bit.	'

Table 2 Functional Description and Full Name and Abbreviation of Terms of Commonly Used Registers

Full name in English	English abbreviation
Enable	EN
Disable	D
Clear	CLR
Select	SEL
Configure	CFG
Contrl	CTRL
Controller	С
Reset	RST
Stop	STOP
Set	SET
Load	LD
Calibration	CAL
Initialize	INIT
Error	ERR
Status	STS
Ready	RDY
Software	SW
Hardware	HW
Source	SRC
System	SYS
Peripheral	PER
Address	ADDR
Direction	DIR
Clock	CLK
Input	I

Full name in English	English abbreviation
Output	0
Interrupt	INT
Data	DATA
Size	SIZE
Divider	DIV
Prescaler	PSC
Multiplier	MUL
Period	PRD

Table 3 Full Name and Abbreviation of Modules

Full name in English	English abbreviation
External Memory Controller	EMMC
Static Memory Controller	SMC
Dynamic memory Controller	DMC
Reset and Clock Management Unit	RCM
Power Management Unit	PMU
Backup Register	BAKPR
Nested Vector Interrupt Controller	NVIC
External Interrupt /Event Controller	EINT
Direct Memory Access	DMA
Debug MCU	DBG MCU
General-Purpose Input Output Pin	GPIO
Alternate Function Input Output Pin	AFIO
Timer	TMR
Watchdog Timer	WDT
Independent Watchdog Timer	IWDT
Windows Watchdog Timer	WWDT
Real-Time Clock	RTC
Universal Synchronous Asynchronous Receiver Transmitter	USART
Inter-Integrated Circuit Interface	I2C
Serial Peripheral Interface	SPI
Inter-IC Sound Interface	128
Quad Serial Peripheral Interface	QSPI

Full name in English	English abbreviation
Controller Area Network	CAN
Secure Digital Input and Output	SDIO
Universal Serial Bus Full-Speed Device	USBD
Analog-to-Digital Converter	ADC
Digital-to-Analog Converter	DAC
Cyclic Redundancy Check Calculation Unit	CRC
Float Point Unit	FPU

2 System architecture

2.1 Full name and abbreviation description of terms

Table 4 Full name and abbreviation description of terms

Full name in English	English abbreviation
Advanced High-Performance Bus	AHB
Advanced Peripheral Bus	APB
Core Couple Memory	ССМ

2.2 System architecture block diagram

Arm[®] Cortex[®]-M4 core in the product has FPU, while the FPU of other series of products (unless otherwise specified) is beyond the core.

The system mainly consists of eight master modules and seven slave modules.

The master modules are I-bus, D-bus and S-bus of Arm® Cortex®-M4 core with FPU, general-purpose DMA1, general-purpose DMA2, and DMA2 peripheral bus, Ethernet DMA bus and USB OTG HS DMA bus.

The slave modules are internal Flash I-bus, D-bus, main internal memory SRAM1, auxiliary internal memory SRAM2, AHB1 bus and AHB1/APB bridge connected peripherals, peripherals on AHB2 bus and EMMC.

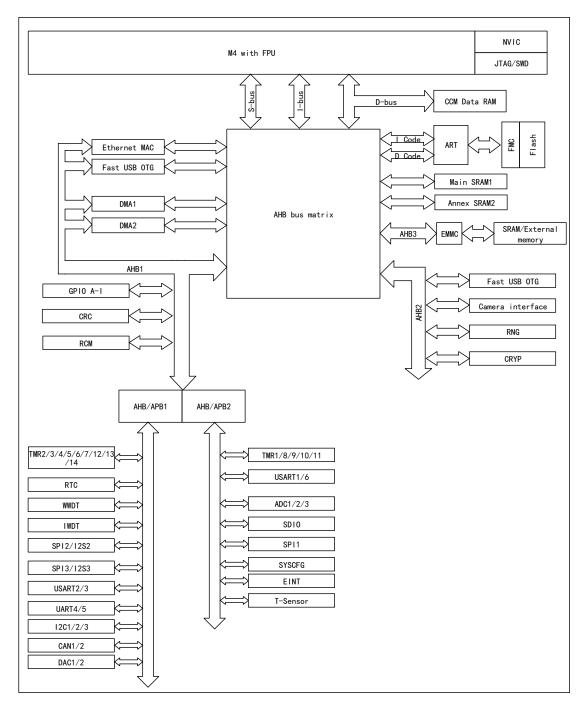
The bus matrix provides a platform to support the master module to access the slave module. The matrix can realize concurrent access, and the CPU still has efficient processing capacity when multiple peripherals are running at high speed.

It also has a 64-bit core couple memory, and it can access only through CPU.

The name and description of the bus are shown in the following table.

Table 5 Bus Name

Name	Description			
l-bus	Connect the instruction bus of Arm® Cortex® -M4 core and the bus matrix.			
I-bus	Used for obtaining instructions.			
D-bus	Connect the data bus of Arm [®] Cortex [®] -M4 core and the bus matrix.			
D-bus	Used for text loading and debugging access.			
S-bus	Connect the system bus of Arm® Cortex® -M4 core and the bus matrix.			
S-bus	Used for accessing the data in peripherals and SRAM.			
DMA momony bug	Connect the main interface of DMA memory and the bus matrix.			
DMA memory bus	Realize transmission related to the memory through DMA.			



Name	Description		
	Connect the main interface of DMA peripherals and the bus matrix.		
DMA peripheral bus	It can not only realize access of DMA to the peripherals on AHB, but also		
	realize transmission among memories.		
Ethernet DMA bus	Connect the main interface of Ethernet DMA and the bus matrix.		
Ethernet Divia bus	The data are loaded/stored in the memory through Ethernet DMA.		
USB OTG HS DMA	Connect the main interface of USB OTG HS DMA and the bus matrix.		
bus	realize transmission among memories. Connect the main interface of Ethernet DMA and the bus matrix. The data are loaded/stored in the memory through Ethernet DMA. Connect the main interface of USB OTG HS DMA and the bus matrix. The data are loaded/stored in the memory through USB OTG DMA. Coordinate the access among modules, and roll polling algorithm is used during arbitration. The bridge provides synchronous connection between AHB and APB buses. The non-32-bit access to APB register will be converted into 32 bits		
Bus matrix	Coordinate the access among modules, and roll polling algorithm is used		
Dus mainx	during arbitration.		
	The bridge provides synchronous connection between AHB and APB buses.		
AHB/APB bridge	The non-32-bit access to APB register will be converted into 32 bits		
	automatically.		

Figure 1 APM32F405/415xG、APM32F407/417xExG System Architecture Block

Diagram

Note:

- (1) APM32F415xG/APM32F417xExG has HASH processor and CRYP, while APM32F405xG/APM32F407xExG does not have; APM32F407/417xExG has Ethernet and DCI, while APM32F405/415xG does not have.
- (2) Actually, APM32F405/415xG、APM32F407/417xExG series has two USB OTG_HS, and they share the clock, reset, bus address, CPU interrupt, power supply, pins and other related

resources. Only one of two USB OTG_HS can be used at the same time. Their difference is: one has on-chip UTMI USB PHY (there is internal PLL with 60MHz output), while the other does not have.

2.3 Memory mapping

The assigned addresses of memory mapping include the core (including core peripherals), on-chip Flash (including main memory area, system memory area and option bytes), on-chip SRAM, and bus peripherals (including AHB and APB peripherals). Please refer to the data manual of the corresponding model for specific information of various addresses.

2.3.1 Embedded SRAM

The product has backup SRAM (4KB) and system SRAM (192KB). The system SRAM is divided into three parts: SRAM1 (112KB), SRAM2 (16KB) and CCM (64KB).

SRAM1 and SRAM2

The main SRAM1 and auxiliary SRAM2 can be accessed by byte, half word (16 bits) or full word (32 bits). The mapping address of SRAM1 and SRAM2 is 0x2000 0000, and the main module can be accessed by all AHB.

Core couple memory (CCM)

The mapping address of CCM (64KB) is 0x1000 0000, and it can only be accessed by CPU through D-bus.

2.3.2 **Bit band**

Arm® Cortex®-M4 memory is mapped with two bit-band areas, and it maps each word in the alias memory area to one bit in the bit-band memory. Write a word to the alias memory and there will be the same effect as the read-change-write operation on the target of the bit-band area. Both peripheral register and SRAM are mapped into a bit band area, and it is allowed to perform single bit-band write and read operations.

The following gives a mapping formula:

bit_word_addr=bit_band_base+ (byte_offset×32) + (bit_number×4)

2.4 Startup configuration

APM32F4xx series MCU realizes a special mechanism. By configuring the BOOT[1:0] pin, there are three different startup modes, and the system can not only start from Flash memory or system memory, but also start from the built-in SRAM. The memory selected as the start zone is determined by the selected

startup mode.

Table 6 Startup Mode Configuration and Access Mode

	Startup mode configuration Startup mode Access mode		Access mode
BOOT1 pin	BOOT0 pin		
Х	0	Main flash memory (Flash)	The main flash memory is mapped to the boot space, but it can still be accessed at its original address, that is, the contents of the flash memory can be accessed in two address areas.
0	1	System memory	The system memory is mapped to the boot space (0x0000 0000), but it can still be accessed at its original address.
1	1	Built-in SRAM	SRAM can be accessed only at the starting address.

Note:

- (1) The boot space address is 0x0000 0000
- (2) The original address of Flash is 0x0800 0000
- (3) The original address of the system memory is 0x1FFF 0000
- (4) The starting address of SRAM is 0x2000 0000
- (5) The user can select the startup mode after reset by setting the state of BOOT[1:0] pin.
- (6) BOOT pin should keep the user's required startup configuration in standby mode. When exiting from the standby mode, the value of boot pin will be latched.
- (7) If you choose to start from built-in SRAM, you must use NVIC's exception table and offset register to remap the vector table to SRAM when writing the application code.

Physical remapping

After BOOT pin is selected, MMSEL bit of SYSCFG_MMSEL register can be modified through software program to configure some register to allow access from I-Code bus. See SYSCFG register for specific configuration.

Embedded BootLoader

The embedded BootLoader mode will be selected to reprogram Flash through which of the following serial port:

- USART1
- USART3
- CAN2
- USB OTG FS slave mode

3 FLASH memory

3.1 Full name and abbreviation description of terms

Table 7 Full name and abbreviation description of terms

Full name in English	English abbreviation
Flash Memory Controller	FMC
One-time Programmable	OTP
Adaptive Real-time	ART

3.2 Introduction

This chapter mainly introduces the storage structure, read, erase, write, read/write protection, unlock/lock characteristics of Flash, and the involved register functional description.

3.3 Main characteristics

- (1) Flash memory structure
 - Contain main memory area and information block
 - The capacity of main memory area is up to 1MB
 - The information block is divided into system memory, OTP area and option byte three areas
 - The capacity of the system memory area is 30KB, for storing BootLoader program, 96-bit unique UID, and main memory area capacity information
 - The OTP area is 528Bytes, 512 OTP bytes are used for storing user data, and the remaining 16 bytes are used for locking the corresponding OTP data block
 - The capacity of the option byte area is 16Bytes

(2) Functional Description

- Operate the Flash:
 - Read
 - Sector/Mass Erase
 - Write
 - Read/Write protection
- Operate the option byte:
 - Read
 - Erase
 - Write
 - Read/Write protection

3.4 Flash memory structure

Table 8 Flash Memory Structure

Block	Name	Address range	Size (byte)	Sector
		0x0800 0000-0x0800 3FFF	16K	Sector 0
		0x0800 4000–0x0800 7FFF		Sector 1
		0x0800 8000-0x0800 BFFF	16K	Sector 2
Main ma	many blook	0x0800 C000-0x0800 FFFF	16K	Sector 3
IVIAIII IIIE	emory block	0x0801 0000 – 0x0801 FFFF	64K	Sector 4
		0x0802 0000 – 0x0803 FFFF	128K	Sector 5
		0x080E 0000-0x080F FFFF	128K	Sector 11
Information	System memory	0x1FFF 0000–0x1FFF 77FF	30K	-
block OTP area	0x1FFF 7800–0x1FFF 7A0F	528	-	
	Option byte	0x1FFF C000–0x1FFF C00F	16	-

Note: The number of sectors included by the main memory block of APM32F405/415xG, APM32F407/417xExG series products is related to the capacity of specific Flash; see the Data Manual for the capacity of Flash of different models.

3.5 Flash memroy functional description

3.5.1 Read Flash

Flash has a prefetch buffer area, and it can be turned on only when the power supply voltage is not lower than 2.1V.

The reading speed of Flash is affected by the number of wait cycles, and the number of wait cycles is affected by HCLK and power supply voltage. Assuming the wait cycle is n, and the rising base of HCLK range is X

- When (n+1) X is less than the maximum value:
 nX<HCLK≤ (n+1) X
- When (n-1) X is greater than the maximum value:
 nX < HCLK≤ maximum value

Table 9 X Affected by Voltage Range and Maximum Value of HCLK

Voltage range	1.8V-2.1V	2.1V-2.4V	2.4V-2.7V	2.7V-3.6V
X	20MHz	22MHz	24MHz	30MHz
Maximum value	160MHz	168MHz	168MHz	168MHz

Note:

When PMU_CTRL register VOSSEL=0, the maximum value of HCLK is 144MHz; when VOSSEL=1, the maximum value of HCLK is 168MHz.

CPU frequency can be adjusted by selecting different wait cycles, so as to adjust the reading speed of Flash.

3.5.1.1 Adaptive real-time memory accelerator (ART)

ART accelerator can improve the execution speed of Flash, so that the Flash can execute programs with fewer wait cycles at high CPU frequency.

Prefetch buffer area

When needing to insert wait cycle to access Flash, the next instruction line of Flash can be pre-read through I-Code bus, to improve the access rate.

I-cache

I-cache is an instruction buffer memory. The instructions in I-cache can be obtained without delay. The system can store 64 lines of 128-bit instructions in I-cache and the I-cache function can be enabled through ICACHEEN bit of FMC_ACCTRL register.

D-cache

D-cache is a data buffer memory. The system accesses the data buffer area of Flash through D-Bus to reduce the waiting time. Access of D-bus is prior to I-bus. The system can store 8 lines of 128-bit instructions in D-cache and the D-cache function can be enabled through DCACHEEN bit of FMC_ACCTRL register.

3.5.2 Main memory block

When erasing/writing to the main memory, Flash can no longer be read.

Number of parallel bits

The number of parallel bits is the number of bytes to be processed when erasing/writing to the Flash, and it is determined by the power supply voltage and the use of external power supply. The number of parallel bits is configured by programming the PGSIZE bit of FMC_CTRL register. The determinant factors and the number of parallel bits are shown in the table below:

Table 10 Relationship between Determinant Factors and Number of Parallel Bits

Voltage range (V)	1.8-2.1	2.1-2.4	2.4-2.7	2.7-3.6	2.7-3.6 (external VPP is used)
Number of parallel	8-bit	16	-bit	32-bit	64-bit
bits	0-bit	10	-DIL	32-bit	0 4 -5it

3.5.2.1 Erase main memory block

Flash can support sector erase and mass erase (erase all). Mass erase does not affect OTP sector or configuration sector.

Main memory page erase

Page erase is an independent erase according to the main memory area page selected by the program, which will not have any impact on the page not selected for erasure.

After the correct page erase (or flash write operation) is completed, OPRCMP bit of FMC_STS register will be set. If OPCINTEN interrupt is enabled, an operation completion interrupt will be triggered. Users need to note that the page to be erased must be a valid page (the valid address of the main memory area and the address not protected by write).

Main memory mass erase

The mass erase operation will erase all the contents in the main storage area of Flash, so the users need to pay special attention when using it to avoid the loss of important data caused by misoperation.

Mass erase does not affect OTP sector or configuration sector.

3.5.2.2 Write main memory block

Flash supports byte, half-word, word, and double-word write operation, specifically depending on the number of parallel bits.

It's important to check whether the destination address has been erased before writing to ensure correct writing. Flash unit must be earsed into 1 before writing.

If the destination address has write protection, the written data is invalid and a write protection error will be triggered (WPROTERR bit of FMC_STS register is set to "1").

In FMC_STS register, there are three write error bits, which are PGALGERR (programming alignment error), PGPRLERR (programming parallelism error) and PGSEQERR (programming sequence error).

Programming alignment error

To program more than 128-bit lines of data to the Flash, a programming alignment error will occur, and the PGALGERR bit will be set to 1.

Programming parallelism error

If the width of the write operation is inconsistent with the number of parallel bits,

the write operation will be suspended, a programming parallelism error will be generated, and the PGPRLERR bit will be set to 1.

Programming sequence error

The correct programming sequence is:

- (1) Confirm the operation currently not performed to the Flash through FMC_STS[BUSY]
- (2) Set FMC_CTRL[PG] to 1
- (3) Conduct write operation
- (4) Operation is completed, waiting for BUSY bit to be cleared to zero

If the programming sequence is wrong, a programming sequence error will occur, and the PGSEQERR bit will be set to 1.

3.5.2.3 **Buffer**

If the write operation of Flash involves some data in D-cache, the data in Flash and D-cache will be modified.

If the erase operation of Flash involves the data in D-cache or I-cache, the data shall be written to the cache before it.

3.5.2.4 **Interrupt**

An interrupt will occur in case of any of the following events:

- End of operation: End of erase/write operation
- Write protection error: Perform erase/write operation for the write protection area
- Programming error: An error occurs during erase/write/read

When OPCINTEN bit or ERRINTEN bit in FMC_CTRL register is set to 1 and the corresponding interrupt event occurs, an interrupt will be generated.

3.5.3 **Option byte**

The address and composition of the option byte are shown in the following table, and the specific meaning description can be seen in the corresponding bit of FMC_OPTCTRL register.

Table 11 Instructions for Option Bytes

Address	Bit field	Option byte	Functional description
	1:0	-	-
0x1FFF C000	3:2	BORLVL	Brownout reset level
	4	-	-
	5	WDTSEL	Select the watchdog

Address	Bit field	Option byte	Functional description	
	6 RSTSTOP Reset occurs when entering the s			
	7	RSTSTDB Reset occurs when entering the stands mode		
	15:8	RPROT	Read protection	
0x1FFF C008	11:0	NWPROT	No write protection	
UXTEFF C000	15:12	-	-	

3.5.3.1 Erase/write option byte

The option byte must be unlocked before erasing/writing.

The programming sequence of option byte is:

- (1) Confirm the operation currently not performed to the Flash through FMC_STS[BUSY]
- (2) Write the programming value to FMC_OPTCTRL
- (3) Set FMC_OPTCTRL[OPTSTART] to 1
- (4) Operation is completed, waiting for BUSY bit to be cleared to zero

Note:

If the page erase/write operation of the main memory block is performed immediately after the option byte write operation is completed, the following steps must be performed after the option byte write operation is completed:

- ①Unlock the main memory block
- 2) Write 0x08 in the address: 0x40023C30
- ③Lock the main memory block

After the above three steps are performed, the page erase/write operation of the main memory block could be performed.

3.5.3.2 Lock/unlock

FMC_OPTCTRL[OPTLOCK] can only be set to 1, so as to lock the option byte area.

Write the keywords 0x0819 2A3B and 0x4C5D 6E7F to the FMC_OPTKEY register, and when the system detects unlocking sequence, it will clear the OPTLOCK bit of FMC_OPTCTRL register to zero and the option byte will be unlocked.

3.5.4 Write protection

In order to prevent accidental rewriting of Flash due to program disorder, in default state, the Flash supports write protection function of up to 12 user sectors; when the corresponding bit of the FMC_OPTCTRL[NWPROT] bit field is at low level, the corresponding sector will be write-protected, and the sector cannot be erased/written.

3.5.4.1 Write protection error

FMC_STS[WPROTERR] is a write protection error bit, and it will be set to 1 when any of the following events occurs:

- Perform erase/write operation for the write protection area
- Execute page erase/mass erase for invalid sector
- Meanwhile, select page erase and mass erase
- Flash is under read protection but detects erase/write request
- Perform write operation for user configuration area
- Perform write operation for the locked OTP area

3.5.5 Read protection

In order to prevent untrusted code from reading Flash data, you can choose to use the read protection function for the Flash and the read protection level can be selected by configuring the value of the FMC_OPTCTRL[RPROT] bit field. The read protection has three levels, namely, Level 0, Level 1 and Level 2.

The access restriction at different read protection levels is shown in the following table.

Bootstrap from Debuggng function, bootstrap from RAM or **Storage** Flash system memory Level area Write Read **Erase** Read Write **Erase** Level 1 OTP **√** Χ Level 2 Level 1 √ Option byte Level 2 Χ Flash Level 1 X X(1)and backup Level 2 X SRAM

Table 12 Restriction at Different Read Levels

Note:

(1) means that only when Level 1 changes to Level 0, can the data of Flash and backup SRAM be erased.

[&]quot;"y" means the operation is allowed, "X" means not allowed, and "-" means undefined.

3.5.5.1 Level 0

When FMC_OPTCTRL[RPROT]=0xAA, the read protection function is not used for Flash.

3.5.5.2 Level 1

When FMC_OPTCTRL[RPROT]=any value (except 0xAA and 0xCC), the read protection level is 1. At this time, if the level is adjusted to Level 0, mass erase operation will be performed to erase all data of Flash and backup SRAM. Mass erase only affects user code area, and write-protected other option bytes and OTP will not be affected.

3.5.5.3 Level 2

When FMC OPTCTRL[RPROT]=0xCC, the read protection level is 2. Then:

- Reserve the read protection function of Level 1
- It is not allowed to bootstrap from RAM or system memory
- JTAG, SWV, ETM and boundary scan is disabled
- The option byte is locked

Note: When the read protection level is set to 2, it cannot be degraded any more.

3.5.6 **OTP**

The following table shows OTP structure.

Table 13 OTP Structure

Address	[31:0]	[63:32]	[95:64]	[127:96]	Block
0x1FFF 7800	OTP0	OTP0	OTP0	OTP0	Data
0x1FFF 7810	OTP0	OTP0	OTP0	OTP0	block 0
0x1FFF 7820	OTP1	OTP1	OTP1	OTP1	Data
0x1FFF 7830	OTP1	OTP1	OTP1	OTP1	block 1
0x1FFF 7840	OTP2	OTP2	OTP2	OTP2	Data
0x1FFF 7850	OTP2	OTP2	OTP2	OTP2	block 2
0x1FFF 79E0	OTP15	OTP15	OTP15	OTP15	Data
0x1FFF 79F0	OTP15	OTP15	OTP15	OTP15	block 15
0x1FFF 7A00	LOCKB0 LOCKB3	LOCKB4 LOCKB7	LOCKB8 LOCKB11	LOCKB12 LOCKB15	Lock block

OTP consists of 16 32-byte data blocks and 1 16-byte lock block. The lock block n is used to lock the data block n (n=0...15), and the corresponding data block

can be programmed only when the value of the lock block is 0x00. The value of the lock block can only be 0x00 or 0xFF; otherwise, the OTP byte cannot be used normally.

Note that neither data block nor lock block of OTP can be erased.

3.6 Register address mapping

Table 14 FMC Register Address Mapping

Register name	Description	Offset address
FMC_ACCTRL	Flash access control register	0x00
FMC_KEY	Flash key register	0x04
FMC_OPTKEY	Flash option key register	0x08
FMC_STS	Flash state register	0x0C
FMC_CTRL	Flash control register	0x10
FMC_OPTCTRL	Flash option control register	0x14

3.7 Register functional description

3.7.1 Flash access control register (FMC_ACCTRL)

Offset address: 0x00
Reset value: 0x0000 0000

Field	Name	R/W	Description
2:0	Wait Period This bit means the number of wait cycles. 000: 0 001: 1 010: 2 011: 3 100: 4 101: 5 110: 6 111: 7		This bit means the number of wait cycles. 000: 0 001: 1 010: 2 011: 3 100: 4 101: 5 110: 6
7:3	Reserved		
8	PREFEN	R/W	Prefetch Enable 0: Disable 1: Enable
9	ICACHEEN R/W 0:		Instruction Cache Enable 0: Disable 1: Enable
10	DCACHEEN	R/W	Data Cache Enable 0: Disable 1: Enable

Field	Name	R/W	Description
11	ICACHERST	W	Instruction Cache Reset 0: Invalid 1: Reset
12	DCACHERST	R/W	Data Cache Reset 0: Invalid 1: Reset
31:13	Reserved		

3.7.2 Flash key register (FMC_KEY)

Offset address: 0x04

Reset value: 0x0000 0000

Field	Name	R/W	Description	
31:0	KEY	W	Key When unlocking, this key needs to be written into this register.	

3.7.3 **FMC_OPTKEY**

Offset address: 0x08 Reset value: 0x0000 0000

Field Name R/W Description

31:0 OPTKEY W Option Key
When unlocking, this key needs to be written into this register.

3.7.4 Flash state register (FMC_STS)

Offset address: 0x0C

Reset value: 0x0000 0000

Field	Name	R/W	Description		
0	OPRCMP	RC_W1	Operation Complete This bit will be set to 1 when the operation for Flash is completed.		
1	OPRERR	RC_W1	Operation Error This bit will be set to 1 when an error occurs in operation process.		
3:2	Reserved				
4	WPROTERR	RC_W1	Write Protection Error This bit will be set to 1 when erse/write operation is performed for Flash write protection area.		
5	PGALGERR	RC_W1	Programming Alignment Error This bit will be set to 1 when a programming alignment error occurs.		
6	PGPRLERR	RC_W1	Programming Parallelism Error This bit will be set to 1 when a programming parallelism error occurs.		

Field	Name	R/W	Description	
7	PGSEQERR	RC_W1	Programming Sequence Error This bit will be set to 1 when a programming sequence error occurs.	
15:8	Reserved			
16	BUSY	R	Busy This bit will be set to 1 when operation is performed for Flash.	
31:17	Reserved			

3.7.5 Flash control register (FMC_CTRL)

Offset address: 0x10 Reset value: 0x8000 0000

This register can be accessed only when there is no Flash operation ongoing.

	This register can be accessed only when there is no Flash operation ongoing			
Field	Name	R/W	Description	
0	PG	R/W	Programming	
	1 0	1000	When this bit is set to 1, Flash programming can be enabled.	
1	SERS	R/W	Sector Erase	
	02.10		When this bit is set to 1, sector erase can be enabled.	
2	MERS	R/W	Mass Erase	
	WE TO	1011	When this bit is set to 1, mass erase can be enabled.	
			Sector Number	
			This bit field is used for the specified erase sector.	
			0000: Sector 0	
6:3	SNUM	R/W	0001: Sector 1	
			0010: Sector 2	
			1011: Sector 11	
			Others: Reserved	
7		Reserved		
			Program Size	
			This bit field is used to select the number of parallel bits.	
9:8	PGSIZE	R/W	00: 8-bit	
0.0	. 00.22	I GSIZE IVW	01: 16-bit	
			10: 32-bit	
			10: 32-bit 11: 64-bit	
15:10				
15:10			11: 64-bit	
15:10	START	R/S	11: 64-bit Reserved Start When this bit is set to 1, the erase operation can be started. This bit	
	START	R/S	11: 64-bit Reserved Start	
	START	R/S	11: 64-bit Reserved Start When this bit is set to 1, the erase operation can be started. This bit	
16		R/S	11: 64-bit Reserved Start When this bit is set to 1, the erase operation can be started. This bit will be cleared to zero when BUSY bit is cleared to zero.	
16	START OPCINTE N	R/S	11: 64-bit Reserved Start When this bit is set to 1, the erase operation can be started. This bit will be cleared to zero when BUSY bit is cleared to zero. Reserved	

Field	Name	R/W	Description	
25	ERRINTE N	R/W	Error interrupt Enable 0: Disable 1: Enable	
30:26	Reserved			
31	LOCK	R/S	Lock When this bit is set to 1, it means that this register is locked; when the unlocking sequence is detected, it will be cleared to zero by the hardware.	

3.7.6 Flash option control register (FMC_OPTCTRL)

Offset address: 0x14 Reset value: 0x0FFF AAED

This register can be accessed only when there is no Flash operation ongoing.

Field	Name	R/W	Description	
0	OPTLOCK	R/S	Option Lock When this bit is set to 1, it means that this register is locked; when the unlocking sequence is detected, it will be cleared to zero by the hardware.	
1	OPTSTART	R/S	Option Start After this bit is set to 1 by the software, the option byte can be operated and it can be cleared to zero when the BUSY bit is set to zero.	
3:2	BORLVL	R/W	Brownout Reset Level When the power supply voltage is less than the threshold of the brownout reset level, a reset will be generated. 00: Level 3, voltage range: 2.7V-3.6V 01: Level 2, voltage range: 2.4V-2.7V 10: Level 1, voltage range: 2.1V-2.4V 11: Disable, voltage range: 1.8V-2.1V	
4		Reserved		
5	WDTSEL	R/W	Watchdog Select 0: Software watchdog 1: Hardware watchdog	
6	RSTSTOP	R/W	nReset in STOP Mode 0: Reset occurs when entering the Stop mode 1: Reset does not occur when entering the Stop mode	
7	RSTSTDB	R/W	nReset in STANDBY Mode 0: Reset occurs when entering the Standby mode 1: Reset does not occur when entering the Standby mode	
15:8	RPROT	R/W	Read Protect This bit field is used to select the eread protection level. 0xAA: Level 0 0xCC: Level 2 Others: Level 1	

Field	Name	R/W	Description
27:16	NWPROT	R/W	Not Write Protect 0: Write protection isenabled 1: Write protection is disabled
31:28	Reserved		

4 External Memory Controller (EMMC)

4.1 Full name and abbreviation description of terms

Table 15 Full name and abbreviation description of terms

Full name in English	English abbreviation
Static Random Access Memory	SRAM
Read Only Memory	ROM
Pseudo Static Random Access Memory	PSRAM
Random Access Memory	RAM
Synchronous Dynamic Random Access Memory	SDRAM
Multiplex	MUX
Width	WID
Flash Memory	FM
Access	ACC
Wait	W
Signal	S
Polarity	POL
Asynchronous	ASYN
Burst	BURST
Timing	TIM
Setup	SET
Hold	HLD
Empty	E

4.2 EMMC Overview

EMMC includes SMC (static memory controller) and DMC (dynamic memory controller). SMC is responsible for controlling SRAM, PSRAM, NandFlash, NorFlash and PCCard; DMC is responsible for controlling SDRAM.

4.3 SMC Introduction

SMC is used to manage the extended static memory peripherals; AHB transmission signals can be converted to the appropriate external devices; there are four internal memory blocks, each of which controls different types of

memory and is distinguished by chip selection signal; only one external device can be accessed at any moment; each memory block can be configured separately, and the timing can be programmed for external devices.

4.4 SMC Structure Block Diagram

SMC consists of five parts: AHB bus interface, configuration register, NORFlash controller, NANDFlash/PC card controller and external device interface, specifically as shown in the figure below:

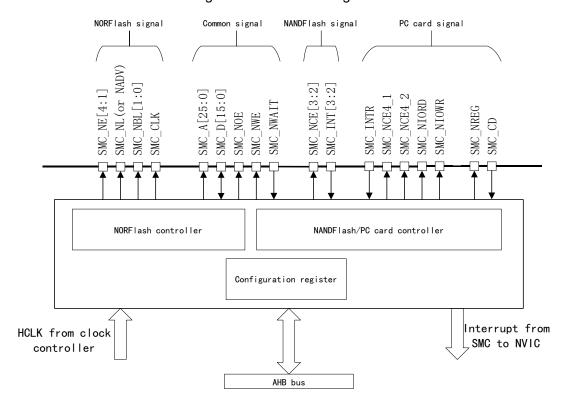


Figure 2 SMC Block Diagram

4.5 SMC Functional Description

4.5.1 SMC Access Rules

SMC is an interface for internal CPU to access external static memory through AHB bus. On AHB bus, the operation of 32-bit data will be converted into continuous 16 or 8-bit operation. In order to ensure the consistency of data transmission, SMC needs to comply with the following rules in external readwrite operation:

(1) When the width of AHB accessing external data is equal to that of memory data, the data can be transmitted normally without any problem.

- (2) When the width of AHB accessing external data is larger than that of memory data, the access operation will be automatically cut to be consistent with the width of external data for transmission.
- (3) When the width of AHB accessing external data is less than that of memory data, if the external memory has the function of byte selection, it can transmit data normally through byte channel; if it does not have such function, it does not allow write operation, and only allows read operation.

4.5.2 External device address mapping

SMC divides external devices into multiple memory blocks, and different memory blocks control different external devices. The specific classification is shown in the table below:

Memory type Start address **End address** Memory block supported Memory block 1 0x60000000 NOR/PSRAM 0x6FFFFFF (4*64MB) Memory block 2 0x70000000 0x7FFFFFFF NAND (4*64MB) Memory block 3 0x80000000 0x8FFFFFF NAND (4*64MB) Memory block 4 0x90000000 0x9FFFFFF PC card (4*64MB)

Table 16 External Device Address Mapping Table

4.5.3 NOR flash memory and PSRAM

4.5.3.1 Address mapping

Memory block 1 is used to control NOR/PSRAM memory, which is divided into four 64MB areas of the same size. The selection of each area depends on the value of HADDR [27:26], and the specific information is as follows:

	11	,	
HADDR[27:26]	Start address	End address	Area block
00	0x60000000	0x63FFFFF	Area block 1
01	0x64000000	0x67FFFFF	Area block 2
10	0x68000000	0x6BFFFFF	Area block 3
11	0x6C000000	0x6FFFFFF	Area block 4

Table 17 Address Mapping of Memory Block 1

HADDR is the internal AHB address line that needs to be converted to the external memory. It is a byte address. However, some external memories are not accessed by byte, so the address may be inconsistent. In order to avoid the error caused by this situation, SMC will be adjusted according to the following

rules:

- When the width of external memory data is 8 bits, HADDR[25:0] is connected to SMC_A [25:0], while SMC_A[25:0] is connected to the external memory address line.
- When the width of external memory data is 16 bits, HADDR[25:1] is connected to SMC_A [24:0], while SMC_A[24:0] is connected to the external memory address line.

4.5.3.2 Interface signal and controller

The memory block 1 supports NOR Flash, PSRAM, SRAM and ROM external memory. There are corresponding chip selection signals NE[x] (x=1..4) in the four areas of the memory block 1. All other signals are shared. The specific interface signals and functions are as follows:

Table 18 NOR Flash Interface Signal

SMC signal name	Signal direction	Function
CLK	Output	Synchronous clock signal
NE[x]	Output	Chip selection signal, x=14
NOE	Output	Read enable signal
NEW	Output	Write enable signal
NWAIT	Input	Signal that NOR flash memory requires SMC to wait
A[25:0]	Output	Non-multiplexing: A[25:0] all are address bus
	Output	Multiplexing: A[25:16] is address bus
	Input/Output	Non-multiplexing: Bidirectional data bus
AD[15:0]	Input/Output	Multiplexing: Bidirectional address/Data bus
NL (=NADV)	Output	Effective address signal

Table 19 PSRAM Interface Signal

SMC signal name	Signal direction	Function
CLK	Output	Synchronous clock signal
NE[x]	Output	Chip selection signal, x=14
NOE	Output	Read enable signal
NEW	Output	Write enable signal
NWAIT	Input	Signal that PSRAM requires SMC to wait
A[25:0]	Output	Address bus
D[15:0]	Input/Output	Bidirectional data bus

SMC signal name	Signal direction	Function
NL (=NADV)	Output	Effective address signal
NBL[1]	Output	High byte enable
NBL[0]	Output	Low byte enable

Note: The output signal of the controller changes at the rising edge of the internal clock; in the synchronous write mode, the output data changes at the falling edge of the memory clock.

NOR Flash/PSRAM controller provides programmable timing parameters for external memory, including the parameters in the following table:

Table 20 Programmable NOR/PSRAM Timing Parameters

Parameter	Function	Access mode	Unit	Minimum	Maximum
Data generation time	The number of clocks required to generate the first data in burst mode	Synchronous	Memory clock cycle (CLK)	2	17
Clock division factor	The ratio of memory access clock cycle (CLK) to AHB clock cycle	Synchronous		2	16
Bus recovery time	Duration of Bus recovery phase	Asynchronous or synchronous read	AHB clock cycle	1	16
Data setup time	Duration of data setup phase	Asynchronous	(HCLK)	2	256
Address hold time	Duration of address hold phase	Synchronous, multiplexing IO		2	16
Address setup time	Duration of address setup phase	Asynchronous		1	16

4.5.4 NAND flash memory and PC card

4.5.4.1 Address mapping

Memory blocks 2, 3 and 4 are used to access NAND flash memory and PC card. Each memory block is also divided into different areas, the corresponding effect of different areas is different, and the specific distribution is as follows:

Table 21 Address Mapping of Memory Blocks 2 3 and 4

SMC memory block	Storage space	Start address	End address
Memory block 2-NAND	General	0x70000000	0x73FFFFFF
flash memory	Attributes	0x78000000	0x7BFFFFF

SMC memory block	Storage space	Start address	End address
Memory block 3-NAND flash memory	General	0x80000000	0x83FFFFF
	Attributes	0x88000000	0x8BFFFFF
Memory block 4-PC card	General	0x90000000	0x93FFFFF
	Attributes	0x98000000	0x9BFFFFF
	I/O	0x9C000000	0x9FFFFFF

NAND flash memory block is divided into three blocks in part of the low-byte area, and different blocks can be accessed through HADDR [17:16]. The specific division and selection of these three blocks are shown in the table below:

Table 22 NAND Memory Block Division

HADDR[17:16]	Address range	Block name
00	0x000000-0x00FFFF	Data block
01	0x010000-0x01FFFF	Command block
1X	0x020000-0x03FFFF	Address

In order to read and write NAND memory normally, the following steps are needed:

- Transmit command to the memory
- Transmit the address for reading and writing to the memory
- Read/Write data

The operation address of the corresponding three-step operation corresponds to the three blocks in the memory block. To transmit a command to the memory is to write the corresponding command value to the command block; to transmit an address to the memory is to transmit the corresponding address value to the address block; to read and write data is to read and write in the data block; finally write or read out the internal unit of NAND, and the address of the corresponding unit is the address written in the address block.

4.5.4.2 Interface signal and controller

NAND/PC card controller can control three memory blocks. The memory blocks 2 and 3 support NAND Flash, and the memory block 4 supports PC card devices. Three memory blocks have their own chip selection signals, and the specific interfaces and functions are as follows:

Table 23 NAND Flash Interface Signal

SMC signal name	Signal direction	Function
NCE[x]	Output	Chip selection signal, x=2, 3
NOE (=NRE)	Output	Read enable signal

SMC signal name	Signal direction	Function
NEW	Output	Write enable signal
NWAIT/INT[3:2]	Input	NAND Flash ready/busy input signal
A[17]	Output	NAND Flash address latch signal (ALE)
V(16)	Output	NAND Flash command latch signal
A[16]	Output	(CLE)
	Innut/Output	8-bit multiplexing: D[7:0] bidirectional
D[15:0]	Input/Output	address/data bus
	Input/Output	16-bit multiplexing: D[15:0] bidirectional
	Input/Output	address/data bus

Table 24 PC Card Interface Signal

SMC signal name	Signal direction	Function
NCE4_1	Output	Chip selection signal 1
NCE4 2	Output	Chip selection signal 2 (select 16-bit or
.1102.1_2	- Catpat	8-bit operation)
NOE	Output	Read enable signal
NEW	Output	Write enable signal
NWAIT	Input	PC card wait signal
INTR	Input	PC card interrupt signal
CD	Input	PC card detection signal
A[10:0]	Output	Address bus
		Data transmission width of 16-bit
NIOS16	Input	transmission I/O space (must be
		grounded)
NIORD	Output	I/O space output enable
NIOWR	Output	I/O space write enable
NREG	Outrout	Selection of common space or attribute
INNEG	Output	space access
D[15:0]	Output/Input	Bidirectional data bus

NAND Flash/PC card controller provides programmable timing parameters for external memory, including the parameters in the following table:

Table 25 Programmable NAND/PC Card Timing Parameters

Parameter	Function	Operation mode	Unit	Minimum	Maximum
Memory data bus high- impedance time	The time of holding the data bus in high-impedance state after starting write operation	Write		0	255
Memory hold time	The number of clocks holding the address after transmitting the command, also the hold time of data during write operation	Read/Write	AHB clock cycle (HCLK)	1	254
Memory waiting time	Minimum transmitting duration	Read/write		2	256
Memory setup	The number of clocks that set up the address before issuing the command			1	255

4.6 SMC register address mapping

Table 26 SMC Register Address Mapping

Register name	Description	Offset address
SMC_CSCTRL14	SRAM/NOR flash memory chip selection control register 14	8*(x-1),x=14
SMC_CSTIM14	SRAM/NOR flash memory chip selection timing register 14	0x04 + 8*(x-1),x=14
SMC_WRTTIM14	SRAM/NOR flash memory write timing register 14	0x104 + 8*(x-1),x=14
SMC_CTRL24	PC card/NAND flash memory control register 24	0x40 + 0x20 * (x-1),x=24
SMC_STSINT24	FIFO state and interrupt register 24	0x44 + 0x20 * (x-1),x=24
SMC_CMSTIM24	General-purpose memory space timing register 24	0x48 + 0x20 * (x-1),x=24
SMC_AMSTIM24	Attribute memory space timing register 24	0x4C + 0x20 * (x-1),x=24
SMC_IOSTIM4	I/O space timing register 4	0XB0
SMC_ECCRS2/3	ECC result register 2/3	0x54 + 0x20 * (x-1), x=2 or 3

4.7 SMC register functional description

4.7.1 NOR flash memory and PSRAM control register

4.7.1.1 SRAM/NOR flash memory chip selection control register 1...4 (SMC_CSCTRL1...4)

Offset address: 0x8*(x-1), x=1...4
Reset value: 0x0000 30DX

Field	Name	R/W	Description			
0	MBKEN	R/W	Enable the Corresponding Memory Bank 0: Disable 1: Enable			
1	ADMUXEN	R/W	Address/Data Multiplexing Enable This bit is effective only for NORFlash and PSRAM. 0: Disable 1: Address low 16-bit and data sharing data bus			
3:2	MTYPECFG	R/W	Memory Type Configure 00: SRAM, ROM (default value of Bank2~Bank4 after reset) 01: PSRAM 10; NORFlash (default value after Bank1 reset) Others:Reserved			
5:4	MDBWIDCFG	R/W	Memory Data Bus Width Configure 00: 8 bits 01: 16 bits Others reserved			
6	NORFMACCEN	R/W	NORFlash Memory Access Enable 0: Disable 1: Enable			
7	Reserved					
8	BURSTEN	R/W	Burst Mode Enable In synchronous mode, use the burst mode to access the memory. 0: Disable 1: Enable			
9	WSPOLCFG	R/W	Wait Signal Polarity Configure This bit is effective only in burst mode. 0: Low effective 1: High effective			
10	WRAPBEN	R/W	Wrapped Burst Mode Enable This bit is effective only in burst mode. 0: Disable 1: Enable			
11	WTIMCFG	R/W	Wait Timing Configure This bit is used to configure whether the memory generates NWAIT signal in the period before the waiting state or during the waiting period; this bit is effective only in burst mode.			

Field	Name	R/W	Description	
			NWAIT signal is effective in the data period before waiting NWAIT signal is effective in the waiting period	
12	WREN	R/W	Write Memory Enable This bit is used to enable write operation of SMC for the memory. 0: Disable write; otherwise, an AHB error will be generated 1: Allow write	
13	WAITEN	R/W	Wait Enable This bit is used to enable NWAIT signal to insert the wait state; this bit is effective only in burst mode. 0: Disable 1: Enable	
14	EXTMODEEN	R/W	Extended Mode Enable In extended mode, SMC_WRTTIM register can be used to realize read and write using different timing function. 0: Disable 1: Enable	
15	WSASYNCEN	R/W	Wait Signal During Asynchronous Transfers Enable This bit is used to enable SMC to use NWAIT signal during asynchronous protocol period. 0: Disable 1: Enable	
18:16	CRAMPSIZECFG	R/W	CRAM Page Size Configure 000: There is no burst split when crossing the page boundary 001: 128 bytes 010: 256 bytes 011: 512 bytes 100: 1024 bytes Others: Reserved	
19	WRBURSTEN	R/W	Write PSRAM Burst Enable This bit is used to enable the synchronous burst transmission protocol for write operation. 0: Write operation is asynchronous mode 1: Write operation is synchronous mode	
31:20	Reserved			

4.7.1.2 SRAM/NOR flash memory chip selection timing register 1...4 (SMC_CSTIM1...4)

Offset address: 0x04 + 8*(x-1), x=1...4

Reset value: 0x0FFF FFFF

Field	Name	R/W	Description
3:0	ADDRSETCFG	R/W	Address Setup Time Configure Only apply to NOR flash memory operation in SRAM, ROM and asynchronous bus multiplexing mode. 0000: One HCLK clock cycle 0001: 2 HCLK clock cycles

Field	Name	R/W	Description
			1111: 16 HCLK clock cycles Note: In synchronous operation, this parameter is meaningless and is always 1 memory clock cycle
7:4	ADDRHLDCFG	R/W	Address-Hold Time Configure Only apply to NOR flash memory operation in SRAM, ROM and asynchronous bus multiplexing mode. 0000: Reserved 0001: 2 HCLK clock cycles 1111: 16 HCLK clock cycles Note: In synchronous operation, this parameter is meaningless and is always 1 memory clock cycle
15:8	DATASETCFG	R/W	Data Setup Time Configure Only apply to NOR flash memory operation in SRAM, ROM and asynchronous bus multiplexing mode. 0000 0000: Reserved 0000 0001: 2 HCLK clock cycles 0000 0010: 3 HCLK clock cycles 1111 1111: 256 HCLK clock cycles
19:16	BUSTURNCFG	R/W	Bus Turnaround Phase Duration Configure These bits are used to configure the delay time on the bus after a read operation. They are only applicable to NOR flash memory operation in bus multiplexing mode. 0000: 1 HCLK clock cycle 0001: 2 HCLK clock cycles
23:20	CLKDIVCFG	R/W	Clock Divide Factor Configure CLK comes from HCLK frequency division. These bits are used to configure the frequency of CLK clock output signal. They are only applicable to synchronous mode. 0000: Reserved 0001: 2 divided frequency 0010: 3 divided frequency 1111: 16 divided frequency Note: This parameter is ineffective when accessing asynchronous NOR flash memory, SRAM or ROM.
27:24	DATALATCFG	R/W	Data Latency Configure These bits are used to configure the number of memory cycles for waiting before reading the first data. They are only applicable to NOR flash memory operation in synchronous burst mode. 0000: 2 CLK clock cycles 0001: 3 CLK clock cycles 1111: 17 CLK clock cycles

Field	Name	R/W	Description
			Note: When accessing asynchronous NOR flash memory, SRAM or ROM, this parameter is invalid. When operating CRAM, this parameter is 0.
29:28	ASYNCACCCFG	R/W	Asynchronous Access Mode Configure Valid only when EXTMODEEN bit of SMC_CSCTRLX register is 1. 00: Access mode A 01: Access mode B 10: Access mode C 11: Access mode D
31:30	Reserved		

4.7.1.3 SRAM/NOR flash memory write timing register 1...4 (SMC_WRTTIM1...4)

Offset address: 0x104 + 8*(x-1), x=1...4

Reset value: 0x0FFF FFFF

	Reset value: 0x0FFF FFFF				
Field	Name	R/W	Description		
3:0	ADDRSETCFG	R/W	Address Setup Time Configure Only apply to NOR flash memory operation in SRAM, ROM and asynchronous bus multiplexing mode. 0000: 1 HCLK clock cycle 0001: 2 HCLK clock cycles 1111: 16 HCLK clock cycles Note: In synchronous operation, this parameter is meaningless and is always 1 memory clock cycle		
7:4	ADDRHLDCFG	R/W	Address-Hold Time Configure Only apply to NOR flash memory operation in SRAM, ROM and asynchronous bus multiplexing mode. 0000: Reserved 0001: 2 HCLK clock cycles 1111: 16 HCLK clock cycles Note: In synchronous operation, this parameter is meaningless and is always 1 memory clock cycle		
15:8	DATASETCFG	R/W	Data-Setup Time Configure Only apply to NOR flash memory operation in SRAM, ROM and asynchronous bus multiplexing mode. 0000 0000: Reserved 0000 0001: 2 HCLK clock cycles 0000 0010: 3 HCLK clock cycles 1111 1111: 256 HCLK clock cycles		
19:16	BUSTURNCFG	R/W	Bus Turnaround Phase Duration Configure These bits are used to configure the delay time on the bus after a read operation. They are only applicable to NOR flash memory operation in bus multiplexing mode. 0000: 1 HCLK clock cycle 0001: 2 HCLK clock cycles		

Field	Name	R/W	Description
			1111: 16 HCLK clock cycles
			Clock divide ratio (for CLK signal Configure)
			Cycle of CLK clock output signal, expressed by the number of HCLK cycles.
			0000: Reserved
23:20	CLKDIVCFG	R/W	0001: CLK cycle=2×HCLK cycle
			0010: CLK cycle =3×HCLK cycle
			1111: CLK cycle=16×HCLK cycle (default value after reset)
			This bit is invalid in asynchronous NOR Flash, SRAM or ROM access mode.
			Data latency Configure
		R/W	This bit is used to define the memory clock to be transmitted to the memory before obtaining the first data
			Period number (+2).
27:24	DATLATCFG		0000: Data delay of 2 CLK clock cycles during the first burst access
			1111: Data delay of 17 CLK clock cycles during the first burst access (default value after reset)
			This bit is invalid in asynchronous NOR Flash, SRAM or ROM access mode.
			Asynchronous Access Mode Configure
29:28	ASYNCACCCFG	R/W	These bits are used to configure asynchronous access mode, and are valid only when EXTMODEEN bit of SMC_CSCTRLX register is 1.
29.20 A	ASTNOACCORG	17/1/	00: Access mode A
			01: Access mode B
			10: Access mode C
			11: Access mode D
31:30			Reserved

4.7.2 NAND flash memory and PC card control register

4.7.2.1 PC card/NAND flash control register 2...4 (SMC_CTRL2...4)

Offset address: 0x40 + 0x20 * (x-1), x=2...4

Reset value: 0x0000 0018

Field	Name	R/W	Description		
0	Reserved				
1	WAITFEN	PC Card/NANDFlash Wait Feature Enable 0: Disable 1: Enable			
2	MBKEN R/W		(PC Card/NAND Flash Memory Bank Enable 0: Disable 1: Enable		

Field	Name	R/W	Description		
			Memory Type Configure		
3	MTYPECFG	R/W	0: PC card, CF card, CF+ card or PCMCIA		
			1: NAND flash memory		
			Databus Width Configure		
			16 bits must be used for PC Card.		
5:4	DBWIDCFG	R/W	00: 8 bits		
			01: 16 bits		
			Others reserved		
			ECC Computation Logic Enable		
6	ECCEN	R/W	0: Disable and reset ECC		
			1: Enable		
8:7			Reserved		
			CLE To RE Delay Configure		
	C2RDCFG	R/W	Configure the duration from "CLE becomes low level" to "RE becomes low level".		
12:9			0000: 1 HCLK cycle		
			0000: 2 HCLK cycles		
			1111: 16 HCLK cycles		
			ALE To RE Delay Configure		
			Configure the duration from "ALE becomes low level" to "RE becomes low level"		
16:13	A2RDCFG	R/W	0000: 1 HCLK cycle		
			0000: 2 HCLK cycles		
			1111: 16 HCLK cycles		
			ECC Page Size Configure		
			000: 256 bytes		
			001: 512 bytes		
19:17	ECCPSCFG	R/W	010: 1024 bytes		
			011: 2048 bytes		
			100: 4096 bytes		
	101: 8192 bytes				
31:20			Reserved		

4.7.2.2 FIFO state and interrupt register 2...4 (SMC_STSINT2...4)

Offset address: 0x44 + 0x20 * (x-1), x=2...4

Reset value: 0x0000 0040

Field	Name	R/W	Description
0	IREFLG	R/W	Interrupt Rising Edge Generate Flag This bit is set to 1 by hardware and cleared by software. 0: Not generate 1: Generate

Field	Name	R/W	Description		
1	IHLFLG	R/W	Interrupt High-Level Generate Flag This bit is set to 1 by hardware and cleared by software. 0: Not generate 1: Generate		
2	IFEFLG	R/W	Interrupt Falling Edge Generate Flag This bit is set to 1 by hardware and cleared by software. 0: Not generate 1: Generate		
3	IREDEN	R/W	Interrupt Rising Edge Detection Enable 0: Disable 1: Enable		
4	IHLDEN	R/W	Interrupt High-Level Detection Enable 0: Disable 1: Enable		
5	IFEDEN	R/W	Interrupt Falling Edge Detection Enable 0: Disable 1: Enable		
6	FEFLG	R	FIFO Empty Flag 0: Not empty 1: Empty		
31:7	Reserved				

4.7.2.3 General-purpose memory space timing register 2...4 (SMC_CMSTIM2...4)

Offset address: 0x48 + 0x20 * (x-1), x=2...4

Reset value: 0xFCFC FCFC

Field	Name	R/W	Description
7:0	SETx	R/W	Common Memory x Setup Time Configure This bit takes CLK as the clock cycle, and defines the time of setting up the address before sending the command. 0000 0000: 1 HCLK cycle 0000 0001: 2 HCLK cycles 1111 1110: 255 HCLK cycles 1111 1111: Reserved

Field	Name	R/W	Description
		R/W	Description Common Memory x Wait Time Configure This bit takes HCLK as the clock cycle and defines the minimum hold time of the command. After the defined time, if the waiting signal is effective low, the hold time of the command will become longer. 0000 0000: Reserved 0000 0001: 2 HCLK cycles(+ wait cycle introduced by deasserting NWAIT) 0000 0010: 3 HCLK cycles
			1111 1110: 255 HCLK cycles(+ wait cycle introduced by deasserting NWAIT) 1111 1111: Reserved
23:16	HLDx	R/W	Common Memory x Hold Time Configure This bit takes CLK as the clock cycle, and defines the hold time of address signal after sending the command. 0000 0000: Reserved 0000 0001: 1 HCLK cycle for write accesses, 3 HCLK cycles for read accesses 0000 0010: 2 HCLK cycles 1111 1110: 254 HCLK cycles for write accesses, 256 HCLK cycles for read accesses 1111 1111: Reserved
31:24	HIZx	R/W	Common Memory x Databus Hiz Time Configure This bit takes HCLK as the clock cycle and defines the time of high- impedance state of data bus, which is only effective for write operation. 0000 0000: 1 HCLK cycle 0000 0001: 2 HCLK cycles 1111 1110: 255 HCLK cycles 1111 1111: Reserved

4.7.2.4 Attribute memory space timing register 2...4 (SMC_AMSTIM2...4)

Offset address: 0x4C + 0x20 * (x-1), x=2...4

Reset value: 0xFCFC FCFC

Field	Name	R/W	Description
7:0	SETx	R/W	Attribute Memory x Setup Time Configure This bit takes CLK as the clock cycle, and defines the time of setting up the address signal before sending the command. 0000 0000: 1 HCLK cycle 0000 0001: 2 HCLK cycles 1111 1110: 255 HCLK cycles 1111 1111: Reserved

Field	Name	R/W	Description
Ticia	Hamo	1011	·
15:8	WAITx	R/W	Attribute Memory x Wait Time Configure This bit takes HCLK as the clock cycle and defines the minimum hold time of the command. After the defined time, if the waiting signal is effective low, the hold time of the command will become longer. 0000 0000: Reserved 0000 0001: 2 HCLK cycles(+ wait cycle introduced by deasserting NWAIT) 0000 0010: 3 HCLK cycles 1111 1110: 255 HCLK cycles(+ wait cycle introduced by deasserting NWAIT) 1111 1111: Reserved
23:16	HLDx	R/W	Attribute Memory x Hold Time Configure This bit takes CLK as the clock cycle, and defines the hold time of address signal after sending the command. 0000 0000: Reserved 0000 0001: 1 HCLK cycle for write accesses, 3 HCLK cycles for read accesses 0000 0010: 2 HCLK cycles 1111 1110: 254 HCLK cycles for write accesses, 256 HCLK cycles for read accesses 1111 1111: Reserved
31:24	HIZx	R/W	Attribute Memory x Databus Hiz Time Configure This bit takes HCLK as the clock cycle and defines the time of high- impedance state of data bus, which is only effective for write operation. 0000 0000: 0 HCLK cycle 0000 0001: 1 HCLK cycle 1111 1111: 255 HCLK cycles

4.7.2.5 I/O space timing register 4 (SMC_IOSTIM4)

Offset address: 0xB0

Reset value: 0xFCFC FCFC

Field	Name	R/W	Description
7:0	SET	R/W	I/O x Setup Time Configure This bit takes CLK as the clock cycle, and defines the time of setting up the address signal before sending the command. 0000 0000: 1 HCLK cycle 0000 0001: 2 HCLK cycles 1111 1111: 256 HCLK cycles

Field	Name	R/W	Description
15:8	WAIT	R/W	I/O x Wait Time Configure This bit takes HCLK as the clock cycle and defines the minimum hold time of the command. After the defined time, if the waiting signal is effective low, the hold time of the command will become longer. 0000 0000: Reserved 0000 0001: 2 HCLK cycles(+ wait cycle introduced by deasserting NWAIT) 0000 0010: 3 HCLK cycles 1111 1111: 256 HCLK cycles(+ wait cycle introduced by the Card deasserting NWAIT)
23:16	HLD	R/W	I/O x Hold Time Configure This bit takes CLK as the clock cycle, and defines the hold time of address signal after sending the command. 0000 0000: Reserved 0000 0001: 1 HCLK cycle 0000 0010: 2 HCLK cycles 1111 1111: 255 HCLK cycles
31:24	HIZ	R/W	I/O x Databus Hiz Time Configure This bit takes HCLK as the clock cycle and defines the time of high-impedance state of data bus, which is only effective for write operation. 0000 0000: 0 HCLK cycle 0000 0001: 1 HCLK cycle 1111 1111: 255 HCLK cycles

4.7.2.6 ECC result register 2/3 (SMC_ECCRS2/3)

Offset address: 0x54 + 0x20 * (x-1), x=2 or 3

Reset value: 0x0000 0000

Field	Name	R/W	Description		
31:0	ECCRS	R	ECC result		

4.8 DMC introduction

DMC is a dynamic memory controller, connected to off-chip SDR-SDRAM.

4.9 Main characteristics of DMC

- 16-bit data width
- 2MB off-chip SDR-SDRAM
- SDR-SDRAM timing and size are configurable
- SDR-SDRAM power-down mode supported
- SDR-SDRAM auto-refresh and self-refresh mode supported

4.10 DMC structure block diagram

Memory controller

Host interface unit

Host interface controller

Address decoder

Control register

SDR-SDRAM
controller

Address FIFO

Refresh unit

Figure 3 DMC structure block diagram

4.11 DMC functional description

4.11.1 DMC external memory interface

The signal with the prefix "N" means low effective signal.

Table 27 DMC Pins

Signal Name	Input/Output	Pin	Function
A0	Output	PF1	Address
A1	Output	PF2	Address
A2	Output	PF3	Address
A3	Output	PF4	Address
A4	Output	PF6	Address
A5	Output	PF7	Address
A6	Output	PF8	Address
A7	Output	PF9	Address
A8	Output	PF10	Address
A9	Output	PH3	Address
A10	Output	PF0	Address

Signal Name	Input/Output	Pin	Function
D0	Input/Output	PG3	Bidirectional data
D1	Input/Output	PG4	Bidirectional data
D2	Input/Output	PG5	Bidirectional data
D3	Input/Output	PG6	Bidirectional data
D4	Input/Output	PG8	Bidirectional data
D5	Input/Output	PH13	Bidirectional data
D6	Input/Output	PH15	Bidirectional data
D7	Input/Output	PI3	Bidirectional data
D8	Input/Output	PH8	Bidirectional data
D9	Input/Output	PH10	Bidirectional data
D10	Input/Output	PD10	Bidirectional data
D11	Input/Output	PD12	Bidirectional data
D12	Input/Output	PD13	Bidirectional data
D13	Input/Output	PD14	Bidirectional data
D14	Input/Output	PD15	Bidirectional data
D15	Input/Output	PG2	Bidirectional data
BA	Output	PI11	Bank address
CKE	Output	PH5	Clock enable
CLK/CK	Output	PG1	Clock
LDQM	Input	PG15	16-bit data write
UNQM	Input	PF11	16-bit data read
NWE	Output	PI7	Write enable
NCAS	Output	PI8	Column address bit strobe command
NRAS	Output	PI9	Row address bit strobe command
NCS	Output	PI10	Chip selection

4.11.2 DMC configuration example

Configure switch register DMC_SW as 1 to enable DMC;

The maximum value of SDRAM clock frequency is 50MHZ;

Configure the bit [9:8] of register RCM_CFG to decide the clock frequency of SDRAM;

Example: 512K×2BANKS×16BIT SDRAM

• Corresponding pin of row address: A0-A9, totally 11 bits

Corresponding pin of column address: A0-A8, totally 8 bits

• Corresponding pin of Bank: BA0, 1 bit

The row address width bit of the configuration register DMC _CFG is set to 1010;

The column address width bit of the configuration register DMC_CFG is set to 0111;

The Bank address width bit of the configuration register DMC CFG is set to 00.

4.12 DMC register address mapping

Table 28 DMC Register Address Mapping

Register name	Description	Offset address
DMC_CFG	Configuration register	0x00
DMC_TIM0	Timing register 0	0x04
DMC_TIM1	Timing register 1	0x08
DMC_CTRL1	Control register 1	0x0C
DMC_REF	Refresh register	0x10
DMC_SW	Switch register	0x0400
DMC_CTRL2	Control register 2	0x0404

4.13 DMC register functional description

4.13.1 Configuration register (DMC_CFG)

Offset address: 0x00

Reset value: 0x0014 1388

Field	Name	R/W	Description			
2:0	Reserved					
4:3	BAWCFG	R/W	Bank Address Width Configure 00: The bank is 1 bit 01: The bank is 2 bits Others reserved			
8:5	RAWCFG	R/W	Row Address Width Configure 0000-1001: Reserved 1010: The row address is 11 bits 1011: The row address is 12 bits 1111: The row address is 16 bits			

Field	Name	R/W	Description		
12:9	CAWCFG	R/W	Column Address Width Configure 0000-0110: Reserved 0111: The column address is 8 bits 1000: The column address is 9 bits 1110: The column address is 15 bits 1111: Reserved		
14:13	DWCFG	R/W	Data Width Configure 00: SDRAM data bit width is 16 bits Others reserved		
31:15	Reserved				

4.13.2 Timing register 0 (DMC_TIM0)

Offset address: 0x04

Reset value: 0x019A 5252

Field	Name	R/W	Description
1:0	CASLSEL0	R/W	CAS Latency Select CAS = CASLSEL0+ (ECASLSEL1<< 2) 00: 1 clock cycle 01: 2 clock cycles 10: 3 clock cycles 11: 4 clock cycles Others: Reserved
5:2	RASMINTSEL	R/W	RAS Minimum Time Select These bits are used to select the minimum time between row activation and precharge. 0000: 1 clock cycle 0001: 2 clock cycles 1111: 16 clock cycles
8:6	DTIMSEL	R/W	RAS To CAS Delay Time Select 000: 1 clock cycle 001: 2 clock cycles 111: 8 clock cycles
11:9	PCPSEL	R/W	Precharge Period Select 000: 1 clock cycle 001: 2 clock cycles 111: 8 clock cycles
13:12	WRTIMSEL	R/W	Select Time Between The Last Data And The Next Precharge For Write 00: 1 clock cycle 01: 2 clock cycles 10: 3 clock cycles 11: 4 clock cycles

Field	Name	R/W	Description
17:14	ARPSEL	R/W	Auto-Refresh Period Select These bits are used to define the minimum time interval between two auto-refresh commands. 0000: 1 clock cycle 0001: 2 clock cycles 1111: 16 clock cycles
21:18	XSR0	R/W	Minimum interval time from exiting self-refresh switch to activation command or auto-refresh read command XSR = XSR0 + (EXSR1 << 4) . XSR = 0 ~ 511 corresponds to 1 ~ 512 SDCLK clock cycles
25:22	ATACP	R/W	Active to active command cycle 0000: 1 clock cycle 0001: 2 clock cycles 1111: 16 clock cycles
26	ECASLSEL1	R/W	Extended CAS Latency See TIM0_CASLSEL0 interpretation
31:27	EXSR1	R/W	Minimum interval time from exiting self-refresh switch to activation command or auto-refresh read command See TIM0_XSR0 interpretation

4.13.3 Timing register 1 (DMC_TIM1)

Offset address: 0x08 Reset value: 0x0007 4E20

Field	Name	R/W	Description
15:0	STBTIM	R/W	Stable Time After the SDRAM is powered on, how many clock cycles does it take to receive other commands.
19:16	ARNUMCFG	R/W	Number Of Auto-Refresh During Initialization Configure 0000: 1 auto-refresh 0001: 2 auto-refresh 1111: 16 auto-refresh
31:20	Reserved		

4.13.4 Control register 1 (DMC_CTRL1)

Offset address: 0x0C Reset value: 0x0000 3048

Field	Name	R/W	Description
0	INIT	R/W	SDRAM Initialize 0: Invalid 1: Initialize SDRAM, and after SDRAM initialization, the hardware will automatically set 0 to this bit.

Field	Name	R/W	Description
1	SRMEN	R/W	Put SDRM in Self-Refresh Mode Enable 0: Invalid 1: Enable
2	PDMEN	R/W	Put SDRM in Power-Down Mode Enable 0: Disable 1: Enable
3	PCACFG	R/W	Precharge Algorithm Configure 0: Precharge the row immediately after read operation. 1: Precharge the row after a period of delay upon completion of read operation.
4	FRBSREN	R/W	Full Refresh Before Entering Self-Refresh Mode 0: Only refresh one row before entering self-refresh mode 1: Refresh all rows before entering self-refresh mode
5	FRASREN	R/W	Full Refresh After Exit Self-Refresh Mode 0: Only refresh one row before after exiting self-refresh mode 1: Refresh all rows after exiting self-refresh mode
8:6	RDNUMCFG	R/W	Configure Number Of Registers Inserted In Read Data Path 000: 0 register 001: 1 register 111: 7 registers
9	MODESET	R/W	Mode Setup 1: Update SDRAM mode register. After the mode register is updated, the hardware will clear the bit automatically
10			Reserved
11	SRMFLG	R	Self-refresh mode flag 1: Indicate that the current SDRAM is stored in self-refresh mode. This bit is valid when FRBSREN position is 1.
15:12	BANKNUMCFG	R/W	Number Of Open Banks Configure The quantity of opened Banks in the SDRAM. 0000: 1 bank 0001: 2 banks 1111: 16 banks
31:16			Reserved

4.13.5 Refresh register (DMC_REF)

Offset address: 0x10 Reset value: 0x0000 00C3

Field	Name	R/W	Description
15:0	RCYCCFG	R/W	Refresh Cycle Configure Specify the number of clock cycles between two consecutive refreshes.
31:16	Reserved		

4.13.6 Switch register (DMC_SW)

Offset address: 0x0400 Reset value: 0x0000 0000

Field	Name	R/W	Description		
0	MCSW	R/W	Memory Controller Function Switch 0: Select SMC 1: Select DMC		
31:1		Reserved			

4.13.7 Control register 2 (DMC_CTRL2)

Offset address: 0x0404 Reset value: 0x0000 002E

Field	Name	R/W	Description
			Clock Phase Configure
0	CPHACFG	R/W	0: The system clock is not reverse
			1: The system clock is reverse
			RD Delay Function Enable
1	RDDEN	R/W	0: Enable
			1: Disable
			RD Clock Delay Configure
			000: 0 system clock
4:2	RDDCFG	R/W	001: 1 system clock
			111: 7 system clocks
			Write Pipe Enable
5	WPEN	R/W	0: Disable
			1: Enable
			DMC Accelerate Module Enable
6	BUFFEN	R/W	By opening the buffer area, wrap the burst data transmission, and
			improve the SDRAM read performance.
			WRAP Burst Type Selection
7	WRPBSEL	R/W	0: The wrap burst length is 4 ticks of transmission
			1: The wrap burst length is 8 ticks of transmission
31:8			Reserved

5 System configuration controller (SYSCFG)

5.1 Main characteristics

- (1) Remapping of configuration memory
- (2) Select MAC PHY interface
- (3) Configure external interrupt of GPIO
- (4) Control I/O compensation cell

5.2 I/O compensation cell

When the I/O output buffer speed is configured as 50MHz or 100MHz, the I/O port noise will affect the power supply voltage. Therefore, at this time (when the power supply voltage is $2.4 \sim 3.6 \text{V}$), the compensation cell can be enabled to control the $t_{f(IO)out}/t_{r(IO)out}$ slope to reduce the impact on the power supply.

5.3 Register address mapping

Table 29 SYSCFG Register Address Mapping

Description	Offset address
Memory mapping selection register	0x00
Peripheral mode configuration register	0x04
External interrupt register 1	0x08
External interrupt register 2	0x0C
External interrupt register 3	0x10
External interrupt register 4	0x14
Compensation cell control register	0x20
	Memory mapping selection register Peripheral mode configuration register External interrupt register 1 External interrupt register 2 External interrupt register 3 External interrupt register 4

5.4 Register functional description

5.4.1 Memory mapping selection register (SYSCFG_MMSEL)

Offset address: 0x00

Reset value: 0x0000 000X (after reset, the value of X is the same as the setting of BOOT pin)

This register is used to configure in the memory area accessed at the address 0x0000 0000 through the software so as to bypass BOOT pin.

Field	Name	R/W	Description
1:0	MMSEL	R/W	Memory Mapping Select Control the memory mapping address 0x0000 0000. After reset, the parameters of these bits are determined by actual BOOT. 00: Main flash mapping address: 0x0000 0000 01: System flash mapping address: 0x0000 0000 10: SMC Bank1 (NOR/PSRAM1 and 2) mapping address: 0x0000 0000 11: Embedded SRAM1 mapping address: 0x0000 0000
31:2	Reserved		

5.4.2 Peripheral mode configuration register (SYSCFG_PMCFG)

Offset address: 0x04 Reset value: 0x0000 0000

Field	Name	R/W	Description
22:0	Reserved		
23	ENETSEL	ENETSEL R/W Ethernet PHY Interface Select Control the physical layer interface. 0: MII interface 1: RMII PHY interface Note: This bit shall be operated when ENET is reset and before ENET clock is enabled.	
31:24	Reserved		

5.4.3 External interrupt register 1 (SYSCFG_EINTCFG1)

The selected external interrupt sources represented by values of the EINTx [3:0] of the following several SYSCFG external interrupt registers are shown in the table below.

Table 30 External Interrupt Sources Selected for Different Values

EINTx [3:0]	External interrupt source
0000	PA[x] pin
0001	PB[x] pin
0010	PC[x] pin
0011	PD[x] pin
0100	PE[x] pin
0101	PF[x] pin
0110	PG[x] pin
0111	PH[x] pin
1000	PI[x] pin
Others	Reserved

Offset address: 0x08

Reset value: 0x0000 0000

These bits are controlled by software to be rewritten to select the external interrupt source of EINTx(x=0...3).

Field	Name	R/W	Description
3:0	EINT0	R/W	EINT0 Configure These bits are controlled by software to be rewritten to select the external interrupt source of EINT0.
7:4	EINT1	R/W	EINT1 Configure These bits are controlled by software to be rewritten to select the external interrupt source of EINT1.
11:8	EINT2	R/W	EINT2 Configure These bits are controlled by software to be rewritten to select the external interrupt source of EINT2.
15:12	EINT3	R/W	EINT3 Configure These bits are controlled by software to be rewritten to select the external interrupt source of EINT3.
31:16	Reserved		

5.4.4 External interrupt register 2 (SYSCFG_EINTCFG2)

Offset address: 0x0C

Reset value: 0x0000 0000

These bits are controlled by software to be rewritten to select the external

interrupt source of EINTx(x=4...7).

Field	Name	R/W	Description
3:0	EINT4	R/W	EINT4 Configure These bits are controlled by software to be rewritten to select the external interrupt source of EINT4.
7:4	EINT5	R/W	EINT5 Configure These bits are controlled by software to be rewritten to select the external interrupt source of EINT5.
11:8	EINT6	R/W	EINT6 Configure These bits are controlled by software to be rewritten to select the external interrupt source of EINT6.
15:12	EINT7	R/W	EINT7 Configure These bits are controlled by software to be rewritten to select the external interrupt source of EINT7.
31:16	Reserved		

5.4.5 External interrupt register 3 (SYSCFG_EINTCFG3)

Offset address: 0x10

Reset value: 0x0000 0000

These bits are controlled by software to be rewritten to select the external

interrupt source of EINTx(x=8...11).

Field	Name	R/W	Description
3:0	EINT8	R/W	EINT8 Configure These bits are controlled by software to be rewritten to select the external interrupt source of EINT8.
7:4	EINT9	R/W	EINT9 Configure These bits are controlled by software to be rewritten to select the external interrupt source of EINT9.
11:8	EINT10	R/W	EINT10 Configure These bits are controlled by software to be rewritten to select the external interrupt source of EINT10.
15:12	EINT11	R/W	EINT11 Configure These bits are controlled by software to be rewritten to select the external interrupt source of EINT11.
31:16	Reserved		

5.4.6 External interrupt register 4 (SYSCFG_EINTCFG4)

Offset address: 0x14
Reset value: 0x0000 0000

These bits are controlled by software to be rewritten to select the external

interrupt source of EINTx(x=12...15).

Note that when the value of each bit of the register is 0x1000, this bit is reserved bit, namely, PI[15:12] is unused.

Field	Name	R/W	Description
3:0	EINT12	R/W	EINT12 Configure These bits are controlled by software to be rewritten to select the external interrupt source of EINT12.
7:4	EINT13	R/W	EINT13 Configure These bits are controlled by software to be rewritten to select the external interrupt source of EINT13.
11:8	EINT14	R/W	EINT14 Configure These bits are controlled by software to be rewritten to select the external interrupt source of EINT14.
15:12	EINT15 Configure These bits are controlled by software to be rewritten to select the external interrupt source of EINT15.		These bits are controlled by software to be rewritten to select the
31:16	Reserved		

5.4.7 Compensation cell control register (SYSCFG_CCCTRL)

Offset address: 0x20 Reset value: 0x0000 0000

Field	Name	R/W	Description
0	CCPD	R/W	Compensation Cell Power-down 0: I/O compensation cell enters power-down mode 1: I/O compensation cell is enabled
7:1	Reserved		

Field	Name	R/W	Description
8	RDYFLG	R	Compensation Cell Ready Flag 0: Not ready 1: Ready
31:9	Reserved		

6 Reset and clock (RCM)

6.1 Full name and abbreviation description of terms

Table 31 Full name and abbreviation description of terms

Full name in English	English abbreviation
Reset and Clock Management	RCM
Reset	RST
Power-On Reset	POR
Power-Down Reset	PDR
High Speed External Clock	HSECLK
Low Speed External Clock	LSECLK
High Speed Internal Clock	HSICLK
Low Speed Internal Clock	LSICLK
Phase Locked Loop	PLL
Main clock output	MCO
Calibrate	CAL
Trim	TRM
Clock Security System	CSS
Non Maskable Interrupt	NMI

6.2 Reset management unit (RMU)

The reset is divided into three forms, namely, system reset, power reset and backup domain reset.

6.2.1 System reset

6.2.1.1 "System reset" reset source

The reset source is divided into external reset source and internal reset source.

External reset source:

• Low level on NRST pin.

Internal reset source:

- Window watchdog termination count (WWDT reset)
- Independent watchdog termination count (IWDT reset)
- Software reset (SW reset)
- Power reset
- Low-power management reset

A system reset will occur in case of any of the above events. Besides, the reset event source can be identified by viewing the reset flag bit in RCM_CSTS (control/state register).

When the system is reset, all registers except the registers in RCM_CSTS (control/state register) reset flag bit and backup domain will be reset to the reset state.

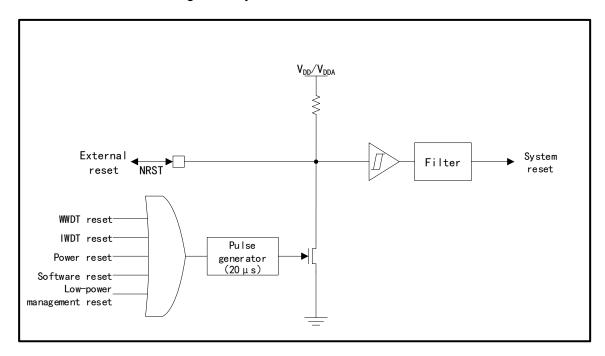
Software reset

Software can be reset by setting SYSRESETREQ in Arm® Cortex® -M4 interrupt application and reset control register to "1".

Low-power management reset

Low-power management may reset in two cases, one is when entering the standby mode, and the other is when entering the stop mode. In these two cases, if RSTSTDBY (in standby mode) or RSTSTOP (in stop mode) in user selection byte is set to "1", the system will be reset rather than entering the standby or stop mode.

6.2.1.2 "System Reset" reset circuit


The reset source is used in the NRST pin, which remains low in reset process.

The internal reset source generates a delay of at least 20µs pulse on the NRST pin through the pulse generator, which causes the NRST to maintain the level to generate reset; the external reset source directly pulls down the NRST pin level to generate reset.

The "system reset" reset circuit is shown in the figure below.

Figure 4 "System Reset" Reset Circuit

6.2.2 Power reset

"Power reset" reset source

"Power reset" reset source is as follows:

- Power-on reset (POR)
- Power-down reset (PDR)
- Brownout reset (BOR)
- Exit (wake up) from standby mode

A power reset will occur in case of any of the above events.

Power reset will reset all registers except that in backup domain.

6.2.3 Backup domain reset

"Backup domain reset" reset source

"Backup domain reset" reset source is as follows:

- Software resets and sets the BDRST bit in RCM_BDCTRL (backup domain control register)
- ullet V_{DD} or V_{BAT} is powered on again when V_{DD} and V_{BAT} is powered down

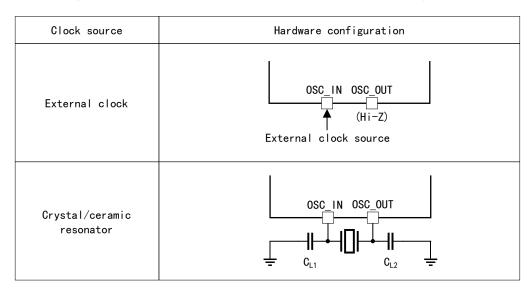
A backup domain reset will occur in case of any of the above events.

The backup domain reset has two special resets, which only affect backup domain.

6.3 Clock management unit (CMU)

The clock sources of the whole system are: HSECLK, LSECLK, HSICLK, LSICLK, PLL1 and PLL2. For the characteristics of the clock source, please refer to the relevant chapter of "Electrical Characteristics" in the data manual.

6.3.1 External clock source


The external clock signal includes HSECLK (high-speed external clock signal) and LSECLK (low-speed external clock signal).

There are two kinds of external clock sources:

- External crystal/ceramic resonator
- External clock of user

The hardware configuration of the two kinds of clock sources is shown in the figure below.

Figure 5 HSECLK/LSECLK Clock Source Hardware Configuration

In order to reduce the distortion of clock output and shorten the start-up stabilization time, the crystal/ceramic resonator and load capacitor must be as close to the oscillator pin as possible. The value of load capacitance (C_{L1} , C_{L2}) must be adjusted according to the selected oscillator.

6.3.1.1 HSECLK high-speed external clock signal

HSECLK clock signal is generated by HSECLK external crystal/ceramic resonator and HSECLK external clock two kinds of clock sources.

Table 32 Clock Source Generating HSECLK

Name	Description
	Provide clock to MCU through OSC_IN pin.
	The signal can be generated by ordinary function signal transmitter (in
	debugging), crystal oscillator and other signal generators; the waveform
External clock source	can be square wave, sine wave or triangle wave with 50% duty cycle,
	and the maximum frequency is up to 26MHz.
(HSECLK bypass)	For hardware connection, it must be connected to OSC_IN pin, ensuring
	OSC_OUT pin is suspended (in high-impedance state); for MCU
	configuration, the user can select this mode by setting HSEBCFG and
	HSEEN bits in RCM_CTRL (clock control register).
	The clock is provided to MCU by the resonator, and the resonator
	includes crystal resonator and ceramic resonator.
	The frequency range is 4-26MHz.
	When needing to connect OSC_IN and OSC_OUT to the resonator, it
External crystal/ceramic	can be enabled and disabled by setting the HSEEN bit in clock control
resonator	register RCM_CTRL (clock control register).
(HSECLK crystal)	HSERDYFLG bit in the clock control register RCM_CTRL (clock control
	register) is used to indicate whether the high-speed external oscillator is
	stable. After startup, the clock is not released until this bit is set to "1" by
	hardware. If interrupt is allowed in RCM_INT (clock interrupt register),
	corresponding interrupt will be generated.

6.3.1.2 LSECLK low-speed external clock signal

LSECLK clock signal is generated by LSECLK external crystal/ceramic resonator and LSECLK external clock two kinds of clock sources.

Table 33 Clock Source Generating LSECLK

Name	Description
	The clock is provided to MCU through OSC32_IN pin.
	The signal can be generated by ordinary function signal transmitter
	(in debugging), crystal oscillator and other signal generators; the
External clock source	waveform can be square wave, sine wave or triangle wave with 50%
(LSECLK bypass)	duty cycle, and the signal frequency needs to be 32.768kHz.
(LOECEN bypass)	For hardware connection, it must be connected to OSC32_IN pin,
	ensuring OSC32_OUT pin is suspended; for MCU configuration, the
	user can select this mode by setting LSEBCFG and LSEEN bits in
	RCM_BD (backup domain control register).

Name	Description
External crystal/ceramic resonator (LSECLK crystal)	The clock is provided to MCU by the resonator, and the resonator
	includes crystal resonator and ceramic resonator. The frequency is
	32.768kHz.
	OSC32_IN and OSC32_OUT need to be connected to the oscillator
	which can be enabled and disabled through LSEEN bit in
	RCM_BDCTRL (clock backup domain control register).
	LSERDYFLG in RCM_BDCTRL indicates whether LSECLK crystal
	oscillator is stable. At startup stage, LSECLK clock signal is not
	released until this bit is set to "1" by hardware. If it is allowed in the
	clock interrupt register, an interrupt request can be generated.

6.3.2 Internal clock source

The internal clock includes HSICLK (high-speed internal clock signal) and LSICLK (low-speed internal clock signal).

6.3.2.1 HSICLK high-speed internal clock signal

HSICLK clock signal is generated by internal 16MHz RC oscillator.

The RC oscillator frequency of different chips is different, and that of the same chip may be different with the change of temperature and voltage; the HSICLK clock frequency of each chip has been calibrated to 1% (25° C, $V_{DD}=V_{DDA}=3.3V$) by the manufacturer before leaving the factory. When the system is reset, the value calibrated by the manufacturer will be loaded to RCM_CTRL register; in addition, the users can further adjust the frequency by setting HSITRM bit in RCM_CTRL register according to the application environment (temperature and voltage) of the site.

HSIRDYFLG bit can be used to indicate whether HSICLK RC oscillator is stable. In the clock startup process, HSICLK RC output clock is not released until the HSIRDYFLG bit is set to 1 by hardware. HSICLK RC can be enabled or disabled by HSIEN bit in RCM CTRL.

Compared with HSECLK crystal oscillator, RC oscillator can provide system clock without any external device; the start time of RC oscillator is shorter than that of HSECLK crystal oscillator; even after calibration, its clock frequency accuracy is still inferior to that of HSECLK crystal oscillator.

6.3.2.2 LSICLK low-speed internal clock signal

Main characteristics of LSICLK

LSICLK is generated by RC oscillator, within the range of 28kHz (20kHz and 35kHz. The frequency may change along with the change of temperature and voltage. It can keep running in stop and standby mode and provide clock for independent watchdog and automatic wake-up unit.

LSICLK can be enabled or disabled by LSIEN bit in RCM_CST register. LSIRDYFLG bit in RCM_CTRL indicates whether the low-speed internal oscillator is stable. At startup stage, the clock is not released until this bit is set to "1" by hardware. If allowed in RCM_INT register, LSICLK ready interrupt request signal will be generated.

6.3.3 PLL phase locked loop

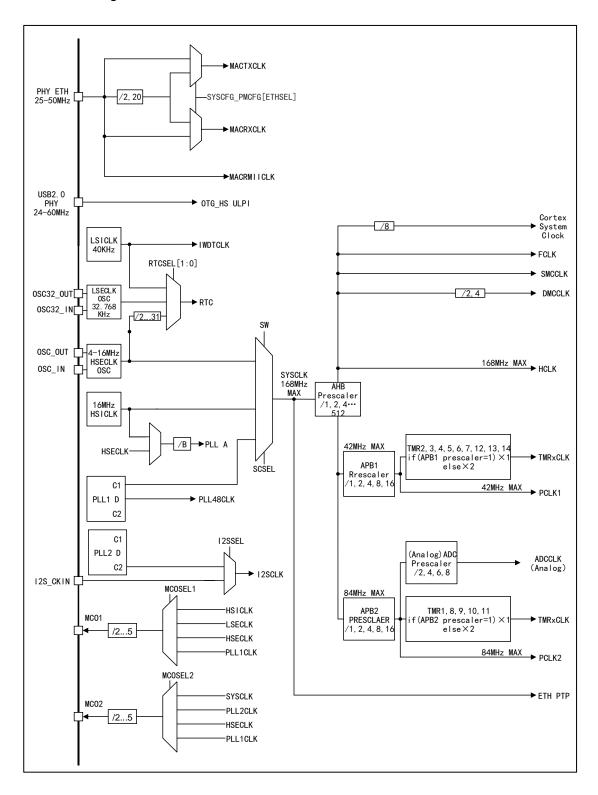
This series of products have two PLL, which usually take HSICLK or HSECLK oscillator as their clock source. These two PLL will be disabled by hardware in case of either of the following situations:

- Enter the stop or standby state
- The system clock directly or indirectly selects HSECLK as the clock source, and a fault occurs to HSECLK

When configuring PLL related coefficient, ensure that it is not enabled.

6.3.3.1 PLL1

PLL1 is the main phase-locked loop, which mainly generates the clock signal with maximum frequency of 168MHz for the system clock. The clock output frequency of PLL1 is configured by RCM_PLL1CFG register, the clock frequency is adjusted by setting the multiplication/division factor in the formula, and PLL1 shall be disabled during configuration.


6.3.3.2 PLL2

PLL2 is dedicated to providing clock signal to I2S, and the clock frequency is jointly determined by the related bits in RCM_PLL1CFG and RCM_PLL2CFG registers (see the register function description for details).

6.3.4 Clock tree

Figure 6 APM32F405/415xG、APM32F407/417xExG Clock Tree

Note:

(1) HCLK means AHB clock signal.

- (2) PLCK1 and PLCK2 are clock signal connected to APB1 and APB2 respectively.
- (3) FCLK is free running clock of Arm® Cortex®-M4 with FPU.
- (4) The frequency of AHB, APB2 (high-speed APB) and APB1 (low-speed APB) domains can be configured through multiple prescalers. Besides, the maximum frequency of AHB domain is 168MHz, the maximum frequency of APB2 domain is 84MHz, and the maximum allowable frequency of APB1 is 42MHz.
- (5) The maximum frequency obtained by the system clock is 168MHz.
- (6) The clock source of OTG_FS is PLL1CLK with frequency of 48MHz, and the clock source of UTML PHY of OTG_HS1 is from external quartz clock. For OTG_ HS2, since it adopts on-chip PHY and has internal PLL to output 60MHz to UTML PHY, the clock source of its 48MHz clock is from PLL48CLK.
- (7) Only when the corresponding enable bits are set, can the peripheral obtain the clock signal.
- (8) ADC clock can be divided into analog circuit clock and digital circuit clock. The clock management unit provides a prescaler for the analog circuit clock of ADC, so that the ADC can work at the clock frequency of PCLK2 after 2/4/6/8 frequency division, and at this time the clock can be used by all ADC; the clock frequency of digital circuit of ADC is equal to PCLK2, and ADC1/2/3 clocks can be enabled respectively through the corresponding bits of RCM_APB2CLKEN register.
- (9) SysTick (system timer) can be provided by the clock signal after frequency division of HCLK8. Different clock sources can be selected by setting SysTick control and status register.
- (10) Frequency assignment of all TMRxCLK (timer clocks) is automatically set by the hardware according to the following two situations:
 - If the corresponding APB prescaler factor is 1, the clock frequency of the timer is the same as that of the APB bus.
 - Otherwise, the clock frequency of the timer will be set to twice the frequency of the APB bus connected to it.
- (11) The maximum output frequency of MCO1/2 is 100MHz

6.3.5 Clock source selection of RTC

By setting RTCSRCSEL bit in RCM_BDCTRL (backup domain control register), you can select to divide the frequency of HSECLK into 1MHz clock signal, and use LSECLK or LSICLK as the clock source of RTC. The selection of clock source can be changed only when the backup domain is reset.

Because LSECLK is in the backup domain, and HSECLK and LSICLK are not in the backup domain, different RTC clocks will be selected as the clock source of RTC; the working condition of RTC is different, and see the following table for details:

Table 34 Working Condition of RTC When Different Clock Sources are Selected

Clock source	Working condition	
LSECLK is selected as RTC clock	As long as V_{BAT} maintains power supply, RTC will continue to work even if V_{DD} is powered off	
LSICLK is selected as automatic	If V _{DD} is powered off, the automatic wake-up unit state cannot	
wake-up unit clock	be guaranteed.	
HSECLK is used as RTC clock after frequency division	If the $V_{\text{\scriptsize DD}}$ is powered off or the internal voltage regulator is	
	disabled (the power supply of 1.3V domain is cut off), the RTC	
	state is uncertain, so the DWPEN bit (cancel the write	
	protection of backup domain) of PMU_CTRL (power control	
	register) must be set to "1".	

6.3.6 Clock source selection of IWDT

When IWDT (independent watchdog) is opened, LSICLK oscillator will be opened by force, and when it is stable, the clock signal will be provided to IWDT. After LSICLK is opened by force, it will always be open and cannot be closed.

6.3.7 Clock source selection of MCO

There are two microcontroller clock output pins, MCO1 (PA8) and MCO2 (PC9). When the corresponding GPIO ports of ports (PA8 and PC9) are configured as the corresponding multiplexing function, the clock signal can be selected to be output to MCO pin by configuring MCOxSEL bit and MCOxPSC bit in RCM_CFG (clock configuration register). See the clock tree or register functional description for specific clock signal.

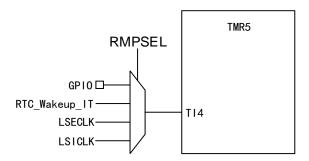
6.3.8 Clock source selection of SYSCLK

After system reset, HSICLK oscillator will (directly or indirectly) be selected as the system clock, and cannot be stopped. If you want to switch the SYSCLK clock source, you must wait until the destination clock source is ready (i.e. the destination clock source is stable). The target clock source can be HSICLK, HSECLK and PLLCLK.

The state bit of RCM_CTRL and RCM_CFG registers can indicate the ready clock and selected SYSCLK clock source.

6.3.9 CSS clock security system

In order to prevent MCU from normal operation due to external crystal oscillator short circuit, MCU can activate CSS clock security system through software. After the security system is activated, if the HSECLK oscillator is used as the system clock directly or indirectly (used as the PLL input clock and PLL is used as the system clock), the external HSECLK oscillator will be disabled when the HSECLK fails, and the system clock will automatically switch to HSICLK. At this time, the PLLCLK which selects HSECLK as the clock input and as the system clock input source will also be disabled.

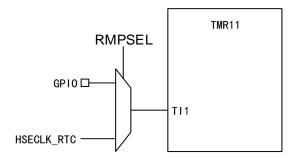


Note: When CSS is activated by software and HSECLK fails, CSS interrupt and NMI (non-maskable interrupt) will be generated. Since NMI is executed continuously before CSS interrupt is cleared, CSSCLR bit in RCM_INT register shall be set to clear the interrupt.

6.3.10 TMR5-based internal/external clock measurement

Through the input capture function of TMR5 Channel 4, the frequency of certain clock source generators can be indirectly measured. The circuit diagram is as follows:

Figure 7 TMR5 Measurement Clock Frequency Circuit Diagram



Channel 4 of TMR5 can select to connect one GPIO port or one MCU internal clock by configuring RMPSEL bit of TMR5_OPT register

6.3.11 TMR11-based internal/external clock measurement

The external oscillator frequency can be tested through TMR11 when HSICLK is used as the system clock source. As shown in the figure below, the user can select to trigger TI1 by I/O port or internal clock by configuring the RMPSEL bit of TMR11 OPT register.

Figure 8 TMR11 Measurement Clock Frequency Circuit Diagram

6.4 Register address mapping

Table 35 RCM Register Address Mapping

Register name	Description	Offset address
RCM_CTRL	Clock control register	0x00

Register name	Description	Offset address
RCM_PLL1CFG	PLL1 configuration register	0x04
RCM_CFG	Clock configuration register	0x08
RCM_INT	Clock interrupt register	0x0C
RCM_AHB1RST	AHB1 peripheral reset register	0x10
RCM_AHB2RST	AHB2 peripheral reset register	0x14
RCM_AHB3RST	AHB3 peripheral reset register	0x18
RCM_APB1RST	APB1 peripheral reset register	0x20
RCM_APB2RST	APB2 peripheral reset register	0x24
RCM_AHB1CLKEN	AHB1 peripheral clock enable register	0x30
RCM_AHB2CLKEN	AHB2 peripheral clock enable register	0x34
RCM_AHB3CLKEN	AHB3 peripheral clock enable register	0x38
RCM_APB1CLKEN	APB1 peripheral clock enble register	0x40
RCM_APB2CLKEN	APB2 peripheral clock enble register	0x44
RCM_LPAHB1CLKEN	AHB1 peripheral clock enable register in low-power mode	0x50
RCM_LPAHB2CLKEN	AHB2 peripheral clock enable register in low-power mode	0x54
RCM_LPAHB3CLKEN	AHB3 peripheral clock enable register in low-power mode	0x58
RCM_LPAPB1CLKEN	APB1 peripheral clock enable register in low-power mode	0x60
RCM_LPAPB2CLKEN	APB2 peripheral clock enable register in low-power mode	0x64
RCM_BDCTRL	Backup domain control register	0x70
RCM_CSTS	Clock control/state register	0x74
RCM_SSCCFG	Spread spectrum clock configuration register	0x80
RCM_PLL2CFG	PLL2 configuration register	0x84

6.5 Register functional description

6.5.1 Clock control register (RCM_CTRL)

Offset address: 0x00

Reset value: 0x0000 XX83; X means undefined

Access: Access in the form of word, half word and byte, without wait cycle

Field	Name	R/W	Description	
0	HSIEN	R/W	High Speed Internal Clock Enable Set to 1 or cleared by software. HSICLK is an RC oscillator. When one of the following conditions occurs, it will be set to 1 by the hardware: power-on start, software reset, wake-up from standby mode, wake-up from stop mode, failure of external high-speed clock source (as system clock or providing system clock through PLL). When HSICLK is used as system clock or provides system clock through PLL, this bit cannot be cleared. 0: HSICLK RC oscillator is disabled 1: HSICLK RC oscillator is turned on	
1	HSIRDYFLG	R	High Speed Internal Clock Ready Flag 0: HSICLK RC oscillator is not stable 1: HSICLK RC oscillator is stable	
2			Reserved	
7:3	HSITRM	R/W	High Speed Internal Clock Trim HSICLK has been calibrated to 16MHz±1% when the product leaves the factory. However, it changes as the temperature and voltage changes, but the frequency of HSICLK RC oscillator can be adjusted by this bit.	
15:8	HSICAL	R	High Speed Internal Clock Calibrate HSICLK has been calibrated to 16MHz±1% when the product leaves the factory. When the system is started up, the calibration parameters will be automatically written to the register.	
16	HSEEN	R/W	High Speed External Clock Enable When entering the standby or stop mode, this bit is cleared by hardware and HSECLK is turned off; when HSECLK is used as system clock source or the system clock is provided through PLL, this bit cannot be cleared. 0: Disable 1: Enable	
17	HSERDYFLG	R	High Speed External Clock Ready Flag When HSECLK is stable, this bit will be set to 1 by hardware and set to 0 by software. 0: HSECLK is not stable 1: HSECLK is stable	
18	HSEBCFG	R/W	High Speed External Clock Bypass Configure Bypass mode refers to the mode in which external clock is used as the HSECLK clock source; otherwise the resonator is used as the HSECLK clock source. 0: Non-bypass mode 1: Bypass mode	
19	CSSEN	R/W	Clock Security System Enable 0: Disable 1: Enable Note: This bit can be set to 1 only when HSECLK resonator is stable.	
23:20	Reserved			

Field	Name	R/W	Description		
24	PLL1EN	R/W	PLL1 Enable When entering the standby and stop mode, this bit is cleared to 0 by the hardware; when PLL1CLK has been configured as the clock source of the system clock (or in the process of configuration), this bit cannot be set to 0; in other cases, it can be set to 1 or 0 by the software. 0: PLL1 is disabled 1: PLL2 is enabled		
25	PLL1RDYFLG	R	PLL1 Clock Ready Flag PLL1 is set to 1 by hardware after it is locked. 0: PLL1 is unlocked 1: PLL1 is locked		
26	PLL2EN	R/W	PLL2 Enable When entering the standby and stop mode, this bit is cleared to 0 by the hardware. 0: PLL2 is disabled 1: PLL2 is enabled		
27	PLL2RDYFLG	R	PLL2 Clock Ready Flag PLL2 is set to 1 by hardware after it is locked. 0: PLL2 is unlocked 1: PLL2 is locked		
31:28	Reserved				

6.5.2 PLL1 configuration register (RCM_PLL1CFG)

Offset address: 0x04 Reset value: 0x2400 3010

Access in the form of word, half word and byte, without wait cycle.

The register is used to configure various parameters so as to output different clock signals.

 $f_{(VCO clock)} = f_{(PLL1 clock input)} \times (PLL1A/PLLB)$

 $f_{(PLL1\; clock\; output)} = f_{(VCO\; clock)} / PLL1C$

 $f_{(OTG_FS\ ,SDIO,RNG\ clock\ output)} = f_{(VCO\ clock)} / PLLD$

Field	Name	R/W	Description
5:0	PLLB	R/W	Division Factor B It is used to calculate the clock frequency of VCO. These bits can be written only when PLL and PLLI2S are disabled. 000000: PLLB=0 (error) 000001: PLLB=1 (error) 000010: PLLB=2 000011: PLLB=3 111110: PLLB=62 111111: PLLB=63

Field	Name	R/W	Description		
14:6	PLL1A	R/W	PLL Multiplication Factor A It is used to calculate VCO frequency. The calculation formula is f ₍ VCO output)= f ₍ VCO input)×PLL1A, and the formula is established only when PLL1A is 50~432. 0000000000: PLLA=0 (error) 000000001: PLLA=1 (error) 000110010: PLLA=50 110110000: PLLA=432 110110001: PLLA=433 (error) 111111111: PLLA=511 (error)		
17:16	PLL1C	R/W	Division Factor C It is used to calculate the output clock frequency of PLL1. 00: PLL1C=2 01: PLL1C=4 10: PLL1C=6 11: PLL1C=8 Note: This bit can be written only when PLL1 is disabled.		
21:18		I	Reserved		
22	PLLCLKS	R/W	PLL Clock Source This bit can be set or cleared by software and be used to select the clock source of PLL1 and PLL2. 0: HSICLK is used as clock source 1: HSECLK is used as clock source Note: This bit can be written only when PLL1 and PLL2 are disabled.		
23			Reserved		
27:24	PLLD	R/W	Division Factor It is used to calculate the clock frequency of OTG_FS, RNG and SDIO. 0000: PLLD=0 (error) 0001: PLLD=1 (error) 0010: PLLD=2 0011: PLLD=3 0100: PLLD=4 1111: PLLD=15		
31:28	Reserved				

6.5.3 Clock configuration register (RCM_CFG)

Offset address: 0x08

Reset value: 0x0000 0000

All bits of this register are set or cleared by software.

Access: Access in the form of word, half word and byte, with 0 to 2 wait cycles. 1 or 2 wait cycles are inserted only when the access occurs during clock

switching.

Field	Name	R/W	Description
1:0	SCLKSEL	R/W	System Clock Source Select When returning from stop or standby mode or the HSECLK directly or indirectly used as system clock fails, the hardware selects HSICLK as system clock by force (if the clock security system has been started) 00: HSICLK is used as system clock 01: HSECLK is used as system clock 10: PLL1CLK is used as system clock 11: Reserved
3:2	SCLKSELSTS	R	System Clock Selection Status Indicate which clock source is used as system clock; set to 1 or cleared by the hardware. 00: HSICLK is used as system clock 01: HSECLK is used as system clock 10: PLL1CLK output is used as system clock 11: No application
7:4	AHBPSC	R/W	AHB Clock Prescaler Factor Configure Control the prescaler factor of AHB clock. 0xxx: No frequency division for SYSCLK 1000: SYSCLK two-divided frequency 1001: SYSCLK four-divided frequency 1010: SYSCLK eight-divided frequency 1011: SYSCLK 16-divided frequency 1100: SYSCLK 64-divided frequency 1101: SYSCLK 128-divided frequency 1110: SYSCLK 256-divided frequency 1111: SYSCLK 512-divided frequency Note: Only after 1 to 16 AHB clock cycles after this bit is written, can the frequency of the clock signal be divided according to the new division factor. When Ethernet is used, HCLK cannot be less than 25MHz.
9:8	SDRAMPSC	R/W	SDRAM Clock Prescaler Factor Configure Configure the prescaler factor of SDRAM clock. 00: No frequency division fsdram=fdmc 01: Two-divided frequency fsdram=fdmc/2 Others: Four-divided frequency fsdram=fdmc/4
12:10	APB1PSC	R/W	APB1 Clock Prescaler Factor Configure Prescaler factor used to control low-speed APB1 clock (PCLK1). 0xx: No frequency division for HCLK 100: HCLK 2-divided frequency 101: HCLK 4-divided frequency 110: HCLK 8-divided frequency 111: HCLK 16-divided frequency Note: PCLK1 shall not be greater than 42MHz.

Field	Name	R/W	Description
15:13	APB2PSC	R/W	APB2 Clock Prescaler Factor Configure Prescaler factor used to control low-speed APB2 clock (PCLK2). 0xx: No frequency division for HCLK 100: HCLK 2-divided frequency 101: HCLK 4-divided frequency 110: HCLK 8-divided frequency 111: HCLK 16-divided frequency Note: PCLK2 shall not be greater than 84MHz.
20:16	RTCPSC	R/W	RTC Clock Prescaler Factor Configure Control the prescaler factor, to make HSECLK frequency division to generate a 1MHz clock signal and provide it to RTC. 0000X: No clock 00010: HSECLK2 frequency division 00011: HSECLK3 frequency division 00100: HSECLK4 frequency division 11110: HSECLK30 frequency division 11111: HSECLK31 frequency division Note: This bit must be configured before RTC selects HSECLK as the clock source.
22:21	MCO1SEL	R/W	Main Clock Output1 Select Set or cleared by software. 00: HSICLK is output as a clock 01: LSECLK is output as a clock 10: HSECLK is output as a clock 11: PLL1CLK is output as a clock
23	I2SSEL	R/W	I2S Clock Source Select Set this bit after reset and before enabling I2S, and this bit can be used to select the clock source of I2S. 0: PLL2CLK 1: External clock projected to I2S_CKIN pin
26:24	MCO1PRE	R/W	MCO Clock Output1 Prescaler Factor Configure 0XX: No frequency division 100: 2 divided frequency 101: 3 divided frequency 110: 4 divided frequency 111: 5 divided frequency
29:27	MCO2PRE	R/W	MCO Clock Output2 Prescaler Factor Configure 0XX: No frequency division 100: 2 divided frequency 101: 3 divided frequency 110: 4 divided frequency 111: 5 divided frequency

Field	Name	R/W	Description
31:30	MCO2SEL	R/W	Main Clock Output2 Select 00: SYSCLK is output as a clock 01: PLL2CLK is output as a clock 10: HSECLK is output as a clock 11: PLL1CLK is output as a clock

6.5.4 Clock interrupt register (RCM_INT)

Offset address: 0x0C Reset value: 0x0000 0000

Access: Access in the form of word, half word and byte, without wai cycle.

Field	Name	R/W	Description
0	LSIRDYFLG	R	LSICLK Ready Interrupt Flag When LSICLK is stable and LSIRDYEN bit is set to 1, this bit will be set to 1 by hardware; when LSIRDYCLR is set to 1 by software, this bit will be cleared. 0: No LSICLK ready interrupt 1: LSICLK ready interrupt occurred
1	LSERDYFLG	R	LSECLK Ready Interrupt Flag When LSECLK is stable and LSERDYEN bit is set to 1, this bit will be set to 1 by hardware; when LSERDYCLR is set to 1 by software, this bit will be cleared. 0: No LSECLK ready interrupt 1: LSECLK ready interrupt occurred
2	HSIRDYFLG	R	HSICLK Ready Interrupt Flag When HSICLK is stable and HSIRDYEN bit is set to 1, this bit will be set to 1 by hardware; when HSIRDYCLR is set to 1 by software, this bit will be cleared. 0: No HSICLK ready interrupt 1: HSICLK ready interrupt occurred
3	HSERDYFLG	R	HSECLK Ready Interrupt Flag When HSECLK is stable and HSERDYEN bit is set to 1, this bit will be set to 1 by hardware; when HSERDYCLR is set to 1 by software, this bit will be cleared. 0: No HSECLK ready interrupt 1: HSECLK ready interrupt occurred
4	PLL1RDYFLG	R	PLL1 Ready Interrupt Flag When PLL1 is stable and PLL1RDYEN bit is set to 1, this bit will be set to 1 by hardware; when PLL1RDYCLR is set to 1 by software, this bit will be cleared. 0: PLL1 clock ready interrupt does not occur 1: PLL1 clock ready interrupt occurred
5	PLL2RDYFLG	R	PLL2 Ready Interrupt Flag When PLL2 is stable and PLL2RDYEN bit is set to 1, this bit will be set to 1 by hardware; when PLL2RDYCLR is set to 1 by software, this bit will be cleared. 0: PLL2 clock ready interrupt does not occur 1: PLL2 clock ready interrupt occurred

Field	Name	R/W	Description				
6		Reserved					
7	CSSFLG	R	Clock Security System Interrupt Flag When the external high-speed oscillator clock fails, it is set to 1 by hardware. When CSSCLR is set to 1 by software, this bit will be cleared. 0: No security system interrupt caused by HSE clock failure 1: Clock security system interrupt is caused by HSE clock failure				
8	LSIRDYEN	R/W	LSICLK Ready Interrupt Enable Enable or disable internal 28kHz RC oscillator ready interrupt. 0: Disable 1: Enable				
9	LSERDYEN	R/W	LSECLK Ready Interrupt Enable Enable external 32kHz RC oscillator ready interrupt. 0: Disable 1: Enable				
10	HSIRDYEN	R/W	HSICLK Ready Interrupt Enable Enable the internal 8MHz RC oscillator ready interrupt. 0: Disable 1: Enable				
11	HSERDYEN	R/W	HSCLKE Ready Interrupt Enable Enable external 4-16MHz oscillator ready interrupt. 0: Disable 1: Enable				
12	PLL1RDYEN	R/W	PLL1 Ready Interrupt Enable Enable PLL1 ready interrupt. 0: Disable 1: Enable				
13	PLL2RDYEN	R/W	PLL2 Ready Interrupt Enable Enable PLL2 ready interrupt. 0: Disable 1: Enable				
15:14			Reserved				
16	LSIRDYCLR	W	LSICLK Ready Interrupt Clear Clear LSI ready interrupt flag bit LSIRDYFLG. 0: No effect 1: Clear				
17	LSERDYCLR	W	LSECLK Ready Interrupt Clear Clear LSE ready interrupt flag bit LSERDYFLG. 0: No effect 1: Clear				
18	HSIRDYCLR	W	HSICLK Ready Interrupt Clear Clear HSI ready interrupt flag bit HSIRDYFLG. 0: No effect 1: Clear				

Field	Name	R/W	Description			
19	HSERDYCLR	W	HSECLK Ready Interrupt Clear Clear HSE ready interrupt flag bit HSERDYFLG. 0: No effect 1: Clear			
20	PLL1RDYCLR	W	PLL1 Ready Interrupt Clear Clear PLL1 ready interrupt flag bit PLL1RDYFLG. 0: No effect 1: Clear			
21	PLL2RDYCLR	W	PLL2 Ready Interrupt Clear Clear PLL2 ready interrupt flag bit PLL2RDYFLG. 0: No effect 1: Clear			
22		Reserved				
23	CSSCLR	W	Clock Security System Interrupt Clear Clear the security system interrupt flag bit CSSFLG. 0: No effect 1: Clear			
31:24	Reserved					

6.5.5 AHB1 peripheral reset register (RCM_AHB1RST)

Offset address: 0x10

Reset value: 0x0000 0000

Access: Access in the form of word, half word and byte, without wait cycle.

Field	Name	R/W	Description
			GPIOA Reset
0	PARST	R/W	0: No effect
			1: Reset
			GPIOB Reset
1	PBRST	R/W	0: No effect
			1: Reset
			GPIOC Reset
2	PCRST	R/W	0: No effect
			1: Reset
			GPIOD Reset
3	PDRST	R/W	0: No effect
			1: Reset
			GPIOE Reset
4	PERST	R/W	0: No effect
			1: Reset
			GPIOF Reset
5	PFRST	R/W	0: No effect
			1: Reset

Field	Name	R/W	Description	
			GPIOG Reset	
6	PGRST	R/W	0: No effect	
			1: Reset	
			GPIOH Reset	
7	PHRST	R/W	0: No effect	
			1: Reset	
			GPIOI Reset	
8	PIRST	R/W	0: No effect	
			1: Reset	
11:9			Reserved	
			CRC Reset	
12	CRCRST	R/W	0: No effect	
			1: Reset	
20:13	Reserved			
			DMA1 Reset	
21	DMA1RST	R/W	0: No effect	
			1: Reset	
			DMA2 Reset	
22	DMA2RST	R/W	0: No effect	
			1: Reset ADC	
24:23			Reserved	
			ETH Reset	
25	ETHRST	R/W	0: No effect	
			1: Reset	
28:26			Reserved	
			OTGHS1 Reset	
29	OTGHS1RST	R/W	0: No effect	
			1: Reset	
31:30			Reserved	

6.5.6 AHB2 peripheral reset register (RCM_AHB2RST)

Offset address: 0x14 Reset value: 0x0000 0000

Access: Access in the form of word, half word and byte, without wait cycle.

Field	Name	R/W	Description
0	DCIRST	R/W	DCI Reset 0: No effect 1: Reset
1	FPURST	R/W	FPU Reset 0: No effect 1: Reset

Field	Name	R/W	Description	
			BN Reset	
2	BNRST	R/W	0: No effect	
			1: Reset	
			SM Reset	
3	SMRST	R/W	0: No effect	
			1: Reset	
			CRYP Reset	
4	CRYPRST	R/W	0: No effect	
			1: Reset	
			HASH Processor Reset	
5	HASHPRST	R/W	0: No effect	
			1: Reset	
			RNG Reset	
6	RNGRST	R/W	0: No effect	
			1: Reset	
			OTG_FS Reset	
7	OTGFSRST	R/W	0: No effect	
			1: Reset	
31:8	Reserved			

6.5.7 AHB3 peripheral reset register (RCM_AHB3RST)

Offset address: 0x18 Reset value: 0x0000 0000

Access: Access in the form of word, half word and byte, without wait cycle.

Field	Name	R/W	Description
0	EMMCRST	R/W	EMMC Reset 0: No effect 1: Reset
31:1	Reserved		

6.5.8 APB1 peripheral reset register (RCM_APB1RST)

Offset address: 0x20 Reset value: 0x0000 0000

Access: Access in the form of word, half word and byte, without wait cycle.

All bits can be reset or cleared by software.

Field	Name	R/W	Description
0	TMR2RST	R/W	TMR2 Reset 0: No effect 1: Reset
1	TMR3RST	R/W	TMR3 Reset 0: No effect 1: Reset

Field	Name	R/W	Description
			TMR4 Reset
2	TMR4RST	R/W	0: No effect
			1: Reset
			TMR5 Reset
3	TMR5RST	R/W	0: No effect
			1: Reset
			TMR6 Reset
4	TMR6RST	R/W	0: No effect
			1: Reset
			TMR7 Reset
5	TMR7RST	R/W	0: No effect
			1: Reset
			TMR12 Reset
6	TMR12RST	R/W	0: No effect
			1: Reset
			TMR13 Reset
7	TMR13RST	R/W	0: No effect
			1: Reset
			TMR14 Reset
8	TMR14RST	R/W	0: No effect
			1: Reset
10:9			Reserved
			WWDT Reset
11	WWDTRST	R/W	0: No effect
			1: Reset
13:12			Reserved
			SPI2 Reset
14	SPI2RST	R/W	0: No effect
			1: Reset
			SPI3 Reset
15	SPI3RST	R/W	0: No effect
			1: Reset
16			Reserved
			USART2 Reset
17	USART2RST	R/W	0: No effect
			1: Reset
			USART3 Reset
18	USART3RST	R/W	0: No effect
			1: Reset
			UART4 Reset
19	UART4RST	R/W	0: No effect
			1: Reset

Field	Name	R/W	Description
			UART5 Reset
20	UART5RST	R/W	0: No effect
			1: Reset
			I2C1 Reset
21	I2C1RST	R/W	0: No effect
			1: Reset
			I2C2 Reset
22	I2C2RST	R/W	0: No effect
			1: Reset
			I2C3 Reset
23	I2C3RST	R/W	0: No effect
			1: Reset
24			Reserved
			CAN1 Reset
25	CAN1RST	R/W	0: No effect
			1: Reset
			CAN2 Reset
26	CAN2RST	R/W	0: No effect
			1: Reset
27			Reserved
			Power Interface Reset
28	PWRRST	R/W	0: No effect
			1: Reset
			DAC Interface Reset
29	DACRST	R/W	0: No effect
			1: Reset
31:30			Reserved

6.5.9 APB2 peripheral reset register (RCM_APB2RST)

Offset address: 0x24 Reset value: 0x0000 0000

Access: Access in the form of word, half word and byte, without wait cycle.

All bits can be reset or cleared by software.

Field	Name	R/W	Description	
0	TMR1RST	R/W	TMR1 Reset 0: No effect 1: Reset	
1	TMR8RST	R/W	TMR8 Reset 0: No effect 1: Reset	
3:2	Reserved			

Field	Name	R/W	Description
	114/110		USART1 Reset
4	USART1RST	R/W	0: No effect
_	OOANTINOT	17/00	1: Reset
			USART6 Reset
5	USART6RST	R/W	0: No effect
	00/11/10/101	1000	1: Reset
7:6			Reserved
			ADC Interface Reset
_			0: No effect
8	ADCRST	R/W	1: Reset
			Note: It takes effect for all ADCs
10:9			Reserved
			SDIO Reset
11	SDIORST	R/W	0: No effect
			1: Reset
			SPI1 Reset
12	SPI1RST	R/W	0: No effect
			1: Reset
13			Reserved
			SYSCFG Module Reset
14	SYSCFGRST	R/W	0: No effect
			1: Reset
15			Reserved
			TMR9 Reset
16	TMR9RST	R/W	0: No effect
			1: Reset
			TMR10 Reset
17	TMR10RST	R/W	0: No effect
			1: Reset
			TMR11 Reset
18	TMR11RST	R/W	0: No effect
			1: Reset
31:19			Reserved

6.5.10 AHB1 peripheral clock enable register (RCM_AHB1CLKEN)

Offset address: 0x30 Reset value: 0x0010 0000

Access: Access in the form of word, half word and byte, without wait cycle.

Field	Name	R/W	Description
			GPIOA Clock Enable
0	PAEN	R/W	0: Disable
			1: Enable

Field	Name	R/W	Description		
			GPIOB Clock Enable		
1	PBEN	R/W	0: Disable		
			1: Enable		
			GPIOC Clock Enable		
2	PCEN	R/W	0: Disable		
			1: Enable		
			GPIOD Clock Enable		
3	PDEN	R/W	0: Disable		
			1: Enable		
			GPIOE Clock Enable		
4	PEEN	R/W	0: Disable		
			1: Enable		
			GPIOF Clock Enable		
5	PFEN	R/W	0: Disable		
			1: Enable		
			GPIOG Clock Enable		
6	PGEN	R/W	0: Disable		
			1: Enable		
	PHEN	R/W	GPIOH Clock Enable		
7			0: Disable		
			1: Enable		
0	DIEN	D 44/	GPIOI Clock Enable		
8	PIEN	R/W	0: Disable		
11:9	1: Enable Reserved				
11.5					
40	00000	DAA	CRC Clock Enable		
12	CRCEN	R/W	0: Disable 1: Enable		
17:13		ı	Reserved		
			Backup SRAM Interface Clock Enable		
18	BAKPSRAMEN	R/W	0: Disable		
			1: Enable		
19			Reserved		
			Clock Management Data RAM Clock Enable		
20	DRAMEN	R/W	0: Disable		
			1: Enable		
			DMA1 Clock Enable		
21	DMA1EN	R/W	0: Disable		
			1: Enable		
			DMA2 Clock Enable		
22	DMA2EN	R/W	0: Disable		
			1: Enable		
24:23			Reserved		

Field	Name	R/W	Description		
			ETH Clock Enable		
25	ETHEN	R/W	0: Disable		
			1: Enable		
			ETH Transmission Clock Enable		
26	ETHTXEN	R/W	0: Disable		
			1: Enable		
			ETH Reception Clock Enable		
27	ETHRXEN	R/W	0: Disable		
			1: Enable		
			ETH PTP Clock Enable		
28	ETHPTPEN	R/W	0: Disable		
			1: Enable		
28:26	Reserved				
			OTG_HS1 Clock Enable		
29	OTGHS1EN	R/W	0: Disable		
			1: Enable		
			OTG_HS1 ULPI Clock Enable		
30	HSULPIEN	R/W	0: Disable		
			1: Enable		
31	Reserved				

6.5.11 AHB2 peripheral clock enable register (RCM_AHB2CLKEN)

Offset address: 0x34
Reset value: 0x0000 0000

Access: Access in the form of word, half word and byte, without wait cycle.

Field	Name	R/W	Description
0	DCIEN	R/W	DCI Clock Enable 0: Disable 1: Enable
1	FPUEN	R/W	FPU Clock Enable 0: Disable 1: Enable
2	BNEN	R/W	BN Clock Enable 0: Disable 1: Enable
3	SMEN	R/W	SM Clock Enable 0: Disable 1: Enable
4	CRYPEN	R/W	CRYP Clock Enable 0: Disable 1: Enable
5	HASHPEN	R/W	HASH Processor Clock Enable 0: Disable 1: Enable

Field	Name	R/W	Description
6	RNGEN	R/W	RNG Clock Enable 0: Disable 1: Enable
7	OTGFSEN	R/W	OTG_FS Clock Enable 0: Disable 1: Enable
31:8	Reserved		

6.5.12 AHB3 peripheral clock enable register (RCM_AHB3CLKEN)

Offset address: 0x18
Reset value: 0x0000 0000

Access: Access in the form of word, half word and byte, without wait cycle.

Field	Name	R/W	Description	
0	EMMCEN	R/W	EMMC Clock Enable 0: Disable 1: Enable	
31:1	Reserved			

6.5.13 APB1 peripheral clock enable register (RCM_APB1CLKEN)

Offset address: 0x40 Reset value: 0x0000 0000

Access: Access in the form of word, half word and byte, without wait cycle.

All bits can be reset or cleared by software.

Field	Name	R/W	Description
			TMR2 Clock Enable
0	TMR2EN	R/W	0: Disable
			1: Enable
			TMR3 Clock Enable
1	TMR3EN	R/W	0: Disable
			1: Enable
			TMR4 Clock Enable
2	TMR4EN	R/W	0: Disable
			1: Enable
			TMR5 Clock Enable
3	TMR5EN	R/W	0: Disable
			1: Enable
			TMR6 Clock Enable
4	TMR6EN	R/W	0: Disable
			1: Enable
			TMR7 Clock Enable
5	TMR7EN	R/W	0: Disable
			1: Enable

Field	Name	R/W	Description
			TMR12 Clock Enable
6	TMR12EN	R/W	0: Disable
			1: Enable
			TMR13 Clock Enable
7	TMR13EN	R/W	0: Disable
			1: Enable
			TMR14 Clock Enable
8	TMR14EN	R/W	0: Disable
			1: Enable
10:9			Reserved
			WWDT Clock Enable
11	WWDTEN	R/W	0: Disable
			1: Enable
13:12			Reserved
			SPI2 Clock Enable
14	SPI2EN	R/W	0: Disable
			1: Enable
			SPI3 Clock Enable
15	SPI3EN	R/W	0: Disable
			1: Enable
16			Reserved
			USART2 Clock Enable
17	USART2EN	R/W	0: Disable
			1: Enable
	USART3EN	ART3EN R/W	USART3 Clock Enable
18			0: Disable
			1: Enable
			UART4 Clock Enable
19	UART4EN	R/W	0: Disable
			1: Enable
			UART5 Clock Enable
20	UART5EN	R/W	0: Disable
			1: Enable
04	100451	D 444	I2C1 Clock Enable
21	I2C1EN	R/W	0: Disable
			1: Enable
22	IOCOENI	D/M/	I2C2 Clock Enable
22	I2C2EN	I2C2EN R/W	0: Disable 1: Enable
			I2C3 Clock Enable
23	I2C3EN	R/W	0: Disable
20	IZOULIN	,	1: Enable
24		[Reserved
47			1,0001700

Field	Name	R/W	Description		
			CAN1 Clock Enable		
25	CAN1EN	R/W	0: Disable		
			1: Enable		
			CAN2 Clock Enable		
26	CAN2EN	R/W	0: Disable		
			1: Enable		
27	Reserved				
			PMU Clock Enable		
28	PMUEN	R/W	0: Disable		
			1: Enable		
			DAC Interface Clock Enable		
29	DACEN	R/W	0: Disable		
			1: Enable		
31:30	Reserved				

6.5.14 APB2 peripheral clock enable register (RCM_APB2CLKEN)

Offset address: 0x44
Reset value: 0x0000 0000

Access: Access in the form of word, half word and byte, without wait cycle.

All bits can be reset or cleared by software.

	All bits can be reset of cleared by software.				
Field	Name	R/W	Description		
			TMR1 Clock Enable		
0	TMR1EN	R/W	0: Disable		
			1: Enable		
			TMR8 Clock Enable		
1	TMR8EN	R/W	0: Disable		
			1: Enable		
3:2	Reserved				
			USART1 Clock Enable		
4	USART1EN	R/W	0: Disable		
			1: Enable		
			USART6 Clock Enable		
5	USART6EN	R/W	0: Disable		
			1: Enable		
7:6	Reserved				
			ADC1 Interface Clock Enable		
8	ADC1EN	R/W	0: Disable		
			1: Enable		
			ADC2 Interface Clock Enable		
9	ADC2EN	R/W	0: Disable		
			1: Enable		

Field	Name	R/W	Description	
10	ADC3EN	R/W	ADC3 Interface Clock Enable 0: Disable 1: Enable	
11	SDIOEN	R/W	SDIO Clock Enable 0: Disable 1: Enable	
12	SPI1EN	R/W	SPI1 Clock Enable 0: Disable 1: Enable	
13	Reserved			
14	SYSCFGEN	R/W	SYSCFG Module Clock Enable 0: Disable 1: Enable	
15			Reserved	
16	TMR9EN	R/W	TMR9 Clock Enable 0: Disable 1: Enable	
17	TMR10EN	R/W	TMR10 Clock Enable 0: Disable 1: Enable	
18	TMR11EN	R/W	TMR11 Clock Enable 0: Disable 1: Enable	
31:19	Reserved			

6.5.15 AHB1 peripheral clock enable register in low-power mode (RCM_LPAHB1CLKEN)

Offset address: 0x50

Reset value: 0x7E67 91FF

Access: Access in the form of word, half word and byte, without wait cycle. The function of this register is to enable the peripheral clock of AHB1 in low-power (sleep) mode.

Field	Name	R/W	Description
			GPIOA Clock Enable
0	PAEN	R/W	0: Disable
			1: Enable
			GPIOB Clock Enable
1	PBEN	R/W	0: Disable
			1: Enable
			GPIOC Clock Enable
2	PCEN	R/W	0: Disable
			1: Enable

Field	Name	R/W	Description			
3	PDEN	R/W	GPIOD Clock Enable 0: Disable 1: Enable			
4	PEEN	R/W	GPIOE Clock Enable 0: Disable 1: Enable			
5	PFEN	R/W	GPIOF Clock Enable 0: Disable 1: Enable			
6	PGEN	R/W	GPIOG Clock Enable 0: Disable 1: Enable			
7	PHEN	R/W	GPIOH Clock Enable 0: Disable 1: Enable			
8	PIEN	R/W	GPIOI Clock Enable 0: Disable 1: Enable			
11:9	Reserved					
12	CRCEN	R/W	CRC Clock Enable 0: Disable 1: Enable			
14:13	Reserved					
15	FMCEN	R/W	FMC Clock Enable 0: Disable 1: Enable			
16	SRAM1EN	R/W	SRAM1 Clock Enable 0: Disable 1: Enable			
17	SRAM2EN	R/W	SRAM2 Clock Enable 0: Disable 1: Enable			
18	BAKPSRAMEN	R/W	Backup SRAM Interface Clock Enable 0: Disable 1: Enable			
20:19	Reserved					
21	DMA1EN	R/W	DMA1 Clock Enable 0: Disable 1: Enable			
22	DMA2EN	R/W	DMA2 Clock Enable 0: Disable 1: Enable			

Field	Name	R/W	Description			
24:23	Reserved					
25	ETHEN	R/W	ETH Clock Enable 0: Disable 1: Enable			
26	ETHTXEN	R/W	ETH Transmission Clock Enable 0: Disable 1: Enable			
27	ETHRXEN	R/W	ETH Reception Clock Enable 0: Disable 1: Enable			
28	ETHPTPEN	R/W	ETH PTP Clock Enable 0: Disable 1: Enable			
28:26			Reserved			
29	OTGHS1EN	R/W	OTG_HS1 Clock Enable 0: Disable 1: Enable			
30	HSULPIEN	R/W	OTG_HS1 ULPI Clock Enable 0: Disable 1: Enable			
31		Reserved				

6.5.16 AHB2 peripheral clock enable register in low-power mode (RCM_LPAHB2CLKEN)

Offset address: 0x54
Reset value: 0x0000 00F1

Access: Access in the form of word, half word and byte, without wait cycle. The function of this register is to enable the peripheral clock of AHB2 in low-power (sleep) mode.

Field	Name	R/W	Description
			DCI Clock Enable
0	DCIEN	R/W	0: Disable
			1: Enable
			FPU Clock Enable
1	FPUEN	R/W	0: Disable
			1: Enable
			BN Clock Enable
2	BNEN	R/W	0: Disable
			1: Enable
			SM Clock Enable
3	SMEN	R/W	0: Disable
			1: Enable

Field	Name	R/W	Description		
			CRYP Clock Enable		
4	CRYPEN	R/W	0: Disable		
			1: Enable		
			HASH Processor Clock Enable		
5	HASHPEN	R/W	0: Disable		
			1: Enable		
			RNG Clock Enable		
6	RNGEN	R/W	0: Disable		
			1: Enable		
			OTG_FS Clock Enable		
7	OTGFSEN	R/W	0: Disable		
			1: Enable		
31:8	Reserved				

6.5.17 AHB3 peripheral clock enable register in low-power mode (RCM_LPAHB3CLKEN)

Offset address: 0x58
Reset value: 0x0000 0001

Access: Access in the form of word, half word and byte, without wait cycle. The function of this register is to enable the peripheral clock of AHB3 in low-power (sleep) mode.

Field	Name	R/W	Description		
0	EMMCEN	R/W	EMMC Clock Enable 0: Disable 1: Enable		
31:1	Reserved				

6.5.18 APB1 peripheral clock enable register in low-power mode (RCM_LPAPB1CLKEN)

Offset address: 0x60 Reset value: 0x36FE C9FF

Access: Access in the form of word, half word and byte, without wait cycle.

All bits can be reset or cleared by software.

The function of this register is to enable the peripheral clock of APB1 in low-power (sleep) mode.

Field	Name	R/W	Description
			TMR2 Clock Enable
0	TMR2EN	R/W	0: Disable
			1: Enable
			TMR3 Clock Enable
1	TMR3EN	R/W	0: Disable
			1: Enable

Field	Name	R/W	Description			
			TMR4 Clock Enable			
2	TMR4EN	R/W	0: Disable			
			1: Enable			
			TMR5 Clock Enable			
3	TMR5EN	R/W	0: Disable			
			1: Enable			
			TMR6 Clock Enable			
4	TMR6EN	R/W	0: Disable			
			1: Enable			
			TMR7 Clock Enable			
5	TMR7EN	R/W	0: Disable			
			1: Enable			
			TMR12 Clock Enable			
6	TMR12EN	R/W	0: Disable			
			1: Enable			
			TMR13 Clock Enable			
7	TMR13EN	R/W	0: Disable			
			1: Enable			
			TMR14 Clock Enable			
8	TMR14EN	R/W	0: Disable			
			1: Enable			
10:9	Reserved					
			WWDT Clock Enable			
11	WWDTEN	R/W	0: Disable			
			1: Enable			
13:12	Reserved					
			SPI2 Clock Enable			
14	SPI2EN	R/W	0: Disable			
			1: Enable			
			SPI3 Clock Enable			
15	SPI3EN	R/W	0: Disable			
			1: Enable			
16	Reserved					
			USART2 Clock Enable			
17	USART2EN	R/W	0: Disable			
			1: Enable			
			USART3 Clock Enable			
18	USART3EN	R/W	0: Disable			
			1: Enable			
			UART4 Clock Enable			
19	UART4EN	R/W	0: Disable			
			1: Enable			

Field	Name	R/W	Description		
			UART5 Clock Enable		
20	UART5EN	R/W	0: Disable		
			1: Enable		
			I2C1 Clock Enable		
21	I2C1EN	R/W	0: Disable		
			1: Enable		
			I2C2 Clock Enable		
22	I2C2EN	R/W	0: Disable		
			1: Enable		
			I2C3 Clock Enable		
23	I2C3EN	R/W	0: Disable		
			1: Enable		
24	Reserved				
			CAN1 Clock Enable		
25	CAN1EN	R/W	0: Disable		
			1: Enable		
			CAN2 Clock Enable		
26	CAN2EN	R/W	0: Disable		
			1: Enable		
27			Reserved		
			PMU Clock Enable		
28	PMUEN	R/W	0: Disable		
			1: Enable		
			DAC Interface Clock Enable		
29	DACEN	R/W	0: Disable		
			1: Enable		
31:30	Reserved				

6.5.19 APB2 peripheral clock enable register in low-power mode (RCM_LPAPB2CLKEN)

Offset address: 0x44

Reset value: 0x0000 0000

Access: Access in the form of word, half word and byte, without wait cycle.

All bits can be reset or cleared by software.

The function of this register is to enable the peripheral clock of AHB2 in low-

power (sleep) mode.

Field	Name	R/W	Description		
0	TMR1EN	R/W	TMR1 Clock Enable 0: Disable 1: Enable		
1	TMR8EN	R/W	TMR8 Clock Enable 0: Disable 1: Enable		

Field	Name	R/W	Description				
3:2		Reserved					
			USART1 Clock Enable				
4	USART1EN	R/W	0: Disable				
			1: Enable				
			USART6 Clock Enable				
5	USART6EN	R/W	0: Disable				
			1: Enable				
7:6			Reserved				
			ADC1 Interface Clock Enable				
8	ADC1EN	R/W	0: Disable				
			1: Enable				
			ADC2 Interface Clock Enable				
9	ADC2EN	R/W	0: Disable				
			1: Enable				
			ADC3 Interface Clock Enable				
10	ADC3EN	R/W	0: Disable				
			1: Enable				
	SDIOEN		SDIO Clock Enable				
11		R/W	0: Disable				
			1: Enable				
			SPI1 Clock Enable				
12	SPI1EN	R/W	0: Disable				
			1: Enable				
13			Reserved				
			SYSCFG Module Clock Enable				
14	SYSCFGEN	R/W	0: Disable				
			1: Enable				
15			Reserved				
			TMR9 Clock Enable				
16	TMR9EN	R/W	0: Disable				
			1: Enable				
			TMR10 Clock Enable				
17	TMR10EN	R/W	0: Disable				
			1: Enable				
			TMR11 Clock Enable				
18	TMR11EN	R/W	0: Disable				
			1: Enable				
31:19			Reserved				

6.5.20 Backup domain control register (RCM_BDCTRL)

Offset address: 0x70

Reset value: 0x0000 0000, which can be reset effectively only by RTC domain Access: Access in the form of word, half word and byte, with 0 to 3 wait cycles

When the register is accessed continuously, the waiting state will be inserted. Note: Only when BPWEN bit in PMU_CTRL is set to 1, can LSEEN, LSEBCFG, RTCSRCSEL and RTCCLKEN be changed.

Field	Name	R/W	Description	
0	LSEEN	R/W	Low-Speed External Oscillator Enable 0: Disable 1: Enable	
1	LSERDYFLG	R	Low-Speed External Clock Ready Flag When LSECLK is stable, this bit is set to 1 by hardware, and when it is unstable, it is cleared by hardware. 0: Not ready 1. Ready	
2	LSEBCFG	R/W	Low-Speed External Clock Bypass Mode Configure Bypass mode refers to the mode in which external clock is used as the LSECLK clock source; otherwise the resonator is used as the LSECLK clock source. 0: Non-bypass mode 1: Bypass mode	
7:3	Reserved			
9:8	RTCSRCSEL	R/W	RTC Clock Source Select First set the RTCRST bit to reset the RTC domain, and then select the RTC clock source. It is impossible to directly configure the register to modify. 00: No clock 01: LSECLK is used as RTC clock 10: LSICLK is used as RTC clock 11: HSECLK is used as RTC clock after frequency division (the frequency division factor is determined by RTCPSC bit of RCM_CFG register)	
14:10			Reserved	
15	RTCCLKEN	R/W	RTC Clock Enable 0: Disable 1: Enable	
16	BDRST	R/W	Reset the backup domain software (Backup Domain Software Reset) Set to 1 or cleared by software 0: Reset is not activated 1: Reset the backup domain (only affect LSECLK oscillator, RTC real-time clock and register RCM_BDCTRL)	
31:17	Reserved			

6.5.21 Clock control/State register (RCM_CSTS)

Offset address: 0x74

Reset value: 0x0E00 0000, except reset flag, all are cleared by system reset, and reset flag can only be cleared by power reset.

Access: Access in the form of word, half word and byte, with 0 to 3 wait cycles. When the register is accessed continuously, the waiting state will be inserted.

Field	Name	R/W	Description
0	LSIEN	R/W	Low-Speed Internal Oscillator Enable Set to 1 or cleared by software. 0: Disable 1: Enable
1	LSIRDYFLG	R	Low-Speed Internal Oscillator Ready Flag When LSICLK is stable, this bit is set to 1 by hardware, and when it is unstable, it is cleared by hardware. 0: Not ready 1. Ready
23:2			Reserved
24	RSTFLGCLR	RT_W	Reset Flag Clear The reset flag is set or cleared by software, including RSTFLGCLR. 0: Disable 1: Clear the reset flag
25	BORRSTFLG	R	BOR flag It is set by hardware when brownout reset occurs; otherwise it is cleared by setting RSTFLGCLR bit. 0: Reset does did not occur 1: Reset occurred
26	PINRSTFLG	R	PIN Reset Flag It is set by hardware when pin reset occurs; otherwise it is cleared by setting RSTFLGCLR. 0: Reset does did not occur 1: Reset occurred
27	PODRSTFLG	R	POR/PDR Reset Flag Set to 1 by hardware; cleared by software by writing RSTFLGCLR bit. 0: No power-on/power-down reset occurs 1: Power-on/power-down reset occurs
28	SWRSTFLG	R	Software Reset Flag Set to 1 by hardware; cleared by software by writing RSTFLGCLR bit. 0: Reset does did not occur 1: Reset occurred
29	IWDTRSTFLG	R	Independent Watchdog Reset Flag When independent watchdog reset occurs in V _{DD} area, it is set to 1 by hardware and cleared by software by writing RSTFLGCLR bit. 0: Reset does did not occur 1: Reset occurred
30	WWDTRSTFLG	R	Window Watchdog Reset Flag When window watchdog is reset, it is set to 1 by hardware and cleared by software by writing RSTFLGCLR bit. 0: Reset does did not occur 1: Reset occurred

Field	Name	R/W	Description
31	LPWRRSTFLG	R	Low Power Reset Flag When low-power management is reset, it is set to 1 by hardware and cleared by software by writing RSTFLGCLR bit. 0: Reset does did not occur 1: Reset occurred

6.5.22 Spread spectrum clock configuration register (RCM_SSCCFG)

Offset address: 0x80 Reset value: 0x0000 0000

Access: Access in the form of word, half word and byte, with 0 to 3 wait cycles. Because the spread spectrum clock only acts on PLL1, this register can be written only when PLL1 is not enabled to configure the spread spectrum clock.

Field	Name	R/W	Description		
			Modulation Period Configure		
12:0	MODPCFG	R/W	Set to 1 or cleared by software.		
			Configure the input of modulation period.		
			Incrementation Step		
27:13	STEP	R/W	Set to 1 or cleared by software.		
			Configure the input of modulation amplitude.		
29:28		Reserved			
			Spread Spectrum Select		
30	SSSEL	R/W	It is set or cleared by software.		
30			0: Center spread		
			1: Downward spread		
		SSEN R/W	Spread Spectrum Enable		
31	SSEN		Set to 1 or cleared by software.		
31			0: Disable		
			1: Enable		

6.5.23 PLL2 configuration register (RCM_PLL2CFG)

Offset address: 0x84

Reset value: 0x2000 3000

Access in the form of word, half word and byte, without wait cycle.

The register is used to configure various parameters so as to output different clock signals.

 $f_{(VCO clock)} = f_{(PLL2 clock input)} \times (PLL2A/PLLB)$

 $f_{(PLL2 \ clock \ output)} = f_{(VCO \ clock)}/PLL2C$

(i. 222 stock output) (i. 55 stock)				
Field	Name	R/W	Description	
5:0	Reserved			
14:6	PLL2A	R/W	PLL Multiplication Factor It is used to calculate VCO frequency. The calculation formula is f(VCO output)= f(VCO input)×PLL2A, and the formula is established only when PLL2A is 50~432. 000000000: PLL2A=0 (error)	

Field	Name	R/W	Description	
			00000001: PLL2A=1 (error)	
			000110010: PLL2A=50	
			001100011: PLL2A=99	
			001100100: PLL2A=100	
			110110000: PLL2A=432	
			110110001: PLL2A=433 (error)	
			111111111: PLL2A=511 (error)	
27:15			Reserved	
			Division Factor	
30:28	PLL2C	R/W	This bit can be set or cleared by software, and this variable can be controlled to change the clock frequency provided to I2S. This bit can be set only when PLL2 is disabled. Since I2S can only work at a frequency not greater than 192MHz, the range of PLL2C value shall be 2~7.	
			000: PLL2C=0 (wrong configuration)	
			001: PLL2C=1 (wrong configuration)	
			010: PLL2C=2	
			111: PLL2C=7	
31	Reserved			

7 Power management unit (PMU)

7.1 Full name and abbreviation description of terms

Table 36 Full name and abbreviation description of terms

Full name in English	English abbreviation
Power Management Unit	PMU
Power On Reset	POR
Power Down Reset	PDR
Brown-out Reset	BOR
Power Voltage Detector	PVD

7.2 Introduction

The power supply is the basis for stable operation of a system. The working voltage is 1.8~3.6V. It can provide 1.3V power supply through the built-in voltage regulator. If the main power V_{DD} is powered down, it can supply power to the backup power supply area through V_{BAT} .

7.3 Structure block diagram

Backup power domain LSECLK (crystal resonator) V_{BAT} Backup RTC register Low-voltage detector Wake-up Backup SRAM V_{DD} power domain GP10 I/O circuit 1.3V power domain V_{CAP_1} V_{CAP_2} Core BYPASS_REG Flash SRAM Voltage regulator $V_{\rm DD}$ AHB digital peripheral $\rm V_{\rm SS}$ APB digital peripheral PDR_ON[Reset controller V_{DD} power domain $\rm V_{\rm REF-}$ **HSICLK** LSICLK V_{REF+} ADC DAC V_{DDA} Reset module PLL V_{SSA}

Figure 37 Power Supply Structure Block Diagram

7.4 Functional description

7.4.1 Power domain

The power domain of the product includes: V_{DD} power domain, V_{DDA} power domain, 1.3V power domain, and backup power domain.

7.4.1.1 V_{DD} power domain

Supply power through V_{DD}/V_{SS} pin to the voltage regulator and I/O.

Voltage regulator

Power can be supplied to 1.3V power domain in the following operating modes:

- Normal mode: In this mode, 1.3V power supply area operates at full power, and the level of the output voltage can be selected through VOSSEL bit of the register PMU CTRL.
- Stop mode: In this mode, 1.3V power supply area works in low-power state, all clocks are off, peripherals stop working and the set voltage output level remains unchanged.
- Standby mode: In this mode, the 1.3V power supply area stops power supply, and except for the standby circuit, the content of register and SRAM will be lost

7.4.1.2 V_{DDA} power domain

Power the ADC, DAC, HSICLK, LSICLK, PLL and reset module through V_{DDA}/V_{SSA} and V_{REF+}/V_{REF-} pins.

Independent ADC power supply and reference voltage

Independent ADC power supply can improve conversion accuracy, and the specific power pins are as follows:

- V_{DDA}: Power pin of ADC
- V_{SSA}: Independent power ground pin
- V_{REF+}/V_{REF-}: ADC reference voltage pin

7.4.1.3 **1.3V** power domain

The core, Flash, SRAM and digital peripherals are powered by voltage regulator.

7.4.1.4 Backup power domain

When V_{DD} exists, the backup power supply area is powered by V_{DD} . When V_{DD} is powered down, the backup power supply area is powered by V_{BAT} , which is used to save the content of backup register and maintain RTC function. Power the LSECLK crystal oscillator, RTC, backup register, backup SRAM, PC13, PC14, PC15, P18 (only APM32F407IE/IG has such pin) and wake-up logics.

7.4.2 Power Management

7.4.2.1 Power-on/power-down reset (POR and PDR)

When the V_{DD}/V_{DDA} is detected to be lower than the threshold voltage V_{POR} and V_{PDR} , the chip will automatically maintain the reset state. The waveform diagrams of power-on reset and power-down reset are as follows. For POR, PDR, hysteresis voltage and hysteresis time, please refer to the "Datasheet".

POR

Hysteresis
voltage

PDR

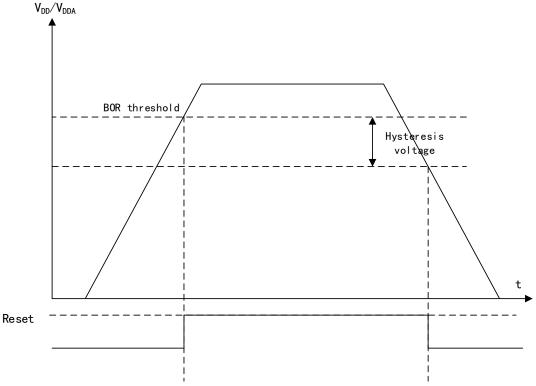
Hysteresis
time

Figure 9 Power-on Reset and Power-down Reset Oscillogram

7.4.2.2 Brownout reset (BOR)

When it is detected that V_{DD}/V_{DDA} is lower than the threshold voltage V_{BOR} , the chip will automatically remain in reset state, and V_{BOR} can be configured through option byte. The followings are 4 thresholds of V_{BOR} :

V_{BOR0}: BOR is turned off, and the voltage range is 1.80~2.10V

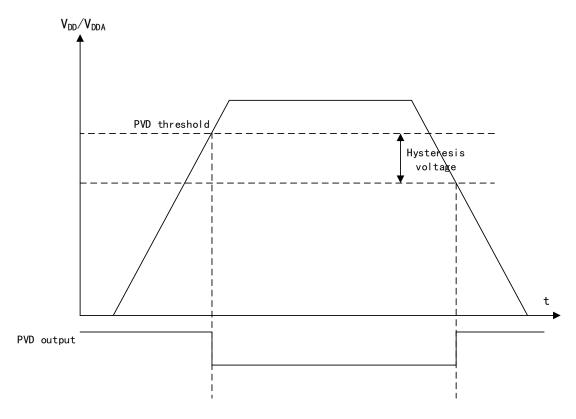

● V_{BOR1}: BOR level is 1, and the voltage range is 2.10~2.40V

● V_{BOR2}: BOR level is 2, and the voltage range is 2.40~2.70V

• V_{BOR3}: BOR level is 3, and the voltage range is 2.70~3.60V

Figure 10 BOR Threshold Oscillogram

7.4.2.3 Power voltage detector (PVD)


A threshold can be set for PVD to monitor whether V_{DD}/V_{DDA} is higher or lower than the threshold. If interrupt is enabled, the interrupt can be triggered to process V_{DD}/V_{DDA} exceeding the threshold in advance. The usage of PVD is as follows:

- (1) Set the PVDEN bit of the configuration register PMU_CTRL to 1 to enable PVD
- (2) Select the voltage threshold of PVD for the PLSEL[2:0] bit of the configuration register PMU_CTRL
- (3) The PVDOFLG bit of the configuration register PMU_CSTS indicates the value of V_{DD} is higher or lower than the threshold of PVD
- (4) When it is detected that V_{DD}/V_{DDA} is lower or higher than the threshold of PVD, PVD interrupt will be generated

The threshold waveform of PVD is shown below. Please see "Datasheet" for PVD threshold and hysteresis voltage.

Figure 11 PVD Threshold Oscillogram

7.4.3 Power consumption control

7.4.3.1 Reduce the power consumption in low-power mode

There are three low-power modes: sleep mode, stop mode and standby mode. The power consumption is reduced by closing the core and clock source and setting the voltage regulator.

The power consumption, wake-up start time, wake-up mode and data storage of each low-power mode are different; the lower the power consumption is, the longer the wake-up time is, the less the wake-up mode is, the less the data saved are after wake-up; users can choose the most appropriate low-power mode according to their needs. The following table shows the difference among three low-power modes.

Table 38 Difference among "Sleep Mode, Stop Mode and Standby Mode"

Mode Description Ent				Voltogo	Effect on	Effect on
	Entry mode	Wake-up mode	Voltage	1.3V area	V _{DD} area	
				regulator	clock	clock
Sleep	Arm® Cortex®-	Call WFI	Any interrupt	Open	Ony the	None
	M4 core stops,	instruction			core clock	

Mode	Description	Entry mode	Wake-up mode	Voltage regulator	Effect on	Effect on
					1.3V area	V _{DD} area
					clock	clock
	and all				is turned	
	peripherals				off and it	
	including the				has no	
	core peripheral	Call WFE	Wake-up event	Open	effect on	None
	are still	instruction	wake-up event		other	
	working				clocks and	
					ADC	
					clocks	
		PDDSCFG				
	All clocks have stopped	and		Turn on		
Stop		LPDSCFG	Anny external interrupt	or be in		
		bits		low-		
		+SLEEPDEEP		power		
		bit +WFI or		mode		The
		WFE				oscillator
	lby 1.3V power off		Rising edge of		Close	of
		PDDSCFG bit +SLEEPDEEP bit +WFI or WFE	WKUP pin,		clocks of	HSICLK
			RTC alarm		all 1.3V	and
Standby			event, RTC		areas	HSECLK
			wake-up event,			is turned
			RTC timestamp	Off		off
			event, RTC			
			tamper event,			
			external reset			
			on NRST pin,			
			and IWDT reset			

Sleep mode

The characteristics of sleep mode are shown in the table below

Table 39 Characteristics of Sleep Mode

Characteristics	Description
Enter	Enter the sleep mode immediately by executing WFI or WFE instructions; When SLEEPONEINT is set to 0 and WFI or WFE instruction is executed, the system will enter the sleep mode immediately; when SLEEPONEINT is set to 1, the system will exit the interrupt program and then enter the sleep mode immediately.
Wake-up	If WFI instruction is executed to enter the stop mode, wake up by any interrupt; If WFE instruction is executed to enter the stop mode, wake up through an event.
Sleep	The core stops working, all peripherals are still running, and the data in the core registers and memory before sleep are saved.
Wake-up delay	None

Characteristics	Description				
After wake-up	If the system is woken up by interrupt, it will first enter the interrupt, then exit the interrupt, and then execute the program after WFI instruction. If the system is woken up by event, it will directly execute the program after WFE instruction.				

Stop mode

The characteristics of stop mode are shown in the table below:

Table 40 Characteristics of Stop Mode

Characteristics	Description
Enter	SLEEPDEEP bit of the core register is set to 1, PDDSCFG bit of the register PMU_CTRL is set to 0, and when executing WFI or WFE instruction, the system will enter the stop mode immediately;
	When LPDSCFG bit of the register PMU_CTRL is set to 0, the voltage regulator is working in normal mode; when LPDSCFG bit of the register PMU_CTRL is set to 1, the voltage regulator is working in low-power mode.
Wake-up	If WFI instruction is executed to enter the sleep mode, wake up by any interrupt; If WFE instruction is executed to enter the sleep mode, wake up through an event.
Stop	The core will stop working, the peripheral will stop working, and the data in the core register and memory before stop will be saved.
Wake-up delay	HSICLK oscillator wake-up time + voltage regulator wake-up time from low-power mode.
After wake-up	If the system is woken up by interrupt, it will first enter the interrupt, then exit the interrupt, and then execute the program after WFI instruction. If the system is woken up by event, it will directly execute the program after WFE instruction.

Standby mode

The characteristics of standby mode are shown in the table below:

Table 41 Standby Mode

Characteristics	Description
Enter	SLEEPDEEP bit of the core register is set to 1, PDDSCFG bit of the register PMU_CTRL is set to 1, WUEFLG bit is set to 0 and when executing WFI or WFE instruction, the system will enter the standby mode immediately.
Wake-up	Wake up by rising edge of WKUP pin, RTC alarm, wake-up, tamper event or NRST pin external reset and IWDT reset.
Standby	The core will stop working, the peripheral will stop working, and the data in the core register and memory will be lost.
Wake-up delay	Chip reset time.
After wake-up	The program starts executing from the beginning.

7.4.3.2 Reduce the power consumption in run mode

In the run mode, the power consumption can be reduced by reducing the system clock, closing or reducing the peripheral clock on the APB/AHB bus.

7.4.3.3 RTC multiplexing function is waken up from low-power mode

RTC multiplexing functions include RTC alarm, RTC wake-up event, RTC tamper event and RTC timestamp event. These functions can wake up MCU from stop mode or standby mode, and RTC provides programmable time base to wake up the devices regularly from stop or standby mode.

7.5 Register address mapping

Table 42 PMU Register Address Mapping

Register name	Description	Offset address
PMU_CTRL	Power control register	0x00
PMU_CSTS	Power control/state register	0x04

7.6 Register functional description

7.6.1 Power control register (PMU_CTRL)

Offset address: 0x00

Reset value: 0x0000 0000 (cleared when waking up from standby mode)

Field	Name	R/W	Description
0	LPDSCFG	R/W	Low Power Deepsleep Configure Configure the working state of the voltage regulator in stop mode. 0: Enable 1: Low-power mode
1	PDDSCFG	R/W	Power Down Deep Sleep Configure When the CPU enters deep sleep, configure the voltage regulator state in standby and stop modes. 0: The voltage regulator is controlled by LPDSCFG bit when entering the stop mode 1: Enter standby mode
2	WUFLGCLR	RC_W1	Wakeup Flag Clear 0: Invalid 1: Clear the wake-up flag after 2 system clock cycles by writing 1
3	SBFLGCLR	RC_W1	Standby Flag Clear 0: Invalid 1: Write 1 to clear the standby flag
4	PVDEN	R/W	Power Voltage Detector Enable 0: Disable 1: Enable
7:5	PLSEL	R/W	PVD Level Select 000: 2.0V 001: 2.1V 010: 2.3V 011: 2.5V 100: 2.6V

Field	Name	R/W	Description			
			101: 2.7V			
			110: 2.8V			
			111: 2.9V			
			Note: See "Datasheet" for detailed instructions			
			Backup Domain Write Access Enable			
8	8 BPWEN R/W		Backup area refers to RTC and backup register; write access is disabled after reset, and is allowed after writing 1.			
			0: Write is disabed			
			1: Write is enabled			
			Flash power-down in Stop mode			
9	FPDSM	R/W	0: Flash does not power down when entering the stop mode			
			1: Flash powers down when entering the stop mode			
13:10		Reserved				
			Regulator Voltage Scaling Output Selection			
14	VOSSEL	R/W	0: Level 2 mode			
			1: Level 1 mode			
31:15		-	Reserved			

7.6.2 Power supply control/state register (PMU_CSTS)

Offset address: 0x04

Reset value: 0x0000 0000 (not cleared when waking up from standby mode) Compared with the standard APB read, it requires extra APB cycle to read this register

Field	Name	R/W	Description		
0	WUEFLG	R	Wakeup Event Flag This bit is set by hardware, indicating whether wake-up event or RTC alarm wake-up event, RTC tamper event, RTC timestamp or RTC wake-up event occurs on WKUP pin. 0: Not occur 1: Occurred Note: Enable the WKUP pin, and an event will be detected when the WKUP pin is at high level.		
1	SBFLG	R	Standby Flag This bit is set to 1 by hardware, and can only be cleared by POR/PDR (power-on/power-down reset) or by setting the SBFLGCLR bit of the power supply control register (PMU_CTRL). 0: Not enter the standby mode 1: Have entered the standby mode		
2	PVDOFLG	R	PVD Output Flag Indicate whether V _{DD} /V _{DDA} is higher than the PVD threshold selected by PLSEL[2:0] This bit is valid only when PVD is enabled by PVDEN BIT. 0: V _{DD} /V _{DDA} higher than PVD threshold 1: V _{DD} /V _{DDA} lower than PVD threshold Note: This bit is 0 after reset or when entering the standby mode (PVD stops work).		

Field	Name	R/W	Description			
3	BKPRFLG	R	Backup regulator ready Flag This bit is set to 1 by hardware, indicating whether the backup regulator is ready. 0: Not ready 1. Ready			
7:4			Reserved			
8	WKUPCFG	R/W	WKUP Pin Configure When WKUP is used as a normal I/O, the event on WKUP pin cannot wake up the CPU in standby mode; it can wake up CPU only when it is not used as a normal I/O. 0: Configure normal I/O 1: Can wake MCU Note: Clear this bit in system reset Backup Regulator Enable			
9	BKPREN R/W		0: Disable 1: Enable			
13:10	Reserved					
14	VOSRFLG	R	Regulator Voltage Scaling Output Selection Ready Flag 0: Not ready 1. Ready			
31:15	Reserved					

8 Nested vector interrupt controller (NVIC)

8.1 Full name and abbreviation description of terms

Table 43 Full name and abbreviation description of terms

Full name in English	English abbreviation
Non Maskable Interrupt	NMI

8.2 Introduction

The Cortex-M4 core in the product integrates nested vectored interrupt controller (NVIC), which is closely coupled with the core, and can handle exceptions and interrupts and power management control efficiently and with low delay. Please see *Cortex-M4 Technical Reference Manual* for more instructions about NVIC.

8.3 Main characteristics

- (1) 85 maskable interrupt channels (excluding 16 Arm® Cortex®-M4 interrupt lines)
- (2) 8 programmable priority levels (use 3-bit interrupt priority level)
- (3) Low-delay exception and interrupt processing
- (4) Power management control
- (5) Realization of system control register

8.4 Interrupt and exception vector table

Table 44 APM32F407xExG Interrupt and Exception Vector Table

Exception type	Vector No.	Priority	Vector address	Description
-	-	-	0x0000_0000	Reserved
Reset	-	-3	0x0000_0004	Reset
NMI	-	-2	0x0000_0008	Non-maskable interrupt
HardFault	-	-1	0x0000_000C	Various hardware faults
MemManage	-	Can be set	0x0000_0010	Memory management
BusFault	-	Can be set	0x0000_0014	-
UsageFault	-	Can be set	0x0000_0018	-
_	_	_	0x0000_001C-	Reserved
_			0x0000_002B	Reserved

Exception type	Vector No.	Priority	Vector address	Description
SVCall	-	Can be set	0x0000_002C	System service called by SWI instruction
Debug Monitor	-	Can be set	0x0000_0030	Debug monitor
-	-	-	0x0000_0034	Reserved
PendSV	-	Can be set	0x0000_0038	Pending system service request
SysTick	-	Can be set	0x0000_003C	System tick timer
WWDT	0	Can be set	0x0000_0040	Window watchdog interrupt
PVD	1	Can be set	0x0000_0044	Power voltage detection interrupt through EINT line
TAMP_STAMP	2	Can be set	0x0000_0048	Tamper and timestamp interrupt through EINT line
RTC_WKUP	3	Can be set	0x0000_004C	RTC wake-up interrupt through EINT line
FLASH	4	Can be set	0x0000_0050	Flash memory global interrupt
RCM	5	Can be set	0x0000_0054	RCM interrupt
EINT0	6	Can be set	0x0000_0058	EINT Line 0 interrupt
EINT1	7	Can be set	0x0000_005C	EINT Line 1 interrupt
EINT2	8	Can be set	0x0000_0060	EINT Line 2 interrupt
EINT3	9	Can be set	0x0000_0064	EINT Line 3 interrupt
EINT4	10	Can be set	0x0000_0068	EINT Line 4 interrupt
DMA1_STR0	11	Can be set	0x0000_006C	DMA1 data stream 0 global interrupt
DMA1_STR1	12	Can be set	0x0000_0070	DMA1 data stream 1 global interrupt
DMA1_STR2	13	Can be set	0x0000_0074	DMA1 data stream 2 global interrupt
DMA1_STR3	14	Can be set	0x0000_0078	DMA1 data stream 3 global interrupt
DMA1_STR4	15	Can be set	0x0000_007C	DMA1 data stream 4 global interrupt
DMA1_STR5	16	Can be set	0x0000_0080	DMA1 data stream 5 global interrupt
DMA1_STR6	17	Can be set	0x0000_0084	DMA1 data stream 6 global interrupt
ADC	18	Can be set	0x0000_0088	ADC1 and ADC2 global interrupt
CAN1_TX	19	Can be set	0x0000_008C	CAN1 transmitting interrupt
CAN1_RX0	20	Can be set	0x0000_0090	CAN1 receiving 0 interrupt

Exception type	Vector No.	Priority	Vector address	Description
CAN1_RX1	21	Can be set	0x0000_0094	CAN1 receiving 1 interrupt
CAN1_SCE	22	Can be set	0x0000_0098	CAN1 SCE interrupt
EINT9_5	23	Can be set	0x0000_009C	EINT line [9:5] interrupt
TMR1_BRK_TMR9	24	Can be set	0x0000_00A0	TMR1 braking interrupt/TMR9 global interrupt
TMR1_UP_TMR10	25	Can be set	0x0000_00A4	TMR1 update interrupt/TMR10 global interrupt
TMR1_TRG_COM_ TMR11	26	Can be set	0x0000_00A8	TMR1 trigger and communication interrupt/TMR11 global interrupt
TMR1_CC	27	Can be set	0x0000_00AC	TMR1 capture/compare interrupt
TMR2	28	Can be set	0x0000_00B0	TMR2 interrupt
TMR3	29	Can be set	0x0000_00B4	TMR3 interrupt
TMR4	30	Can be set	0x0000_00B8	TMR4 interrupt
I2C1_EV	31	Can be set	0x0000_00BC	I2C1 event interrupt
I2C1_ER	32	Can be set	0x0000_00C0	I2C1 error interrupt
I2C2_EV	33	Can be set	0x0000_00C4	I2C2 event interrupt
I2C2_ER	34	Can be set	0x0000_00C8	I2C2 error interrupt
SPI1	35	Can be set	0x0000_00CC	SPI1 interrupt
SPI2	36	Can be set	0x0000_00D0	SPI2 interrupt
USART1	37	Can be set	0x0000_00D4	USART1 interrupt
USART2	38	Can be set	0x0000_00D8	USART2 interrupt
USART3	39	Can be set	0x0000_00DC	USART3 interrupt
EINT15_10	40	Can be set	0x0000_00E0	EINT line [15:10] interrupt
RTC_Alarm	41	Can be set	0x0000_00E4	RTC alarm interrupt
OTG_FS WKUP	42	Can be set	0x0000_00E8	OTG_FS wake-up interrupt through EINT line
TMR8_BRK_TMR1	43	Can be set	0x0000_00EC	TMR8 braking interrupt/TMR12 global interrupt
TMR8_UP_TMR13	44	Can be set	0x0000_00F0	TMR8 update interrupt/TMR13 global interrupt
TMR8_TRG_COM_ TMR14	45	Can be set	0x0000_00F4	TMR8 trigger and communication interrupt/TMR14 global interrupt
TMR8_CC	46	Can be set	0x0000_00F8	TMR8 capture/compare interrupt
DMA1_STR7	47	Can be set	0x0000_00FC	DMA1 data stream 7 global interrupt
EMMC	48	Can be set	0x0000_0100	EMMC interrupt

Exception type	Vector No.	Priority	Vector address	Description
SDIO	49	Can be set	0x0000_0104	SDIO interrupt
TMR5	50	Can be set	0x0000_0108	TMR5 interrupt
SPI3	51	Can be set	0x0000_010C	SPI3 interrupt
UART4	52	Can be set	0x0000_0110	UART4 interrupt
UART5	53	Can be set	0x0000_0114	UART5 interrupt
TMR6_DAC	54	Can be set	0x0000_0118	TMR6 interrupt/DAC1 and DAC2 underrun error interrupt
TMR7	55	Can be set	0x0000_011C	TMR7 interrupt
DMA2_STR0	56	Can be set	0x0000_0120	DMA2 data stream 0 interrupt
DMA2_STR1	57	Can be set	0x0000_0124	DMA2 data stream 1 interrupt
DMA2_STR2	58	Can be set	0x0000_0128	DMA2 data stream 2 interrupt
DMA2_STR3	59	Can be set	0x0000_012C	DMA2 data stream 3 interrupt
DMA2_STR4	60	Can be set	0x0000_0130	DMA2 data stream 4 interrupt
ETH	61	Can be set	0x0000_0134	Ethernet global interrupt
ETH_WKUP 62		Can be set	0x0000_0138	Ethernet wake-up interrupt through EINT line
CAN2_TX	63	Can be set	0x0000_013C	CAN2 transmitting interrupt
CAN2_RX0	64	Can be set	0x0000_0140	CAN2 receiving 0 interrupt
CAN2_RX1	65	Can be set	0x0000_0144	CAN2 receiving 1 interrupt
CAN2_SCE	66	Can be set	0x0000_0148	CAN2 SCE interrupt
OTG_FS	67	Can be set	0x0000_014C	OTG_FS global interrupt
DMA2_STR5	68	Can be set	0x0000_0150	DMA2 data stream 5 interrupt
DMA2_STR6	69	Can be set	0x0000_0154	DMA2 data stream 6 interrupt
DMA2_STR7	70	Can be set	0x0000_0158	DMA2 data stream 7 interrupt
USART6	71	Can be set	0x0000_015C	USART6 global interrupt
I2C3_EV	72	Can be set	0x0000_0160	I2C3 event interrupt
I2C3_ER	73	Can be set	0x0000_0164	I2C3 error interrupt
OTG_HS1_EP1_O UT	74	Can be set	0x0000_0168	OTG_HS1 endpoint 1 output interrupt
OTG_HS1_EP1_IN 75 Can be set 0x0000_016C		OTG_HS1 endpoint 1 input interrupt		
OTG_HS1_WKUP 76 Can be set 0x0000_0170 OT		OTG_HS1 wake-up interrupt through EINT line		
OTG_HS1	77	Can be set	0x0000_0174	OTG_HS1 global interrupt
DCI	78	Can be set	0x0000_0178	DCI global interrupt

Exception type	Vector No. Priority		Vector address	Description
-	79	_	0x0000_017C	Reserved
RNG	80	Can be set	0x0000_0180	RNG global interrupt
FPU	81	Can be set	0x0000_0184	FPU global interrupt

Table 45 APM32F417xExG Interrupt and Exception Vector Table

	Exception type Vector No.		Vector address	otion Vector Table Description
-	-	Priority -	0x0000_0000	Reserved
Reset	Reset -		0x0000 0004	Reset
NMI	_	-3 -2	0x0000_0008	Non-maskable interrupt
HardFault	_	-1	0x0000 000C	Various hardware faults
MemManage	_	Can be set	0x0000 0010	Memory management
BusFault	_	Can be set	0x0000 0014	-
UsageFault	_	Can be set	0x0000_0018	_
Osagor dan		Can be set	0x0000_001C-	
-	-	-	0x0000_002B	Reserved
SVCall	-	Can be set	0x0000_002C	SWI instruction realizes system
			_	service revoking
Debug Monitor	-	Can be set	0x0000_0030	Debug monitor
-	-	-	0x0000_0034	Reserved
PendSV	-	Can be set	0x0000_0038	Pending system service request
SysTick	-	Can be set	0x0000_003C	System tick timer
WWDT	0	Can be set	0x0000_0040	Window watchdog interrupt
PVD	1	Can be set	0x0000 0044	Power voltage detection interrupt
		_		through EINT line
TAMP_STAMP	2	Can be set	0x0000_0048	Tamper and timestamp interrupt through EINT line
			0.0000.0040	RTC wake-up interrupt through
RTC_WKUP	3	Can be set	0x0000_004C	EINT line
FLASH	4	Can be set	0x0000_0050	Flash memory global interrupt
RCM	5	Can be set	0x0000_0054	RCM interrupt
EINT0	6	Can be set	0x0000_0058	EINT Line 0 interrupt
EINT1	7	Can be set	0x0000_005C	EINT Line 1 interrupt
EINT2	8	Can be set	0x0000_0060	EINT Line 2 interrupt
EINT3	9	Can be set	0x0000_0064	EINT Line 3 interrupt
EINT4	10	Can be set	0x0000_0068	EINT Line 4 interrupt

Exception type	Vector No.	Priority	Vector address	Description
	1000011101			DMA1 data stream 0 global
DMA1_STR0	11	Can be set	0x0000_006C	interrupt
DMA4 OTD4	40	Can be set		DMA1 data stream 1 global
DMA1_STR1	12	Call be set 0x0000	0x0000_0070	interrupt
DMA1 STR2	13	Can be set	0x0000 0074	DMA1 data stream 2 global
				interrupt
DMA1_STR3	14	Can be set	0x0000_0078	DMA1 data stream 3 global
				interrupt
DMA1_STR4	15	Can be set	0x0000_007C	DMA1 data stream 4 global interrupt
				DMA1 data stream 5 global
DMA1_STR5	16	Can be set	0x0000_0080	interrupt
DMA1 STR6	17	Can be set	0,0000 0084	DMA1 data stream 6 global
DIVIAT_STRO	17	Can be set	0x0000_0084	interrupt
ADC	18	Can be set	0x0000_0088	ADC1 and ADC2 global interrupt
CAN1_TX	19	Can be set	0x0000_008C	CAN1 transmitting interrupt
CAN1_RX0 20		Can be set	0x0000_0090	CAN1 receiving 0 interrupt
CAN1_RX1	21	Can be set	0x0000_0094	CAN1 receiving 1 interrupt
CAN1_SCE	22	Can be set	0x0000_0098	CAN1 SCE interrupt
EINT9_5	23	Can be set	0x0000_009C	EINT line [9:5] interrupt
TMR1_BRK_TMR9	24	Can be set	0x0000 00A0	TMR1 braking interrupt/TMR9
TIMICI_DICIC_TIMIC9	24	Can be set 0	0.0000_00.10	global interrupt
TMR1_UP_TMR10	25	Can be set	0x0000 00A4	TMR1 update interrupt/TMR10
			_	global interrupt
TMR1_TRG_COM_	26	Can be set	0x0000_00A8	TMR1 trigger and communication
TMR11	27	Can be set	0.0000 0040	interrupt/TMR11 global interrupt
TMR1_CC	27	Can be set	0x0000_00AC	TMR1 capture/compare interrupt
TMR2	28	Can be set	0x0000_00B0	TMR2 interrupt
TMR3	29	Can be set	0x0000_00B4	TMR3 interrupt
TMR4	30	Can be set	0x0000_00B8	TMR4 interrupt
I2C1_EV	31	Can be set	0x0000_00BC	I2C1 event interrupt
I2C1_ER 32		Can be set	0x0000_00C0	I2C1 error interrupt
I2C2_EV	33	Can be set	0x0000_00C4	I2C2 event interrupt
I2C2_ER 34		Can be set	0x0000_00C8	I2C2 error interrupt
SPI1	35	Can be set	0x0000_00CC	SPI1 interrupt
SPI2	36	Can be set	0x0000_00D0	SPI2 interrupt
USART1	37	Can be set	0x0000_00D4	USART1 interrupt

Exception type	Vector No.	Priority	Vector address	Description	
USART2	ART2 38 Can be set 0x0000 00D8		0x0000_00D8	USART2 interrupt	
USART3	39	Can be set	0x0000_00DC	USART3 interrupt	
EINT15_10	40	Can be set	0x0000_00E0	EINT line [15:10] interrupt	
RTC_Alarm	41	Can be set	0x0000_00E4	RTC alarm interrupt	
OTG_FS WKUP	42	Can be set	0x0000_00E8	OTG_FS wake-up interrupt through EINT line	
TMR8_BRK_TMR1	43	Can be set	0x0000_00EC	TMR8 braking interrupt/TMR12 global interrupt	
TMR8_UP_TMR13	44	Can be set	0x0000_00F0	TMR8 update interrupt/TMR13 global interrupt	
TMR8_TRG_COM_ TMR14	45	Can be set	0x0000_00F4	TMR8 trigger and communication interrupt/TMR14 global interrupt	
TMR8_CC	46	Can be set	0x0000_00F8	TMR8 capture/compare interrupt	
DMA1_STR7	47	Can be set	0x0000_00FC	DMA1 data stream 7 global interrupt	
EMMC	48	Can be set	0x0000_0100	EMMC interrupt	
SDIO	49	Can be set	0x0000_0104	SDIO interrupt	
TMR5	50	Can be set	0x0000_0108	TMR5 interrupt	
SPI3	51	Can be set	0x0000_010C	SPI3 interrupt	
UART4	52	Can be set	0x0000_0110	UART4 interrupt	
UART5	53	Can be set	0x0000_0114	UART5 interrupt	
TMR6_DAC	54	Can be set	0x0000_0118	TMR6 interrupt/DAC1 and DAC2 underrun error interrupt	
TMR7	55	Can be set	0x0000_011C	TMR7 interrupt	
DMA2_STR0	56	Can be set	0x0000_0120	DMA2 data stream 0 interrupt	
DMA2_STR1	57	Can be set	0x0000_0124	DMA2 data stream 1 interrupt	
DMA2_STR2	58	Can be set	0x0000_0128	DMA2 data stream 2 interrupt	
DMA2_STR3	59	Can be set	0x0000_012C	DMA2 data stream 3 interrupt	
DMA2_STR4	60	Can be set	0x0000_0130	DMA2 data stream 4 interrupt	
ETH	ETH 61		0x0000_0134	Ethernet global interrupt	
ETH_WKUP 62 C		Can be set	0x0000_0138	Ethernet wake-up interrupt through EINT line	
CAN2_TX	63	Can be set	0x0000_013C	CAN2 transmitting interrupt	
CAN2_RX0	64	Can be set	0x0000_0140	CAN2 receiving 0 interrupt	
CAN2_RX1	65	Can be set	0x0000_0144	CAN2 receiving 1 interrupt	
CAN2_SCE	66	Can be set	0x0000_0148	CAN2 SCE interrupt	

Exception type	Exception type Vector No. Priority Vector address		Vector address	Description
OTG_FS	67	Can be set	0x0000_014C	OTG_FS global interrupt
DMA2_STR5	68	Can be set	0x0000_0150	DMA2 data stream 5 interrupt
DMA2_STR6	69	Can be set	0x0000_0154	DMA2 data stream 6 interrupt
DMA2_STR7	70	Can be set	0x0000_0158	DMA2 data stream 7 interrupt
USART6	71	Can be set	0x0000_015C	USART6 global interrupt
I2C3_EV	72	Can be set	0x0000_0160	I2C3 event interrupt
I2C3_ER	73	Can be set	0x0000_0164	I2C3 error interrupt
OTG_HS1_EP1_O UT	74	Can be set	0x0000_0168	OTG_HS1 endpoint 1 output interrupt
OTG_HS1_EP1_IN	75	75 Can be set 0x0000_016C OTG_HS1 endpoint 1 in interrupt		OTG_HS1 endpoint 1 input interrupt
OTG_HS1_WKUP	76	76 Can be set 0x0000 0170		OTG_HS1 wake-up interrupt through EINT line
OTG_HS1	77	Can be set	0x0000_0174	OTG_HS1 global interrupt
DCI	78	Can be set	0x0000_0178	DCI global interrupt
CRYP 79 Can b		Can be set	0x0000_017C	CRYP encryption global interrupt
HASH_RNG 80 Can be set		0x0000_0180	Hash and RNG global interrupt	
FPU 81		Can be set	0x0000_0184	FPU global interrupt

9 External Interrupt/Event Controller (EINT)

9.1 Introduction

The interrupts/events contain internal interrupt/event and external interrupt/event. In this manual, external interrupt refers to the interrupt/event caused by I/O pin input signal, which is EINTx in interrupt vector table; other interrupts are internal interrupts/events.

The events can be divided into hardware events and software events. Hardware events are generated by external/core hardware signals, while software events are generated by instructions.

Interrupts need to go through the interrupt handler function to realize the work to be processed, while events do not need to go through interrupt handler function, and the preset work can be triggered by hardware. The external events output pulse through events such as GPIO, while the internal events trigger another TMR to work, for example, through update event of one TMR.

9.2 Main Characteristics

- (1) Support 23 event/interrupt requests
- (2) Can be configured independently as the line of external/internal event request
- (3) Each event/interrupt line can be masked independently
- (4) Each external event/interrupt line can be triggered independently
- (5) Each external interrupt line has dedicated state bit
- (6) Detects external signals whose pulse width is lower than the APB2 clock width

9.3 Functional description

9.3.1 "External interrupt and event" classification and difference points

"External interrupt and event" can be classified into external hardware interrupt, external hardware event, external software event and external software interrupt according to trigger source, configuration and execution process. The difference points are shown in the table below:

Table 46 "External Interrupt and Event" Classification and Difference Points

Name	Trigger source	Configuration and execution process
External hardware interrupt	External signal	 (1) Set the trigger mode, allow the interrupt request, and enable corresponding peripheral interrupt line (enable in NVIC); (2) When an edge consistent with the configuration is generated on the external interrupt line, an interrupt request will be generated, and the corresponding suspend bit will be set to 1. Write 1 to the corresponding bit of the pending register and the interrupt request will be cleared.
External hardware event	External signal	(1) Set the trigger mode and enable the event line;(2) When an edge consistent with the configuration is generated on the external event line, one event request pulse will be generated, and the corresponding pending bit will not be set to 1.
External software request	Software interrupt register/transmission event (SEV) instruction	(1) Enable the event line;(2) Write 1 to the software interrupt event register of the corresponding event line to generate an event request pulse, and the corresponding pending bit will not be set to 1.
External software interrupt	Software interrupt register	 (1) Allow interrupt request, and enable the corresponding peripheral interrupt line (enable in NVIC); (2) Write 1 to the software interrupt event register of the corresponding interrupt line to generate an interrupt request, the corresponding pending bit will be set to 1; write 1 to the corresponding bit of the pending register and the interrupt request will be cleared.

9.3.2 Core wake-up

Using WFI and WFE instructions can make the core stop working. When WFI instruction is used, any interrupt can wake up the core; when WFE instruction is used, the core can be awakened up by event.

When interrupt is used for wake-up, the interrupt handler function will be triggered, and normal interrupt configuration can wake up the core. When an event is used to wake up the core, the interrupt handler function will not be triggered, which will reduce the wake-up time, and the configuration method is:

- (1) It can trigger an internal interrupt (internal hardware event) but cannot trigger the interrupt handler function for wake-up
 - It can enable an internal interrupt in the peripheral, but cannot enable the corresponding interrupt in NVIC to avoid triggering the interrupt handler function
 - Enable SEVONPEND bit in the system controller of the core, and execute WFE instruction to make the core enter sleep mode

- Generate an interrupt to wake up the core; when the core recovers from WFE, it is required to clear the pending bit of corresponding peripheral interrupt and the pending bit of peripheral NVIC interrupt channel (clear the pending register in the NVIC interrupt)
- (2) Wake up through EINT line events (external hardware event)
 - Configure EINT line as the event mode
 - Execute WFE instruction to make the core enter the sleep mode
 - Generate an interrupt to wake up the core; when the CPU recovers from WFE, since the pending bit of corresponding event line is not set, it is unnecessary to clear the interrupt pending bit of corresponding peripheral or the NVIC interrupt channel pending bit

9.3.2.1 Event wake-up

It can trigger an internal interrupt (internal hardware event) but cannot trigger the interrupt handler function for wake-up

- (1) Enable an internal interrupt in the peripheral, but do not enable the corresponding interrupt in NVIC to avoid triggering the interrupt handler function;
- (2) Enable SEVONPEND bit in the system controller of the core, and execute WFE instruction to make the core enter sleep mode;
- (3) Generate an interrupt to wake up the core; when the core recovers from WFE, it is required to clear the pending bit of corresponding peripheral interrupt and the pending bit of peripheral NVIC interrupt channel (clear the pending register in the NVIC interrupt).

Wake up through EINT line events (external hardware event)

- (1) Configure EINT line as the event mode;
- (2) Execute WFE instruction to make the core enter the sleep mode;
- (3) Generate an interrupt to wake up the core; when the CPU recovers from WFE, since the pending bit of corresponding event line is not set, it is unnecessary to clear the interrupt pending bit of corresponding peripheral or the NVIC interrupt channel pending bit.

9.3.3 External Interrupt and Event Line Mapping

Table 47 External Interrupt and Event Line Mapping

External Interrupt and Event Channel Name	External Interrupt and Event Line No.
PA0/PB0/PC0/PE0/PF0/PG0/PH0/PI0	EINT 0
PA1/PB1/PC1/PE1/PF1/PG1/PH1/PI1	EINT 1
PA15/PB15/PC15/PE15/PF15/PG15/PH15	EINT 15
PVD output	EINT 16
RTC Alarm event	EINT 17

External Interrupt and Event Channel Name	External Interrupt and Event Line No.
OTG_FS wake-up event	EINT 18
Ethernet wake-up event	EINT 19
OTG_HS1 wake-up event	EINT 20
RTC tamper and timestamp event	EINT 21
RTC wake-up event	EINT 22
Reserved	EINT 23
Reserved	EINT 24
Reserved	EINT 25
Reserved	EINT 26
Reserved	EINT 27
Reserved	EINT 28
Reserved	EINT 29
Reserved	EINT 30
Reserved	EINT 31

9.4 Register address mapping

Table 48 EINT Register Address Mapping

Register name	Description	Offset address
EINT_IMASK	Interrupt mask register	0x00
EINT_EMASK	Event mask register	0x04
EINT_RTEN	Enable the rising edge to trigger the register	0x08
EINT_FTEN	Enable the falling edge to trigger the register	0x0C
EINT_SWINTE	Software interrupt event register	0x10
EINT_IPEND	Interrupt pending register	0x14

9.5 Register functional description

9.5.1 Interrupt mask register (EINT_IMASK)

Offset address: 0x00 Reset value: 0x0000 0000

Field	Name	R/W	Description	
22:0	IMASKx	R/W	Interrupt Request Mask on Line x (x=0~22) 0: Mask 1: Open	
31:23		Reserved		

9.5.2 Event mask register (EINT_EMASK)

Offset address: 0x04
Reset value: 0x0000 0000

Field	Name	R/W	Description	
22:0	EMASKx	R/W	Event Request Mask on Line x (x=0~22) 0: Mask 1: Open	
31:23		Reserved		

9.5.3 Enable the rising edge trigger register (EINT_RTEN)

Offset address: 0x08
Reset value: 0x0000 0000

Field	Name	R/W	Description
22:0	RTENx	R/W	Rising Trigger Event and Interrupt Enable of Line x (x=0~22) 0: Disable 1: Enable
31:23	Reserved		

Note: Since the external wake-up lines are edge triggered, there should be no burr signal on these lines; when writing EINT_RTEN register, if the rising edge signal is on the external interrupt line, it will not be recognized and the set pending bit will not be set; in the same interrupt line, the rising edge trigger and falling edge trigger can be set at the same time.

9.5.4 Enable the falling edge trigger register (EINT_FTEN)

Offset address: 0x0C Reset value: 0x0000 0000

Field	Name	R/W	Description
22:0	FTENx	R/W	Falling Trigger Event and Interrupt Enable of Line x (x=0~22) 0: Disable 1: Enable
31:23	Reserved		

Note: Since the external wake-up lines are edge triggered, there should be no burr signal on these lines; when writing EINT_FTEN register, if the rising edge signal is on the external interrupt line, it will not be recognized and the set pending bit will not be set; in the same interrupt line, the rising edge trigger and falling edge trigger can be set at the same time.

9.5.5 Software interrupt event register (EINT_SWINTE)

Offset address: 0x10 Reset value: 0x0000 0000

Field	Name	R/W	Description	
22:0	SWINTEX	R/W	Software Interrupt Event on Line x (x=0~22) This bit can be set to 1 by software, and be cleared by writing 1 to the corresponding bit of EINT_IPEND. When this bit is 0, the pending bit of EINT_IPEND can be set by writing 1. If EINT_IMASK (EINT_EMASK) is set to open the interrupt (event) request, an interrupt (event) will be generated. 0: No effect 1: Software generates an interrupt (event)	
31:23	Reserved			

9.5.6 Interrupt pending register (EINT_IPEND)

Offset address: 0x14

Reset value: 0xXXXX XXXX

Field	Name	R/W	Description	
22:0	IPENDx	RC_W1	Interrupt Pending Occur of Line x Flag (x=0~22) When a trigger request on the corresponding edge of EINT occurs on an external interrupt line, it will be set to 1 by hardware; it can be cleared by changing the polarity of the edge detection or by writing 1 to this bit.	
31:23	Reserved			

10 Direct memory access (DMA)

10.1 Introduction

DMA (Direct Memory Access) can realize high-speed data transmission between peripheral devices and memory or between memory and memory without CPU intervention, thus saving CPU resources for other operations.

The product has two DMA controllers, with 16 data streams. Each data stream corresponds to 8 channels, but each data stream can only use 1 channel at the same time. Each data stream can set priority, and the arbiter can coordinate the priority of corresponding DMA requests of each data stream according to the priority of the data stream.

10.2 Main characteristics

- (1) Two DMA; each DMA has 8 data streams, and each data stream has 8 channels
- (2) Dual AHB main interfaces; one is memory interface, and the other is peripheral interface
- (3) There are three data transmission modes: peripheral to memory, memory to peripheral, memory to memory
- (4) Each data stream has a special hardware DMA request for connection
- (5) Support software priority and hardware priority when multiple requests occur at the same time
- (6) Each data stream has 5 event flags and independent interrupts
- (7) Support circular transmission mode
- (8) The number of data transmission is programmable, up to 65535
- (9) The configurable source and target transmission width is byte, half word or word
- (10) Support source and target incremental modes
- (11) The configurable burst increment size is single time, 4, 8 or 16 ticks

10.3 Functional description

10.3.1 **DMA request**

If the peripheral or memory needs to use DMA to transmit data, it is required to first transmit DMA request and wait for DMA approval before data transmission.

Two DMA have 16 data streams in total. Each data stream is connected with different peripheral channels, and each data stream has five event flags (DMA half transmission, DMA transmission completion, DMA transmission error, DMA FIFO error, and direct mode error). The logic of the five event flags may become a separate interrupt request, and they all support software trigger.

When multiple peripherals request the same data stream, it is required to configure the corresponding register to turn on or off the request of each peripheral, so as to ensure that one data stream can only turn on one peripheral request.

Table 49 DMA1 Request Mapping Table

Peripheral request	Data stream 0	Data stream 1	Data stream 2	Data stream 3	Data stream 4	Data stream 5	Data stream 6	Data stream 7
Channel 0	SPI3_RX	-	SPI3_RX	SPI2_RX	SPI2_TX	SPI3_TX	-	SPI3_TX
Channel 1	I2C1_RX	-	TMR7_UP	-	TMR7_UP	I2C1_RX	I2C1_TX	I2C1_TX
Channel 2	TMR4_CH1	-	I2S3_EXT_ RX	TMR4_CH2	I2S2_EXT_TX	I2S3_EXT_TX	TMR4_UP	TMR4_CH3
Channel 3	I2S3_EXT_RX	TMR2_UP TMR2_CH3	I2C3_RX	I2S2_EXT_ RX	I2C3_TX	TMR2_CH1	TMR2_CH2 TMR2_CH4	TMR2_UP TMR2_CH4
Channel 4	UART5_RX	USART3_RX	UART4_RX	USART3_TX	UART4_TX	USART2_RX	USART2_TX	UART5_TX
Channel 5	-	-	TMR3_CH4 TMR3_UP	-	TMR3_CH1 TMR3_TRIG	TMR3_CH2	-	TMR3_CH3
Channel 6	TMR5_CH3 TMR5_UP	TMR5_CH4 TMR5_TRIG	TMR5_CH1	TMR5_CH4 TMR5_TRIG	TMR5_CH2	-	TMR5_UP	-
Channel 7	-	TMR6_UP	I2C2_RX	I2C2_RX	USART3_TX	DAC1	DAC2	I2C2_TX

www.geehy.com

Table 50 DMA2 Request Mapping Table

Peripheral request	Data stream 0	Data stream 1	Data stream 2	Data stream 3	Data stream 4	Data stream 5	Data stream 6	Data stream 7
			TMR8_CH1				TMR1_CH1	
Channel 0	ADC1	-	TMR8_CH2	-	ADC1	-	TMR1_CH2	-
			TMR8_CH3				TMR1_CH3	
Channel 1	-	DCI	ADC2	ADC2	-	-	-	DCI
Channel 2	ADC3	ADC3	-	-	-	CRYP_OUT	CRYP_IN	HASH_IN
Channel 3	SPI1_RX	-	SPI1_RX	SPI1_TX	-	SPI1_TX	-	-
Channel 4	-	-	USART1_RX	SDIO	-	USART1_RX	SDIO	USART1_TX
Channel 5	-	USART6_RX	USART6_RX	-	-	-	USART6_TX	USART6_TX
					TMR1_CH4			
Channel 6	TMR1_TRIG	TMR1_CH1	TMR1_CH2	TMR1_CH1	TMR1_TRIG	TMR1_UP	TMR1_CH3	-
					TMR1_COM			
								TMR8_CH4
Channel 7	-	TMR8_UP	TMR8_CH1	TMR8_CH2	TMR8_CH3	-	-	TMR8_TRIG
								TMR8_COM

www.geehy.com

10.3.2 Arbitrator

When multiple DMA channel requests occur, an arbiter is needed to manage the response sequence. Management is divided into two stages: the first stage is software stage, which is divided into the highest, high, medium and low priority; the second stage is hardware stage, and under the condition of the same software priority, the lower the data stream number is, the higher the priority is.

10.3.3 **FIFO**

FIFO is used to temporarily store data before the source data is transmitted to the destination address. Each data stream has an independent 4-word FIFO, and the FIFO threshold can be controlled by software to be 1/4, 1/2, 3/4 or full.

There are two DMA transmission modes. The first is direct mode, in which a single transmission will be started to the memory immediately after each peripheral requests. If DMA is configured to transmit data from the memory to the peripheral, DMA will store a data in FIFO, and once the peripheral triggers the DMA request, it will transmit the data. The direct mode requires the same data width configuration for the source and destination addresses, and does not support burst mode and memory-to-memory transmission mode. The second is FIFO mode, in which, FIFO threshold is configured first, and when the data storage reaches the threshold, FIFO content will be transmitted to the destination address; FIFO mode is applicable when the data width of source address and destination address is different, and it supports burst mode; FIFO can store the data first and output them as required.

10.3.4 **Port**

DMA controller transmits data between the memory and the peripherals through the memory port and the peripheral port. The memory port and peripheral port of DMA2 are connected to AHB matrix bus, and the memory and peripheral of DMA2 can access the internal Flash, internal SRAM, AHB1 peripheral, APB1 peripheral, APB2 peripheral, AHB2 peripheral and external memory; the memory port of DMA1 does not have the access right for AHB2 peripheral compared with DMA2, the peripheral port of DMA1 is only connected to APB1 peripheral, so DMA1 cannot realize memory-to-memory transmission.

10.3.5 DMA initialization parameter configuration

10.3.5.1 Transmission mode

DMA2 supports three transmission modes: peripheral-to-memory mode, memory-to-peripheral mode and memory-to-memory mode. DMA1 supports two transmission modes: peripheral-to-memory and memory-to-peripheral.

The transmission mode can be controlled through DIRCFG bit of DMA_SCFG register.

10.3.5.2 Increment mode

The increment mode of peripheral and memory is controlled through PERIM and MEMIM bits of DMA_SCFG register. When both bits are set to 1, it is configured as the increment mode and the increment is the value of PERSIZECFG and MENSIZECFG bits of DMA_SCFG register. The PERSIZECFG and MENSIZECFG bits are used to set the data size of peripheral and memory to byte, half word or word.

10.3.5.3 Single transmission and burst mode

Burst transmission refers to the high-speed transmission that increases the data volume transmitted each time at the transmission stage so as to improve the transmission speed. In the process of burst transmission, AHB bus will be occupied.

Single and burst transmissions can be controlled through the PBCFG and MBCFG bits of DMA_SCFG register, and it can be configured as single transmission, incremental burst transmission of 4 ticks, incremental burst transmission of 8 ticks and incremental burst transmission of 16 ticks. This increment is determined by the value of PERSIZECFG and MENSIZECFG bits. The burst mode can be enabled only when the increment mode is supported.

The burst mode shall be used in combination with FIFO, and the selected FIFO threshold shall be suitable for the burst size of memory, as shown in the table below.

Table 51 FIFO Threshold Configuration

MENSIZECFG	FIFO threshold	MBCFG=01	MBCFG=10	MBCFG=11	
	1/4	One-time burst of 4 ticks	Disable		
Dite	1/2	Two-time burst of 4 ticks	One-time burst of 8 ticks	Disable	
Byte	3/4	Three-time burst of 4 ticks	Disable		
	Full	Four-time burst of 4 ticks	Two-time burst of 8 ticks	One-time burst of 16 ticks	
	1/4	Disable		Disable	
Half word	1/2	One-time burst of 4 ticks	Disable		
nali word	3/4	Disable			
	Full	Two-time burst of 4 ticks	One-time burst of 8 ticks		
Word	1/4	Disable	Disable		

MENSIZECFG	FIFO threshold	MBCFG=01	MBCFG=10	MBCFG=11
	1/2			
	3/4			
	Full	One-time burst of 4 ticks		

10.3.5.4 Circular mode

The circular mode is used to process the circular buffer area and continuous data stream. The circular mode will automatically configure the number of data items as the initial value after the transmission ends, and continue the data transmission.

The circular mode can be controlled through CIRCMEN bit of DMA_SCFG register.

10.3.5.5 Double-buffer mode

Set DBM of DMA_SCFG register to 1 to turn on the double- buffer mode and automatically activate the circular mode. In the double-buffer mode, the DMA_M1ADDR register is activated, and when the corresponding memory area of the address pointer of DMA_M0ADDR register finishes transmission, the corresponding memory area of the address pointer of DMA_M1ADDR register will continue to transmit and be called circularly. When DMA accesses DMA_M1ADDR, CTARG bit of DMA_SCFG register will be set to 1 and can write or read data to DMA_M0ADDR register at the same time.

This mode does not support memory-to-memory transmission.

10.3.5.6 Stream controller

The stream controller can be configured as DMA or peripheral through PERFC bit of DMA SCFG register.

When DMA is used as the stream controller, configure DMA_NDATA register before enabling data stream, and set the number of data items to be transmitted.

When the peripheral is used as the stream controller, the number of transmitted data items is unknown, and the hardware will force the value of DMA_NDATA register to 0xFFFF for execution. After the transmission is completed, the peripheral will transmit instructions to DMA through hardware, and then read the value of the register. The number of transmitted data=0xFFFF-DMA_NDATA.

When the peripheral is used as the stream controller, the circular mode is disabled. When the memory-to-memory mode is selected, the PERFC bit will be forced to be cleared to zero by the hardware, and only DMA can be selected as the stream controller.

10.3.6 Interrupt

Each data stream has five types of interrupt events: half transmission, transmission completion, transmission error, FIFO error and direct mode error.

Table 52 DMA Interrupt Request

Interrupt event	Event flag bit	Enable interrupt bit
Half transmission	HTXIFLGx	HTXIEN
Transmission completed	TXCIFLGx	TXCIEN
Transmission error	TXEIFLGx	TXEIEN
FIFO error	FEIFLGx	FEIEN
Direct mode error	DMEIFLGx	DMEIEN

10.4 DMA register address mapping

Table 53 DMA Register Address Mapping

Table de Bill, tritégister, taurées mapping					
Register name	Description	Offset address			
DMA_LINTSTS	DMA low interrupt state register	0x00			
DMA_HINTSTS	DMA high interrupt state register	0x04			
DMA_LIFCLR	DMA low interrupt flag clear register	0x08			
DMA_HIFCLR	DMA high interrupt flag clear register	0x0C			
DMA_SCFG	DMA data stream x configuration register	0x10+0x18× (data stream number)			
DMA_NDATA	DMA data stream x data item number register	0x14+0x18× (data stream number)			
DMA_PADDR	DMA data stream x peripheral address register	0x18+0x18× (data stream number)			
DMA_M0ADDR	DMA data stream x memory 0 address register	0x1C+0x18× (data stream number)			
DMA_M1ADDR	DMA data stream x memory 1 address register	0x20+0x18× (data stream number)			
DMA_FCTRL	DMA data stream x FIFO control register	0x24+0x18× (data stream number)			

10.5 Register functional description

10.5.1 DMA low interrupt state register (DMA_LINTSTS)

Offset address: 0x00
Reset value: 0x0000 0000

Field	Name	R/W	Description
22、16、6、0	FEIFLGx	R	Stream x FIFO Error Interrupt Flag (x=03) These bits are set to 1 by hardware; write 1 and set to 0 by software on the corresponding bit of DMA_LIFCLR register. 0: No FIFO error event 1: FIFO error event occurs
23、17、7、1			Reserved
24、18、8、2	DMEIFLGx	R	Stream x Direct Mode Error Interrupt Flag (x=03) These bits are set to 1 by hardware; write 1 and set to 0 by software on the corresponding bit of DMA_LIFCLR register. 0: No direct mode error 1: Direct mode error is generated
25、19、9、3	TXEIFLGx	R	Stream x Transfer Error Interrupt Flag (x=03) These bits are set to 1 by hardware; write 1 and set to 0 by software on the corresponding bit of DMA_LIFCLR register. 0: No transmission error 1: Transmission error is generated
26、20、10、4	HTXIFLGx	R	Stream x Half Transfer Interrupt Flag (x=03) These bits are set to 1 by hardware; write 1 and set to 0 by software on the corresponding bit of DMA_LIFCLR register. 0: No half-transmission event 1: Half-transmission event is generated
27、21、11、5	TXCIFLGx	R	Stream x Transfer Complete Interrupt Flag (x=03) These bits are set to 1 by hardware; write 1 and set to 0 by software on the corresponding bit of DMA_LIFCLR register. 0: No transmission completion event 1: Transmission completion event is generated.
31:28、15:12			Reserved

10.5.2 DMA high interrupt state register (DMA_HINTSTS)

Offset address: 0x04 Reset value: 0x0000 0000

Field	Name	R/W	Description
22、16、6、0	FEIFLGx	R	Stream x FIFO Error Interrupt Flag (x=47) These bits are set to 1 by hardware; write 1 and set to 0 by software on the corresponding bit of DMA_HIFCLR register. 0: No FIFO error event 1: FIFO error event occurs
23、17、7、1	Reserved		
24、18、8、2	DMEIFLGx	Stream x Direct Mode Error Interrupt Flag (x=47) These bits are set to 1 by hardware; write 1 and set to software on the corresponding bit of DMA_HIFCLR regis 0: No direct mode error 1: Direct mode error is generated	

Field	Name	R/W	Description		
25、19、9、3	TXEIFLGx	R	Stream x Transfer Error Interrupt Flag (x=47) These bits are set to 1 by hardware; write 1 and set to 0 by software on the corresponding bit of DMA_HIFCLR register. 0: No transmission error 1: Transmission error is generated		
26、20、10、4	HTXIFLGx	R	Stream x Half Transfer Interrupt Flag (x=47) These bits are set to 1 by hardware; write 1 and set to 0 by software on the corresponding bit of DMA_HIFCLR register. 0: No half-transmission event 1: Half-transmission event is generated		
27、21、11、5	TXCIFLGx	R	Stream x Transfer Complete Interrupt Flag (x=47) These bits are set to 1 by hardware; write 1 and set to 0 by software on the corresponding bit of DMA_HIFCLR register. 0: No transmission completion event 1: Transmission completion event is generated.		
31:28、15:12	Reserved				

10.5.3 DMA low interrupt flag clear register (DMA_LIFCLR)

Offset address: 0x08
Reset value: 0x0000 0000

Field	Name	R/W	Description
22、16、6、0	CFEIFLGx	W	Stream x Clear FIFO Error Interrupt Flag (x=03) 0: Invalid 1: The corresponding FEIFLGx flag in DMA_LINTSTS register is set to 0
23、17、7、1			Reserved
24、18、8、2	CDMEIFLGx	W	Stream x Clear Direct Mode Error Interrupt Flag (x=03) 0: Invalid 1: The corresponding DMEIFLGx flag in DMA_LINTSTS register is cleared to 0
25、19、9、3	CTXEIFLGx	W	Stream x Clear Transfer Error Interrupt Flag (x=03) 0: Invalid 1: The corresponding TXEIFLGx flag in DMA_LINTSTS register is cleared to 0
26、20、10、4	CHTXIFLGx	W	Stream x Clear Half Transfer Interrupt Flag (x=03) 0: Invalid 1: The corresponding HTXIFLGx flag in DMA_LINTSTS register is cleared to 0
27、21、11、5	CTXCIFLGx	W	Stream x Clear Transfer Complete Interrupt Flag (x=03) 0: Invalid 1: The corresponding TXCIFLGx flag in DMA_LINTSTS register is cleared to 0
31:28、15:12		•	Reserved

10.5.4 DMA high interrupt flag clear register (DMA_HIFCLR)

Offset address: 0x0C

Reset value: 0x0000 0000

Field	Name	R/W	Description
22、16、6、0	CFEIFLGx	W	Stream x Clear FIFO Error Interrupt Flag (x=47) 0: Invalid 1: The corresponding FEIFLGx flag in DMA_HINTSTS register is cleared to 0
23、17、7、1			Reserved
24、18、8、2	CDMEIFLGx	W	Stream x Clear Direct Mode Error Interrupt Flag (x=47) 0: Invalid 1: The corresponding DMEIFLGx flag in DMA_HINTSTS register is cleared to 0
25、19、9、3	CTXEIFLGx	W	Stream x Clear Transfer Error Interrupt Flag (x=47) 0: Invalid 1: The corresponding TXEIFLGx flag in DMA_HINTSTS register is cleared to 0
26、20、10、4	CHTXIFLGx	W	Stream x Clear Half Transfer Interrupt Flag (x=47) 0: Invalid 1: The corresponding HTXIFLGx flag in DMA_HINTSTS register is cleared to 0
27、21、11、5	CTXCIFLGx	W	Stream x Clear Transfer Complete Interrupt Flag (x=47) 0: Invalid 1: The corresponding TXCIFLGx flag in DMA_HINTSTS register is cleared to 0
31:28、15:12	_		Reserved

10.5.5 DMA data stream x configuration register (DMA_SCFG) (x=0...7)

Offset address: 0x10+0x18× (data stream number)

Reset value: 0x0000 0000

Field	Name	R/W	Description
0	EN	R/W	Stream Enable 0: Disable 1: Enable This bit shall be set to 0 by hardware in any of the following situations: 1. When DMA transmission ends 2. When transmission error occurs to AHB main bus 3. When the FIFO threshold on the memory AHB port is incompatible with the burst size
1	DMEIEN	R/W	Direct Mode Error Interrupt Enable 0: Disable 1: Enable
2	TXEIEN	R/W	Transfer Error Interrupt Enable 0: Disable 1: Enable
3	HTXIEN	R/W	Half Transfer Interrupt Enable 0: Disable

Field	Name	R/W	Description
			1: Enable
4	TXCIEN	R/W	Transfer Complete Interrupt Enable 0: Disable 1: Enable
5	PERFC	R/W	Peripheral Flow Controller 0: DMA is stream controller 1: The peripheral is stream controller This bit can be written only when the EN bit is 0; when the memory-to-memory mode is selected, this bit will be automatically forced to zero by the hardware.
7:6	DIRCFG	R/W	Configure data transfer direction (Data Transfer Direction Configure) 00: From peripheral to memory 01: From memory to peripheral 10: From memory to memory 11: Reserved These bits can be written only when EN bit is 0.
8	CIRCMEN	R/W	Circular Mode Enable This bit can be set to 1 or 0 by software, or be set to 0 by hardware. 0: Disable 1: Enable If the peripheral is set as the stream controller and the data stream is enabled, this bit will be automatically forced to 0 by hardware. If DMA transmission is ended, switch the target memory area, enable the data stream, and this bit will be automatically forced to 1 by the hardware.
9	PERIM	R/W	Peripheral Increment Mode 0: The peripheral address pointer is fixed 1: After each data transmission, the peripheral address pointer will increase This bit can be written only when EN bit is 0.
10	МЕМІМ	R/W	Memory Increment Mode 0: The memory address pointer is fixed 1: After each data transmission, the memory address pointer will increase This bit can be written only when EN bit is 0.
12:11	PERSIZECFG	R/W	Peripheral Data Size Configure 00: Byte (8 bits) 01: Half word (16 bits) 10: Word (32 bits) 11: Reserved These bits can be written only when EN bit is 0.
14:13	MEMSIZECFG	R/W	Memory Data Size Configure 00: Byte (8 bits) 01: Half word (16 bits)

Field	Name	R/W	Description
			10: Word (32 bits)
			11: Reserved
			These bits can be written only when EN bit is 0.
			In direct mode, when EN bit is 1, MEMSIZECFG bit will be forced to be of the same value as that of PERSIZECFG bit.
			Peripheral increment offset size
			0: The offset used to calculate the peripheral address is related to PERSIZECFG
15	PERIOSIZE	R/W	1: The offset used to calculate the peripheral address is fixed to 4
	TENIOOIZE	1000	If PERIM bit is 0, this bit is meaningless, and it can be written only when EN bit is 0.
			If the direct mode is selected or the PBCFG bit is not configured to 00, and the data stream is enabled, this bit will be forced to low level by hardware.
			Priority Level Configure
			00: Low
17:16	PRILCFG	R/W	01: Medium
			10: High
			11: Very high
			These bits can be written only when EN bit is 0.
			Double Buffer Mode 0: Do not switch the buffer when the transmission ends
18	DBM	R/W	Switch the target memory when DMA transmission ends
			This bit can be written only when EN bit is 0.
			Current Target (only in double buffer mode)
19	CTARG	R/W	This bit can be set to 1 or 0 by hardware, or be written by software.
	0.7.11.0		0: The current target memory is Memory 0
			1: The current target memory is Memory 1
20		•	Reserved
			Peripheral Burst Transfer Configure
			00: Single transmission
			01: INCR4 (4-tick increment burst transmission)
22:21	PBCFG	R/W	10: INCR8 (8-tick increment burst transmission)
			11: INCR16 (16-tick increment burst transmission) This bit can be written only when EN bit is 0.
			In direct mode, these bits will be forced to 0.
			Memory Burst Transfer Configure
			00: Single transmission
			01: INCR4 (4-tick increment burst transmission)
24:23	MBCFG	R/W	10: INCR8 (8-tick increment burst transmission)
			11: INCR16 (16-tick increment burst transmission)
			This bit can be written only when EN bit is 0.
			In direct mode, these bits will be forced to 0.
27:25	CHSEL	R/W	Channel Selection
0			000: Select Channel 0

Field	Name	R/W	Description
			001: Select Channel 1
			010: Select Channel 2
			011: Select Channel 3
			100: Select Channel 4
			101: Select Channel 5
			110: Select Channel 6
			111: Select Channel 7
31:28	Reserved		

10.5.6 DMA data stream x data item number register (DMA_NDATA) (x=0...7)

Offset address: 0x14+0x18× (data stream number)

Reset value: 0x0000 0000

Field	Name	R/W	Description
15:0	NDATA	R/W	Number Of Data Items To Transfer The number of data items to be transmitted is 0-65535. This register can be operated only when the data stream is disabled. After the data stream is enabled, this register is read-only to indicate the number of remaining data items to be transmitted. After each DMA transmission, this register will decrease. This register is 0 after completion of transmission, and the initial value will be automatically reloaded in any of the following circumstances: 1. Configure the data stream in circular mode 2. Re-enable the data stream
31:16			Reserved

10.5.7 DMA data stream x peripheral address register (DMA_PADDR) (x=0...7)

Offset address: 0x18+0x18× (data stream number)

Reset value: 0x0000 0000

Field	Name	R/W	Description
31:0	PADDR	R/W	Peripheral Address Base address of peripheral data register of read/write data. This bit can be written only when EN bit is 0.

10.5.8 DMA data stream x memory 0 address register (DMA_M0ADDR) (x=0...7)

Offset address: 0x1C+0x18× (data stream number)

Reset value: 0x0000 0000

Field	Name	R/W	Description
		Memory 0 Address	
31:0	M0ADDR	R/W	Base address of memory 0 of read/write data. These bits are write-protected, and can be written only in any of the following circumstances:
			Disable data stream

Field	Name	R/W	Description
			 Enable the data stream and set CTARG bit of DMA_SCFG register to 1

10.5.9 DMA data stream x memory 1 address register (DMA_M1ADDR) (x=0...7)

Offset address: 0x20+0x18× (data stream number)

Reset value: 0x0000 0000

Field	Name	R/W	Description
31:0	:0 M1ADDR	R/W	Memory 1 Address Base address of memory 1 of read/write data. This register is only applicable to double-buffer mode. These bits are write-protected, and can be written only in any of the following circumstances:
			 Disable data stream Enable the data stream and set CTARG bit of DMA_SCFG register to 0

10.5.10 DMA data stream x xFIFO control register (DMA_FCTRL) (x=0...7)

Offset address: 0x24+0x18× (data stream number)

Reset value: 0x0000 0000

Field	Name	R/W	Description				
1:0	FTHSEL	R/W	FIFO Threshold Select 00: 1/4 of FIFO capacity				
			01: 1/2 of FIFO capacity				
			10: 3/4 of FIFO capacity				
			11: Full FIFO capacity				
			In direct mode, these bits are invalid, and they can be written only when EN bit is 1.				
2	DMDEN	R/W	Direct Mode Disable				
			0: Enable direct mode				
			1: Disable direct mode				
			This bit can be written only when the EN bit is 0; when the memory-				
			to-memory mode is selected and EN bit is 1, this bit will be set to 1 by hardware.				
	FSTS	R	FIFO Status				
			000: 0 <fifo_level<1 4<="" td=""></fifo_level<1>				
5:3			001: 1/4 <fifo_level<1 2<="" td=""></fifo_level<1>				
			010: 1/2 <fifo_level<3 4<="" td=""></fifo_level<3>				
			011: 3/4 <fifo_level<full< td=""></fifo_level<full<>				
			100: FIFO is empty				
			101: FIFO is full				
			Others: Meaningles				
		These bits are invalid in direct mode.					
6	Reserved						

Field	Name	R/W	Description			
7	FEIEN	R/W	FIFO Error Interrupt Enable 0: Disable 1: Enable			
31:8	Reserved					

11 Debug MCU (DBGMCU)

11.1 Full name and abbreviation description of terms

Table 54 Full name and abbreviation description of terms

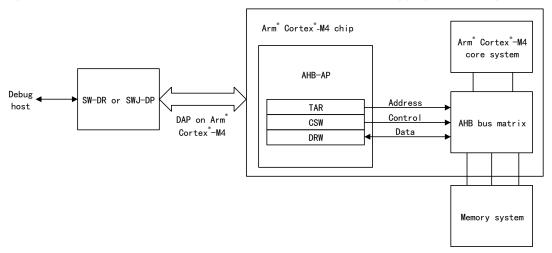
Full name in English	English abbreviation		
Frame Clock	FCLK		
Serial Wire/JTAG Debug Port	SWJ-DP		

11.2 Introduction

APM32F407 MCU series uses Arm® Cortex® -M4 core, and Arm® Cortex® -M4 core includes hardware debug module and supports complex debug operation. During debugging, the module can make the running core stop at breakpoint, and achieve the effect of querying the internal state of the core and the external state of the system, and after the query is completed, the core and peripheral operation can be restored to continue to execute the program.

Two debug interfaces are supported:

- Serial interface
- JTAG debug interface


Note: The hardware debug interface included in Arm® Cortex® -M4 core is subset of Arm CoreSight development tool set. Please refer to *Cortex®-M4 (Version r1p1) Technical Reference Manual* (TRM) and CoreSight development tool set (Version r1p0) TRM for more information about debug function of Arm® Cortex®-M4 core.

11.3 Main characteristics

- (1) Replace the core to access AHB bus matrix
- (2) Flexible debug pin assignment
- (3) MCU debug box (support low-power mode, control peripheral clock, etc.)

Figure 12 APM32F4xx Level and Arm® Cortex® -M4 Level Debugging Block Diagram

11.4 Functional description

11.4.1 Debug pin function configuration

- (1) Realize the on-line programming and debugging of the chip
- (2) Using KEIL/IAR and other software to achieve on-line debugging, downloading and programming
- (3) Flexible implementation of production of bus-line programmer

Table 55 Pin Function Configuration

		I/O port assignment of SWJ interface					
SWJ-	Configured as dedicated	PA13/	PA14/	PA15/ JTDI	PB3/	PB4/	
CFG[2:0]	pin for debugging	JTMS/	JTCK/			JNTRST	
		SWDIO	SWCLK		JTDO	JIVIKSI	
Others	Disable						
	Both JTAG-DP interface	Reserved					
100	and SW-DP interface	Reserved					
	disabled						
	JTAG-DP interface						
010	disabled, SW-DP	Dedicated Dedicated Reserved					
	interface enabled						
001	All SWJ pins						
	(JTAG-DP+SW-DP)	Dedicated	Dedicated	Dedicated	Dedicated	Reserved	
	Except JNTRST pin						
000	All SWJ pins						
	(JTAG-DP+SW-DP)	Dedicated	Dedicated	Dedicated	Dedicated	Dedicated	
	Reset state						

Note: The items that cannot be tested in running mode can be observed and tested in detail

11.4.2 **ID** code

11.4.2.1 MCU device ID code

APM32F MCU series incudes a MCU ID code. It can be accessed with JTAG or SW debug interface or user code.

11.4.2.2 Boundary scan TAP

JTAG ID code

The boundary scan TAP of APM32F MCU series integrates JTAG ID code. For APM32F405/415xG、APM32F407/417xExG series products, its JTAG ID code is 0x06413B47

11.4.2.3 Arm® Cortex®-M4 TAP

Arm® Cortex® -M4 TAP has a JTAG ID code, which is 0x4BA00477.

11.4.2.4 Arm® Cortex® -M4 JEDEC-106 ID code

Arm® Cortex® -M4 has a JEDEC-106 ID code. It is located in 4KB ROM table in which the internal PPB bus address is 0xE0042000.

11.5 Register address mapping

Table 56 Register Address Mapping

Register name	Description	Address
DBGMCU_IDCODE	Device ID register	0xE004 2000
DBGMCU_CFG	Debug MCU configuration register	0xE004 2004
DBGMCU_APB1F	Debug MCU APB1 freeze register	0xE004 2008
DBGMCU_APB2F	Debug MCU APB2 freeze register	0xE004 200C

11.6 Register functional description

11.6.1 Device ID register (DBGMCU_IDCODE)

Address: 0xE004 2000 Only support 32-bit access

Reset value: 0xXXXX XXXX, X=undefined bit

Field	Name	R/W	Description		
11:0	EQR	R	Equipment Recognition APM32F407/417 series products: 0x413; The debugger/programming tool identifies chips by QR (11:0).		
15:12		Reserved			

Field	Name	R/W	Description
31:16	WVR	R	Wafer Version Recognition This domain identifies wafer information

11.6.2 **Debug MCU configuration register (DBGMCU_CFG)**

This register can configure MCU in debug mode. It includes the counter supporting timer and watchdog, low-power mode, CAN communication and assignment tracking pin.

Address: 0xE004 2004 Only support 32-bit access

Reset value: 0x0000 0000 (not affected by system reset, only power-on reset)

Field	Name	R/W	Description		
0	SLEEP_CLK_STS	R/W	Configure clock status when MCU is debugged in sleep mode 0: FCLK ON, HCLK OFF 1: FCLK ON, HCLK ON, provided by system clock		
1	STOP_CLK_STS	R/W	Configure clock status when MCU is debugged in stop mode 0: FCLK OFF, HCLK OFF 1: FCLK ON, HCLK ON, provided by HSICLK		
2	STANDBY_CLK_STS	R/W	Configure clock status when MCU is debugged in standby mode 0: FCLK OFF, HCLK OFF 1: FCLK ON, HCLK ON, provided by HSICLK		
4:3	Reserved				
5	TRACE_IOEN	R/W	Trace Debug Pin Enable 0: Tracking debug pin disabled 1: Tracking debug pin enabled		
7:6	TRACE_MODE R/W		Trace Debug Pin Mode Configure Tracking debug pin mode can be configured only when TRACE_IOEN=1: 00: Asynchronous mode 01: Synchronous mode, the data length is 1 10: Synchronous mode, the data length is 2 11: Synchronous mode, the data length is 4		
31:8	Reserved				

11.6.3 **Debug MCU APB1 freeze register (DBGMCU_APB1F)**

This register is used to configure MCU during debugging. Involve some APB peripherals:

- Freeze the timer counter
- Freeze I2C SMBus timeout
- Freeze supporting system window regulators and independent watchdog counters

This register is reset asynchronously by POR (instead of system reset) and can be written by the debugger through system reset.

Only support 32-bit access

Address: 0xE004 2008

Reset value: 0x0000 (unaffected by system reset)

Field	Name	R/W	Description
0	TMR2_STS	R/W	Configure TMR2 Work Status When Core is in Halted Whether TMR2 timer continues to work when the core stops work 0: Continue to work 1: Stop working
1	TMR3_STS	R/W	Configure Timer3 Work Status When Core is in Halted Whether TMR3 counter continues to work when the core stops work 0: Continue to work 1: Stop working
2	TMR4_STS	R/W	ConfigureTimer4 Work Status When Core is in Halted Whether TMR4 counter continues to work when the core stops work 0: Continue to work 1: Stop working
3	TMR5_STS	R/W	ConfigureTimer5 Work Status When Core is in Halted Whether TMR5 counter continues to work when the core stops work 0: Continue to work 1: Stop working
4	TMR6_STS	R/W	Configure Timer6 Work Status When Core is in Halted Whether TMR6 counter continues to work when the core stops work 0: Continue to work 1: Stop working
5	TMR7_STS	R/W	Configure Timer7 Work Status When Core is in Halted Whether TMR7 counter continues to work when the core stops work 0: Continue to work 1: Stop working
6	TMR12_STS	R/W	ConfigureTimer12 Work Status When Core is in Halted Whether TMR12 counter continues to work when the core stops work 0: Continue to work 1: Stop working
7	TMR13_STS	R/W	ConfigureTimer13 Work Status When Core is in Halted Whether TMR13 counter continues to work when the core stops work 0: Continue to work 1: Stop working
8	TMR14_STS	R/W	Configure Timer14 Work Status When Core is in Halted Whether TMR14 counter continues to work when the core stops work 0: Continue to work 1: Stop working

Field	Name	R/W	Description		
9	Reserved				
10	RTC_STS	R/W	Configure RTC Work Status When Core Is in Halted Whether RTC counter continues to work when the core stops work 0: Continue to work 1: Stop working		
11	WWDT_STS	R/W	Configure Window Watchdog Work Status When Core Is in Halted Whether WWDT counter continues to work when the core stops work 0: Continue to work 1: Stop working		
12	IWDT_STS	R/W	Configure Independent Watchdog Work Status When Core Is in Halted Whether IWDT counter continues to work when the core stops work 0: Continue to work 1: Stop working		
20:13			Reserved		
21	I2C1_SMBUS _TIMEOUT_S TS	R/W	Configure I2C1_SMBUS_TIMEOUT Work Status When Core Is in Halted Whether I2C1_SMBUS_TIMEOUT continues to work when the core stops work 0: Work normally 1: Freeze the timeout mode of SMBUS		
22	I2C2_SMBUS _TIMEOUT_S TS	R/W	Configure I2C2_SMBUS_TIMEOUT Work Status When Core is in Halted Whether I2C2_SMBUS_TIMEOUT continues to work when the core stops work 0: Work normally 1: Freeze the timeout mode of SMBUS		
23	I2C3_SMBUS _TIMEOUT_S TS	R/W	Configure I2C3_SMBUS_TIMEOUT Work Status When Core is in Halted Whether I2C3_SMBUS_TIMEOUT continues to work when the core stops work 0: Work normally 1: Freeze the timeout mode of SMBUS		
24			Reserved		
25	CAN1_STS	R/W	Configure Controller Area Network 1 Work Status When Core is in Halted Whether CAN1 continues to work when the core stops work 0: Work normally 1: Freeze CAN1 receiving register		
26	CAN2_STS	R/W	Configure Controller Area Network 2 Work Status When Core is in Halted Whether CAN2 continues to work when the core stops work 0: Work normally 1: Freeze CAN2 receiving register		
31:27	Reserved				

11.6.4 Debug MCU APB2 freeze register (DBGMCU_APB2F)

This register is used to configure MCU during debugging. Involve some APB peripherals:

• Freeze the timer counter

This register is reset asynchronously by POR (instead of system reset) and can be written by the debugger through system reset.

Only support 32-bit access Address: 0xE004 200C

Reset value: 0x0000 (unaffected by system reset)

Field	Name	R/W	Description	
0	TMR1_STS	R/W	Configure Timer1 Work Status When Core is in Halted Whether TMR1 counter continues to work when the core stops work 0: Continue to work 1: Stop working	
1	TMR8_STS	R/W	ConfigureTimer8 Work Status When Core is in Halted Whether TMR8 continues to work when the core stops work 0: Continue to work 1: Stop working	
15:2	Reserved			
16	TMR9_STS	R/W	ConfigureTimer9 Work Status When Core is in Halted Whether TMR9 continues to work when the core stops work 0: Continue to work 1: Stop working	
17	TMR10_STS	R/W	ConfigureTimer10 Work Status When Core is in Halted Whether TMR10 continues to work when the core stops work 0: Continue to work 1: Stop working	
18	TMR11_STS	R/W	ConfigureTimer11 Work Status When Core is in Halted Whether TMR11 continues to work when the core stops work 0: Continue to work 1: Stop working	
31:19	Reserved			

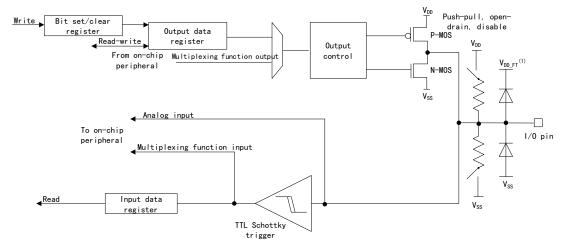
12 General-Purpose Input/Output Pin (GPIO)

12.1 Full name and abbreviation description of terms

Table 57 Full name and abbreviation description of terms

Full name in English	English abbreviation
P-channel Metal Oxide Semiconductor	P-MOS
N-channel Metal Oxide Semiconductor	N-MOS

12.2 Main characteristics


GPIO port can configure the following functions through 32-bit configuration register (GPIOx_CFGLOW/GPIOx_CFGHIG) and two 32-bit data registers GPIOx_IDATA/GPIOx_ODATA):

- (1) Input mode
 - Analog input
 - Floating input
 - Pull-up input
 - Pull-down input
- (2) Output mode
 - Push-pull output
 - Open-drain output
 - Configurable maximum output rate
- (3) Multiplexing mode
 - Push-pull multiplexing function
 - Open-drain multiplexing function
- (4) Analog function
- (5) GPIO can be used as external interrupt/wake-up line
- (6) Support locking I/O configuration function

12.3 Structure block diagram

Figure 13 5V GPIO-compatible Structure Block Diagram

(1) V_{DD_FT} is different from V_{DD} , and V_{DD_FT} is special for FT GPIO pin.

12.4 Functional description

Each pin of GPIO can be configured as pull-up, pull-down, floating and analog input, or push-pull/open-drain output input mode and multiplexing function through software. All GPIO interfaces have external interrupt capability.

12.4.1 IO status during reset and just after reset

If the multiplexing function is not enabled during and after GPIO reset, the I/O port will be configured as floating input mode, and in such case the pull-up/pull-down resistor is disabled in input mode. After reset, the JTAG pin is put in the input pull-up or pull-down mode, and the specific configuration is as follows:

- PA15: JTDI in pull-up mode
- PA14: JTCK in pull-down mode
- PA13: JTMS in pull-up mode
- PB4: JNTRST in pull-up mode
- PB3: JTDO is put in floating mode

12.4.2 Input mode

In the input mode, it can be set as pull-up, pull-down, floating and analog input.

When GPIO is configured as input mode, all GPIO pins have internal weak pull-up and weak pull-down resistors, which can be activated or disconnected.

Pull-up, pull-down, and floating modes

In (pull-up, pull-down, floating) input mode

- Schmitt trigger is opened
- Disable output buffer
- Connect weak pull-up and pull-down resistors according to different input configurations
- The input data register GPIOx_IDATA captures the data on I/O pin in each AHB1 clock cycle
- Read I/O state through the input data register GPIOx IDATA

The initial level state of the floating input mode is uncertain and is easy to be disturbed by the outside; when connecting the equipment, it is determined by the external input level (except for the very high impedance).

The initial level state of pull-up/pull-down input mode is high level if pull-up, and low level if pull-down; when connecting the equipment, it is determined by the external input level and load impedance.

Analog input mode

In analog input mode

- Disable output buffer
- The input of Schmitt trigger is disabled, and the output value of Schmitt trigger is forced to be 0
- Weak pull-up and pull-down resistors are disabled
- The value of port input state register is 0

Analog input

To on-chip peripheral

Multiplexing function input

TIL Schottky trigger

TIL Schottky

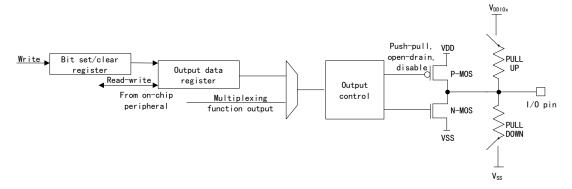
Figure 14 Input Mode Structure

12.4.3 Output mode

In the output mode, it can be set as push-pull output and open-drain output.

When GPIO is configured as the output pin, the output speed of the port can be configured and the output drive mode (push-pull / open-drain) can be selected.

In output mode

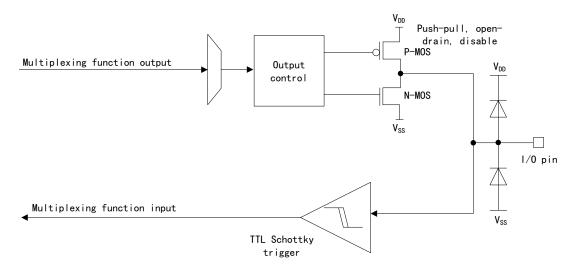

- Schmitt trigger is opened,
- Activate output buffer
- Weak pull-up and pull-down resistors are disabled

• Push-pull mode:

- Double MOS transistor works by turns and the output data register can control the high and low level of I/O output
- Read the finally written value through the output data register GPIOx ODATA
- Open-drain mode:
 - Only N-MOS works, and the output data register can control I/O output high resistance state or low level
 - Read the actual I/O state through the input data register GPIOx IDATA

Figure 15 I/O Structure in Output Mode

12.4.4 Multiplexing mode


In multiplexing mode, it can be set as push-pull multiplexing and open-drain multiplexing

In push-pull/open-drain multiplexed mode

- Open the output buffer
- Output buffer is driven by peripheral
- Activate schmitt trigger input
- Weak pull-up and pull-down resistors are disabled
- The data on the I/O pin is sampled in each AHB1 clock cycle and stored in the port input state register
- In open-drain mode, the actual state of I/O can be read through input data register GPIOx IDATA
- In push-pull mode, the last written value is read through output data register GPIOx ODATA

Figure 16 I/O Structure in Multiplexing Mode

12.4.5 External interrupt/wake-up line

All GPIO ports have external interrupt function. If you want to use external interrupt line, the port must be configured as input mode.

12.4.6 Bit set and bit clear

Software does not need to disable interrupt when programming some bits of GPIOx_IDATA. (By setting the bit to be changed in GPIOx_BSC and BSC registers to 1, the function of changing one or more bits in AHB1 write operation can be realized.

12.4.7 **GPIO** locking function

Locking function can be used in power driver module. The locking mechanism of GPIO can protect the configuration of I/O port. I/O configuration can be locked by configuring the lock register (GPIOx_LOCK). When a port bit executes the locking program, the configuration of port bit cannot be modified before the next reset.

12.4.8 OSC32 IN/OSC32 OUT pin

Only when LSECLK oscillator is turned off, can OSC32_IN and OSC32_OUT pins be used as general-purpose PC14 I/O and PC15 I/O. It is controlled by RCC_BDCTRL[LSEEN] bit. The priority of LSECLK is higher than GPIO function.

12.4.9 OSC IN/OSC OUT pin

Only when HSECLK oscillator is turned off, can OSC_IN and OSC_OUT pins be used as general-purpose PH0 I/O and PH1 I/O. It is controlled by RCC_BDCTRL[HSEEN] bit. The priority of HSECLK is higher than GPIO function.

12.5 Register address mapping

Table 58 GPIO Register Address Mapping

Register name	Description	Offset address
GPIOx_MODE	Port mode register	0x00
GPIOx_OMODE	Port output mode register	0x04
GPIOx_OSSEL	Port output speed register	0x08
GPIOx_PUPD	Port pull-up/pull-down register	0x0C
GPIOx_IDATA	Port bit input data register	0x10
GPIOx_ODATA	Port bit output clear register	0x14
GPIOx_BSC	Port set/reset register	0x18
GPIOx_LOCK	Port lock register	0x1C
GPIOx_ALFL	Port multiplexing function low-bit register	0x20
GPIOx_ALFH	Port multiplexing function high-bit register	0x24

12.6 Register functional description

These peripheral registers must be operated by word (32 bits). It should be noted that since the value of x in Plx is 0...11, the bit of the corresponding register depends on specific situation.

12.6.1 Port mode register (GPIOx_MODE) (x=A...I)

Offset address: 0x00

Reset value: 0xA800 0000 (Port A)
0x0000 0280 (Port B)
0x0000 000 (other ports)

Field	Name	R/W	Description
			PortxPin y Mode Configure (y=015)
			00: Input mode (state after reset)
2y+1:2y	MODEy[1:0]	R/W	01: Generarl output mode
			10: Multiplexing function mode
			11: Analog mode

12.6.2 Port output mode register (GPIOx_OMODE) (x=A...I)

Offset address: 0x04 Reset value: 0x0000 0000

Field	Name	R/W	Description		
15:0	OMODEy	R/W	PortxPin y Output Mode Configure (y=015) 0: Push-pull output (reset state) 1: Open-drain output		
31:16		Reserved			

12.6.3 Port output speed register (GPIOx_OSSEL) (x=A...I)

Offset address: 0x08

Reset value: 0x0C00 0000 (Port A) 0x0000 00C0 (Port B) 0x0000 000 (other ports)

Field	Name	R/W	Description
			PortxPin y Output Speed Select (y=015)
			x0: Low speed
2y+1:2y	OSSELy[1:0]	R/W	01: Medium speed
			11: High speed
			The speed of configuration I/O port is written by software

12.6.4 GPIO port pull-up/pull-down register (GPIOx_PUPD) (x=A...I)

Offset address: 0x0C

Reset value: 0x6400 0000 (Port A) 0x0000 0100 (Port B) 0x0000 000 (other ports)

Field	Name	R/W	Description
2y+1:2y	PUPDy[1:0]	R/W	PortxPin y Pull-up/Pull-down Configure (y=015) These bits are written by software to configure pull-up/pull-down of the port bit 00: Pull-up/Pull-down is disabled 01: Pull up 10: Pull down 11: Reset

12.6.5 GPIO port input data register (GPIOx_IDATA) (x=A...I)

Offset address: 0x10

Reset value: 0x0000 XXXX

Field	Name	R/W	Description
15:0	IDATAy	R	PortxPin y Input Data (y=015) These bits can only be read to store the input values of the corresponding I/O ports
31:16		•	Reserved

12.6.6 GPIO port output data register (GPIOx_ODATA) (x=A...I)

Offset address: 0x14

Reset value: 0x0000 0000

Field	Name	R/W	Description				
15:0	ODATAy	R/W	PortxPin y Output Data (y=015) Read and write operation can be performed by software For atomic bit set/clear, the ODATAy bit can be set separately by writing to GPIOx_BSC.				
31:16	Reserved						

12.6.7 GPIO port set/reset register (GPIOx_BSC) (x=A...I)

Offset address: 0x18 Reset value: 0x0000 0000

Field	Name	R/W	Description					
			PortxPin y Set bit (y=015)					
	DOV	10/	These bits can only perform write operation, and the value of 0x0000 is returned when reading these bits.					
15:0	BSy	W	These bits are used to affect the corresponding ODATAy bits					
			0: No effect					
			1: Set the corresponding ODATAy bit					
		W	PortxPin y Reset Bit (y=015)					
	ВСу		These bits can only perform write operation, and the value of 0x0000 is returned when reading these bits.					
31:16			These bits are used to affect the corresponding ODATAy bits					
			0: No effect					
			1: Corresponding ODATAy bit is cleared					
			If BSy bit and BCy bit are set at the same time, BSy has the priority					

12.6.8 GPIO port lock register (GPIOx_LOCK) (x=A..G)

This register protects the configuration of GPIO from being modified by mistake during the running of the program. If the GPIO configuration is modified again, it can be modified only after the system is reset. When configuring GPIO locking function, it is necessary to execute the specified sequence to the register to start the GPIO locking function.

Offset address: 0x1C Reset value: 0x0000 0000

Field	Name	R/W	Description
15:0	LOCKy	R/W	PortxLock bit y Configure (y=015) 0: The configuration of Port x Pin y is not locked 1: The configuration of Port x Pin y is locked These bits can be read and written, but can only be written when LOCKKEY=0.
16	LOCKKEY	R/W	Lock key This bit determines whether the port configuration lock key bit is activated 0: Not activated 1: Activated; GPIOx_LOCK register is locked until the next MUC reset is generated. Lock key write sequence: Write LOCK[16]=1+LOCK[15:0] Write LOCK[16]=0+LOCK[15:0] Write LOCK[16]=1+LOCK[15:0] Read LOCK Read LOCK Read LOCK[16]=1 (this read operation can be selected to confirm whether to activate the lock key) Note:

Field	Name	R/W	Description	
			The value of LOCKy cannot be changed during the write sequence of the operation lock key.	
			Any error in the write sequence of operation lock key will abort the lo	
			After the first lock sequence on any bit of the port, any read access on the LOCKKEY bit will return "1" until the next MCU is reset or the peripheral is reset.	
31:17			Reserved	

12.6.9 GPIO multiplexing function low 8-bit register (GPIOx_ALFL) (x=A...I)

Offset address: 0x20 Reset value: 0x0000 0000

Field	Name	R/W	Description
Field 31:0	Name	R/W	Port x Pin y Alternate Function Select (y=07) These bits can be read by software to configure the multiplexing function of the port. ALFSELy selection: 0000: AF0 0001: AF1 0010: AF2 0011: AF3 0100: AF4 0101: AF5 0110: AF6 0111: AF7 1000: Reserved 1001: Reserved
			1010: Reserved 1011: Reserved 1100: Reserved 1101: Reserved
			1111: Reserved 1110: Reserved

12.6.10 GPIO multiplexing function high 8-bit register (GPIOx_ALFH) (x=A...I)

Offset address: 0x24 Reset value: 0x0000 0000

Field	Name	R/W	Description
31:0	ALFSELy	R/W	Port x Pin y Alternate Function Select (y=815) These bits can be read by software to configure the multiplexing function of the port. ALFSELy selection: 0000: AF0 0001: AF1 0010: AF2

Field	Name	R/W	Description
			0011: AF3
			0100: AF4
			0101: AF5
			0110: AF6
			0111: AF7
			1000: Reserved
			1001: Reserved
			1010: Reserved
			1011: Reserved
			1100: Reserved
			1101: Reserved
			1111: Reserved
			1110: Reserved

13 Timer overview

13.1 Full name and abbreviation description of terms

Table 59 Full name and abbreviation description of terms

Full name in English	English abbreviation
Timer	TMR
Update	U
Request	R
Event	EV
Capture	С
Compare	С
Length	LEN

13.2 Timer category and main difference

In this series of products, there are three types of timers: advanced timer, general-purpose timer and basic timer (watchdog timer is described in other chapters).

The advanced timer includes the functions of general-purpose timer and basic timer. The advanced timer has four capture/compare channels, supports timing function, input capture and output compare function, braking and complementary output function, and is a 16-bit timer that can count up/down.

The function of general-purpose timer is simpler than that of advanced timer. The main differences are the total number of channels, the number of complementary output channel groups and the braking function.

The basic timer is a timer that can only realize timing function and has no external interface.

The main differences of timers included in the products are shown in the table below:

Table 60 Main Differences among Timers Included in the Products

Item	Specific content/Category	Advanced General-purpose timer timer		General-purpo	Basic timer		
Name	_	TMR1/8	TMR3/4	TMR2/5	TMR10/11/13/14	TMR9/12	TMR6/7
Timebase	Counter	16 bits	16 bits	32 bits	16 bits	16 bits	16 bits
unit	Prescaler	16 bits	16	bits	16 bits	16 bits	16 bits

Item	Specific content/Category	Advanced timer	General-purpose timer	General-purpo	Basic timer	
	Count mode	Up Down Center alignment	Up Down Center alignment	Up Down Center alignment	Up Down Center alignment	Up
	Input channel	4	4	1	2	0
Channel	Capture/Compare channel	4	4	1	2	0
Chame	Output channel	7	4	1	2	0
	Complementary output channel	3	0	0	0	0
	General DMA request	ОК	ОК	ОК	ОК	OK
	PWM mode	Yes	Yes	Yes	Yes	None
Function	Single-pulse mode	Yes	Yes	Yes	Yes	None
	Forced output mode	Yes	Yes	Yes	Yes	None
	Dead-time insertion	Yes	None	None	None	None

Timer term

Table 61 Definitions and Terms of Pins

Name	Description	
TMRx_ETR	External trigger signal of Timer x	
TMRx_CH1、TMRx_CH2、TMRx_CH3、	Channel 1/2/3/4 of Timer x	
TMRx_CH4	<u> </u>	
TMRx_ChyN	Complementary output channel y of Timer x	
TMRx_BKIN	Braking signal of Timer x	

Table 62 Definitions and Terms of Internal Signals

Name	Description		
ETR	TMRx_ETR external trigger signal		
ETRF	External trigger filter		
ETRP	External trigger prescaler		
	-		
ITR, ITR0, ITR1	Internal trigger		
TRGI	Clock/Trigger/Slave mode controller trigger input		

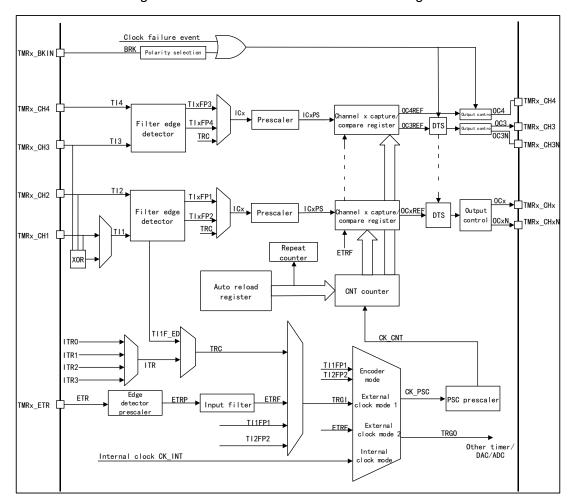
Name	Description			
TIF_ED	Timer input filter edge detection			
111 _ED	rimer input liner eage detection			
04.500	-			
CK_PSC	Prescaler clock			
CK_CNT	Counter clock			
PSC	Prescaler			
CNT	Counter			
AUTORLD	Autoload register			
	-			
Tlx, Tl1	Timer input			
TIxF, TI1F,	Timer input filter			
TI1_ED	Timer input edge detection			
TIxFPx,TI1FP1	Timer input filter polarity			
ICx, IC1	Input capture			
ICxPS, IC1PS	Input capture prescaler			
TRC	Trigger capture			
BRK	Braking signal			
	-			
OCx, OC1	Timer output coparison channel			
OCxREF, OC1REF	Output compare reference signal			
	-			
TGI	Trigger interrupt			
BI	Braking interrupt			
CCxI, CC1I	Capture/Compare interrupt			
UEV	Update event			
UIFLG	Update interrupt flag			

14 Advanced Timers (TMR1/8)

14.1 Introduction

The advanced timer takes the time base unit as the core, and has the functions of input capture, output compare and braking input, including a 16-bit automatic loading counter. Compared with other timers, the advanced timer supports complementary output, repeat count and programmable dead-time insertion function, and is more suitable for motor control.

14.2 Main characteristics


- (1) Timebase unit
 - Counter: 16-bit counter, count-up, count-down and center-aligned count
 - Prescaler: 16-bit programmable prescaler
 - Repeat counter: 16-bit repeat counter
 - Auto reloading function
- (2) Clock source selection
 - Internal clock
 - External input
 - External trigger
 - Internal trigger
- (3) Input capture function
 - Counting function
 - PWM input mode (measurement of pulse width, frequency and duty cycle)
 - Encoder interface mode
- (4) Output compare function
 - PWM output mode
 - Forced output mode
 - Single-pulse mode
 - Complementary output and dead-time insertion
- (5) Timing function
- (6) Braking function
- (7) Master/Slave mode controller of timer
 - Timers can be synchronized and cascaded
 - Support multiple slave modes and synchronization signals
- (8) Interrupt output and DMA request event
 - Update event (counter overrun/underrun, counter initialization)

- Trigger event (counter start, stop, internal/external trigger)
- Capture/Compare event
- Braking signal input event
- (9) Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning purposes

14.3 Structure block diagram

Figure 17 Advanced Timer Structure Block Diagram

14.4 Functional description

14.4.1 Clock source selection

The advanced timer has four clock sources.

Internal clock

It is TMRx_CLK from RCM, namely the driving clock of the timer; when the slave mode controller is disabled, the clock source CK_PSC of the prescaler is driven by the internal clock CK_INT.

External clock mode 1

The trigger signal generated from the input channel TI1/2/3/4 of the timer after polarity selection and filtering is connected to the slave mode controller to control the work of the counter. Besides, the pulse signal generated by the input of Channel 1 after double-edge detection of the rising edge and the falling edge is logically equal or the future signal is TI1F_ED signal, namely double-edge signal of TIF_ED. Specially the PWM input can only be input by TI1/2.

External clock mode 2

After polarity selection, frequency division and filtering, the signal from external trigger interface (ETR) is connected to slave mode controller through trigger input selector to control the work of counter.

Internal trigger input

The timer is set to work in slave mode, and the clock source is the output signal of other timers. At this time, the clock source has no filtering, and the synchronization or cascading between timers can be realized. The master mode timer can reset, start, stop or provide clock for the slave mode timer.

14.4.2 Timebase unit

The time base unit in the advanced timer contains four registers

- 16-bit counter register (CNT)
- 16-bit auto reload register (AUTORLD)
- 16-bit prescaler register (PSC)
- 8-bit repetition count register (REPCNT)

Repetition register is unique to advanced timer.

Counter CNT

There are three counting modes for the counter in the advanced timer

- Count-up mode
- Count-down mode
- Center-aligned mode

Count-up mode

Set to the count-up mode by CNTDIR bit of configuration control register (TMRx_CTRL1).

When the counter is in count-up mode, the counter will count up from 0; every time a pulse is generated, the counter will increase by 1 and when the value of the counter (TMRx_CNT) is equal to the value of the auto reload (TMRx_AUTORLD), the counter will start to count again from 0, a count-up overrun event will be generated, and the value of the auto reload

(TMRx_AUTORLD) is written in advance. If a repeat counter is used, an update event will be generated when the number of count-up repetitions reaches the number in the repeat counter register plus one time (TMRx_REPCNT+1). Otherwise, an update event will be generated every time the counter overruns. At this time, the repeat count shadow register, the auto reload shadow register and the prescaler buffer will be updated. The update event can be disabled by UD bit of configuration control register TMRx_CTRL1.

The figure below is Timing Diagram when Division Factor is 1 or 2 in Count-up Mode

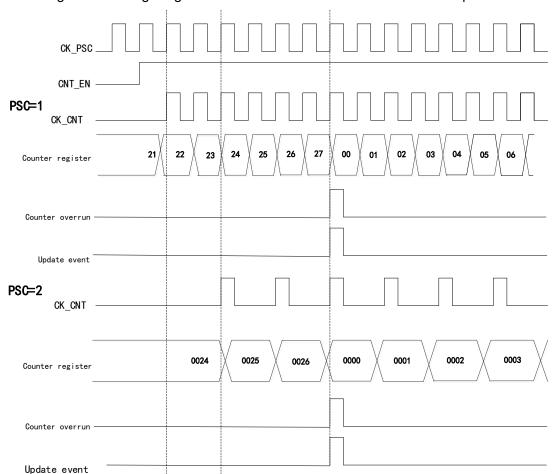


Figure 18 Timing Diagram when Division Factor is 1 or 2 in Count-up Mode

Count-down mode

Set to the count-down mode by CNTDIR bit of configuration control register (TMRx_CTRL1).

When the counter is in count-down mode, the counter will start to count down from the value of the auto reload (TMRx_AUTORLD); every time a pulse is generated, the counter will decrease by 1 and when it becomes 0, the counter will start to count again from (TMRx_AUTORLD), meanwhile, a count-down overrun event will be generated, and the value of the auto reload

(TMRx_AUTORLD) is written in advance. If a repeat counter is used, an update event will be generated when the number of count-down repetitions reaches the number in the repeat counter register plus one time (TMRx_REPCNT+1). Otherwise, an update event will be generated every time the counter underruns. At this time, the repeat count shadow register, the auto reload shadow register and the prescaler buffer will be updated. The update event can be disabled by configuring the UD bit of the TMRx_CTRL1 register.

CK PSC CNT EN PSC=1 CK_CNT 02 01 00 Counter register Counter overrun Update event PSC=2 CK CNT 0002 0001 0026 0025 0024 0000 Counter register Update event

Figure 19 Timing Diagram when Division Factor is 1 or 2 in Count-down Mode

Center-aligned mode

Set to the center-aligned mode by CNTDIR bit of configuration control register (TMRx_CTRL1).

When the counter is in center-aligned mode, the counter counts up from 0 to the value of auto reload (TMRx_AUTORLD), then counts down to 0 from the value of the auto reload (TMRx_AUTORLD), which will repeat; in counting up, when the counter value is (AUTORLD-1), a counter overrun event will be generated; in counting down, when the counter value is 1, a counter underrun event will be generated.

CK PSC CNT_EN PSC=1 CK CNT 03 03 00 01 02 Counter register Counter underrun Counter overrun PSC=2 CK CNT 0002 0003 0003 0002 0000 0001 0001 Counter register Update event

Figure 20 Timing Diagram when Division Factor is 1 or 2 in Center-aligned Mode

Repeat counter REPCNT

There is no repeat counter REPCNT in the basic/general-purpose timer, which means that when the overrun event or underrun event occurs in the basic/general-purpose timer, an update event will be generated directly; while in the advanced timer, because of the existence of the repeat counter, when an overrun/unerrrun event occurs to the advanced timer, the update event will be generated only when the value of the repeat counter is 0.

For example, if the advanced timer needs to generate an update event when an overrun/underrun event occurs, the value of the repeat counter should be set to 0.

If the repeat counter function is used in the count-up mode, every time the counter counts up to AUTORLD, an overrun event will occur. At this time, the value of the repeat counter will be decreased by 1, and an update event will be generated until the value of the repeat counter is 0.

That is, when N+1 (N is the value of repeat counter) overrun/underrun events occur, an update event will be generated.

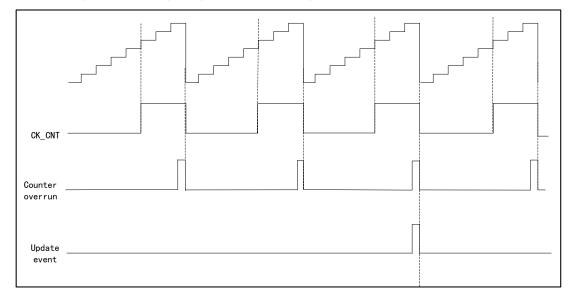


Figure 21 Timing Diagram when Setting REPCNT=2 in Count-up Mode

Prescaler PSC

The prescaler is 16 bits and programmable, and it can divide the clock frequency of the counter to any value between 1 and 65536 (controlled by TMRx_PSC register), and after frequency division, the clock will drive the counter CNT to count. The prescaler has a buffer, which can be changed during running.

14.4.3 Input capture

Input capture channel

The advanced timer has four independent capture/compare channels, each of which is surrounded by a capture/compare register.

In the input capture, the measured signal will enter from the external pin T1/2/3/4 of the timer, first pass through the edge detector and input filter, and then into the capture channel. Each capture channel has a corresponding capture register. When the capture occurs, the value of the counter CNT will be latched in the capture register CCx. Before entering the capture register, the signal will pass through the prescaler, which is used to set how many events to capture at a time.

Input capture application

Input capture is used to capture external events, and can give the time flag to indicate the occurrence time of the event and measure the pulse jump edge events (measure the frequency or pulse width), for example, if the selected edge appears on the input pin, the TMRx_CCx register will capture the current value of the counter and the CCxIFLG bit of the state register TMRx_STS will be set to 1; if CCxIEN=1, an interrupt will be generated.

In capture mode, the timing, frequency, period and duty cycle of a waveform can be measured. In the input capture mode, the edge selection is set to rising edge detection. When the rising edge appears on the capture channel, the first capture occurs, at this time, the value of the counter CNT will be latched in the capture register CCx; at the same time, it will enter the capture interrupt, a capture will be recorded in the interrupt service program and the value will be recorded. When the next rising edge is detected, the second capture occurs, the value of counter CNT will be latched in capture register CCx again, at this time, it will enter the capture interrupt again, the value of capture register will be read, and the cycle of this pulse signal will be obtained through capture.

14.4.4 Output compare

There are eight modes of output compare: freeze, channel x is valid level when matching, channel x is invalid level when matching, flip, force is invalid, force is valid, PWM mode 1 and PWM mode 2, which are configured by OCxMOD bit in TMRx_CCMx register and can control the waveform of output signal in output compare mode.

Output compare application

In the output compare mode, the position, polarity, frequency and time of the pulse generated by the timer can be controlled.

When the value of the counter is equal to that of the capture/compare register, the channel output can be set as high level, low level or flip by configuring the OCxMOD bit in TMRx_CCMx register and the CCxPOL bit in the output polarity TMRx_CCEN register.

When CCxIFLG=1 in TMRx_STS register, if CCxIEN=1 in TMRx_DIEN register, an interrupt will be generated; if CCDSEL=1 in TMRx_CTRL2 register, DMA request will be generated.

14.4.5 **PWM output mode**

PWM mode is an adjustable pulse signal output by the timer. The pulse width of the signal is determined by the value of the compare register CCx, and the cycle is determined by the value of the auto reload AUTORLD.

PWM output mode contains PWM mode 1 and PWM mode 2; PWM mode 1 and PWM mode 2 are divided into count-up, count-down and edge alignment counting; in PWM mode 1, if the value of the counter CNT is less than the value of the compare register CCx, the output level will be valid; otherwise, it will be invalid.

Set the timing diagram in PWM mode 1 when CCx=5, AUTORLD=7

Figure 22 PWM1 Count-up Mode Timing Diagram

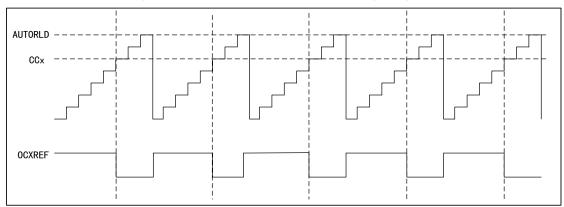


Figure 23 PWM1 Count-down Mode Timing Diagram

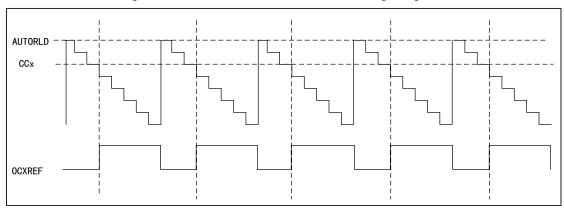
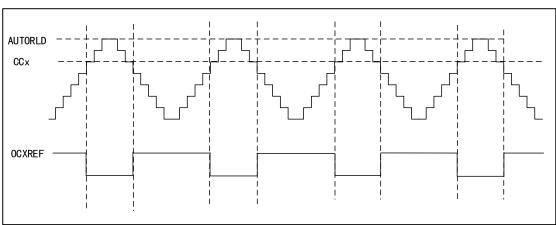



Figure 24 PWM1 Center-aligned Mode Timing Diagram

In PWM mode 2, if the value of the counter CNT is less than that of the compare register CCx, the output level will be invalid; otherwise, it will be valid.

Set the timing diagram in PWM mode 2 when CCx=5, AUTORLD=7

Figure 25 PWM2 Count-up Mode Timing Diagram

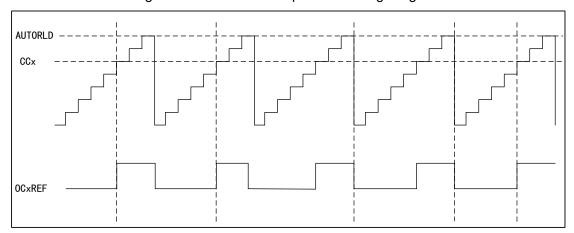


Figure 26 PWM2 Count-down Mode Timing Diagram

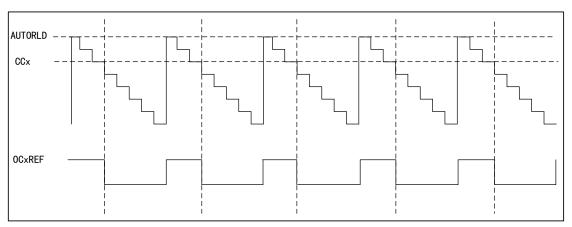
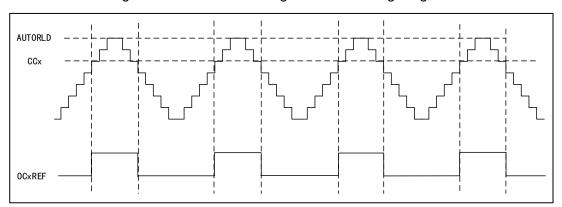



Figure 27 PWM2 Center-aligned Mode Timing Diagram

14.4.6 PWM input mode

PWM input mode is a particular case of input capture.

In PWM input mode, as only TI1FP1 and TI1FP2 are connected to the slave mode controller, input can be performed only through the channels TMRx_CH1 and TMRx_CH2, which need to occupy the capure registers of CH1 and CH2.

In the PWM input mode, the PWM signal enters from TMRx_CH1, and the

signal will be divided into two channels, one can measure the cycle and the other can measure the duty cycle. In the configuration, it is only required to set the polarity of one channel, and the other will be automatically configured with the opposite polarity.

In this mode, the slave mode controller should be configured as the reset mode (SMFSEL bit of TMRx_SMCTRL register)

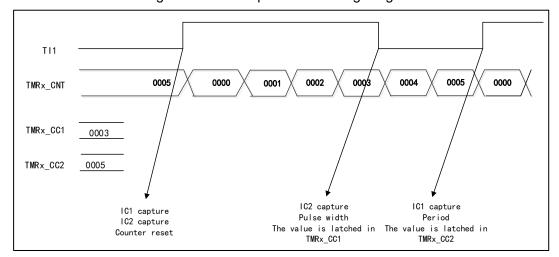
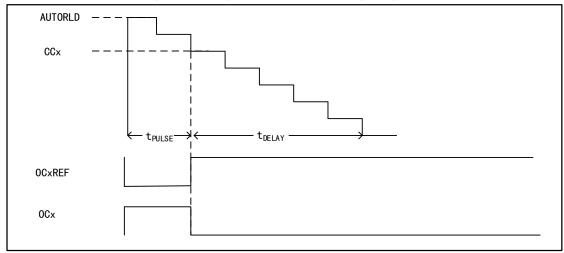


Figure 28 PWM Input Mode Timing Diagram

14.4.7 Single-pulse mode


The single-pulse mode is a special case of timer compare output, and is also a special case of PWM output mode.

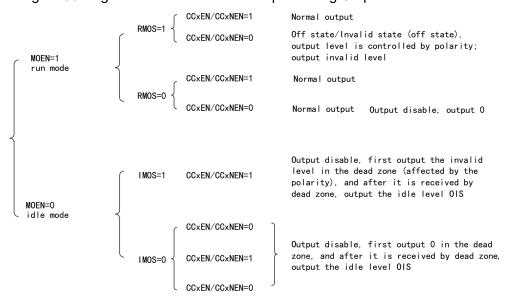
Set SPMEN bit of TMRx_CTRL1 register, and select the single-pulse mode. After the counter is started, a certain number of pulses will be output before the update event occurs. When an update event occurs, the counter will stop counting, and the subsequent PWM waveform output will no longer be changed.

After a certain controllable delay, a pulse with controllable pulse width is generated in single-pulse mode through the program. The delay time is defined by the value of TMRx_CCx register; in the count-up mode, the delay time is CCx and the pulse width is AUTORLD-CCx; in the count-down mode, the delay time is AUTORLD-CCx and the pulse width is CCx.

Figure 29 Single-pulse Mode Timing Diagram

14.4.8 Impact of the register on output waveform

The following registers will affect the level of the timer output waveform. For details, please refer to "Register Functional Description".


- (1) CCxEN and CCxNEN bits in TMRx_CCEN register
 - CCxNEN=0 and CCxEN=0: The output is turned off (output disabled, invalid state)
 - CCxNEN=1 and CCxEN=1: The output is turned on (output enabled, normal output)
- (2) MOEN bit in TMRx_BDT register
 - MOEN=0: Idle mode
 - MOEN=1: Run mode
- (3) OCxOIS and OCxNOIS bits in TMRx_CTRL2 register
 - OCxOIS=0 amd OCxNOIS=0: When idle (MOEN=0), the output level after the dead-time is 0
 - OCxOIS=1 amd OCxNOIS=1: When idle (MOEN=0), the output level after the dead-time is 1
- (4) RMOS bit in TMRx_BDT register
 - Application environment of RMOS: In corresponding complementary channel and timer are in run mode (MOEN=1), the timer is not working (CCxEN=0, CCxNEN=0) or is working (CCxEN=1, CCxNEN=1)
- (5) IMOS bit in TMRx_BDT register
 - Application environment of IMOS: In corresponding complementary channel and timer are in idle mode (MOEN=0), the timer is not working (CCxEN=0, CCxNEN=0) or is working (CCxEN=1, CCxNEN=1)
- (6) CCxPOL and CCxNPOL bits of TMRx_CCEN register

CCxPOL=0 and CCxNPOL=0: Output polarity, high level is valid
 CCxPOL=1 and CCxNPOL=1: Output polarity, the low level is valid

The following figure lists the register structure relationships that affect the output waveform

Figure 30 Register Structural Relationship Affecting Output Waveform

14.4.9 Braking function

The signal source of braking is clock fault event and external input interface.

Besides, the BRKEN bit in TMRx_BDT register can enable the braking function, and the BRKPOL bit can configure the polarity of braking input signal.

When a braking event occurs, the output pulse signal level can be modified according to the state of the relevant control bit.

0Cx
CCxP0L=0, 0Cx01S=0

0Cx
CCxP0L=0, 0Cx01S=1

0Cx
CCxP0L=1, 0Cx01S=0

0Cx
CCxP0L=1, 0Cx01S=0

Figure 31 Braking Event Timing Diagram

14.4.10 Complementary output and dead-time insertion

Complementary output is particular output of advanced timer, and the advanced timer has three groups of complementary output channels. The insertion dead time is used to generate complementary output signals to ensure that the two-way complementary signals of channels will not be valid at the same time. The dead time is set according to the output device connected to the timer and its characteristics

The duration of the dead-time can be controlled by configuring DTS bit of TMRx BDT register

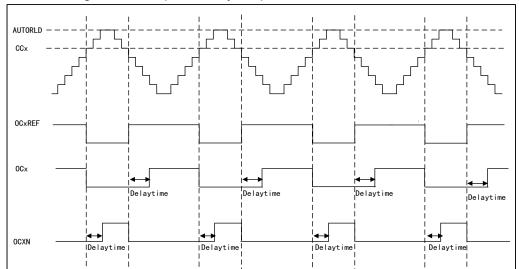


Figure 32 Complementary Output of Insertion with Dead-time

14.4.11 Forced output mode

In the forced output mode, the comparison result is ignored, and the corresponding level is directly output according to the configuration instruction.

- CCxSEL=00 for TMRx CCMx register, set CCx channel as output
- OCxMOD=100/101 for TMRx_CCMx register, set to force OCxREF signal to invalid/valid state

In this mode, the corresponding interrupt and DMA request will still be generated.

14.4.12 Encoder interface mode

The encoder interface mode is equivalent to an external clock with direction selection. In the encoder interface mode, the content of the timer can always indicate the position of the encoder.

The selection method of encoder interface is as follows:

- By setting SMFSEL bit of TMRx_SMCTRL register, set the counter to count on the edge of TI1 channel /TI2 channel, or count on the edge of TI1 and TI2 at the same time.
- Select the polarity of TI1 and TI2 by setting the CC1POL and CC2POL bits of TMRx CCEN register.
- Select to filter or not by setting the IC1F and IC2F bits of TMRx CCM1 register.

The two input TI1 and TI2 can be used as the interface of incremental encoder. The counter is driven by the effective jump of the signals TI1FP1 and TI2FP2 after filtering and edge selection in TI1 and TI2.

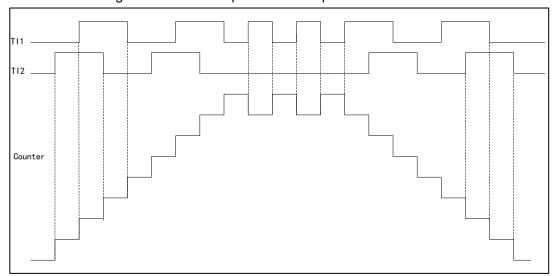
The count pulse and direction signal are generated according to the input signals of TI1 and TI2

- The counter will count up/down according to the jumping sequence of the input signal.
- Set CNTDIR of control register TMRx_CTRL1 to be read-only (CNTDIR will be re-calculated due to jumping of any input end).

The change mechanism of counter count direction is shown in the figure below

Table 63 Relationship between Count Direction and Encoder

Effective edge		Count only in TI1		Count only in TI2		Count in both TI1 and TI2	
Level of re	lative signal	High Low		High	Low	High	Low
	Rising			Count	Countin	Count	Countin
TI1FP1	edge	_		down	Count up	down	Count up
	Falling			Count up	Count	Count up	Count
	edge				down		down
Tl2FP2	Rising	Count up	Count	_		Count up	Count
	edge		down				down


Effective edge		Count only in TI1		Count only in TI2	Count in	both TI1 TI2
	Falling	Count	Count up		Count	Count up
	edge	down			down	Count up

The external incremental encoder can be directly connected with MCU, not needing external interface logic, so the comparator is used to convert the differential output of the encoder to digital signal to increase the immunity from noise interference.

Among the following examples:

- IC1FP1 is mapped to TI1
- IC2FP2 is mapped to TI2
- Neither IC1FP1 nor IC2FP2 is reverse phase
- The input signal is valid at the rising edge and falling edge
- Enable the counter

Figure 33 Counter Operation Example in Encoder Mode

For example, when TI1 is at low level, and TI2 is in rising edge state, the counter will count up.

T11 — T12 — Counter

Figure 34 Example of Encoder Interface Mode of IC1FP1 Reversed Phase

For example, when TI1 is at low level, and the rising edge of TI2 jumps, the counter will count down.

14.4.13 **Slave mode**

TMRx timer can synchronize external trigger

- Reset mode
- Gated mode
- Trigger mode

SMFSEL bit in TMRx_SMCTRL register can be set to select the mode.

SMFSEL=100 set the reset mode, SMFSEL=101 set the gated mode, SMFSEL=110 set the trigger mode.

In the reset mode, when a trigger input event occurs, the counter and prescaler will be initialized, and the rising edge of the selected trigger input (TRGI) will reinitialize the counter and generate a signal to update the register.

In the gated mode, the enable of the counter depends on the high level of the selected input. When the trigger input is high, the clock of the counter will be started. Once the trigger input becomes low, the counter will stop (but not be reset). The start and stop of the counter are controlled.

In the trigger mode, the enable of the counter depends on the event on the selected input, the counter is started (but is not reset) at the rising edge of the trigger input, and only the start of the counter is controlled.

14.4.14 Timer interconnection

Each timer of TMRx can be connected with each other to realize synchronization or cascading between timers. It is required to configure one timer in master mode and the other timer in slave mode.

When the timer is in master mode, it can reset, start, stop and provide clock

source for the counter of the slave mode timer.

Master Slave timer timer TMR5 TRG0 ITRO TS=000 Master mode controller TRG0 TMR2 ITR1 TS=001 Master mode controller TMR1 Slave mode controller **TRGO** ITR2 TMR3 TS=010 Master mode controller TMR4 TRG0 ITR3 TS=011 Master mode controller

Figure 35 Timer 1 Master/Slave Mode Example

When the timers are interconnected:

- A timer can be used as the prescaler of other register
- Another register can be started by the enable signal of a timer
- Another register can be started by the update event of a timer
- Another register can be selected by the enable of a timer
- Two timers can be synchronized by an external trigger

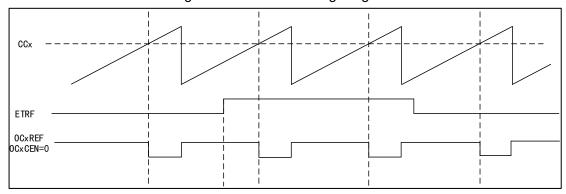
14.4.15 Interrupt and DMA request

The timer can generate an interrupt when an event occurs during operation

- Update event (counter overrun/underrun, counter initialization)
- Trigger event (counter start, stop, internal/external trigger)
- Capture/Compare event
- Braking signal input event

Some internal interrupt events can generate DMA requests, and special interfaces can enable or disable DMA requests.

14.4.16 Clear OCxREF signal when external events occur


This function is used for output compare and PWM mode.

In one channel, the high level of ETRF input port will reduce the signal of OCxREF to low level, and the OCxCEN bit in capture/compare register TMRx_CCMx is set to 1, and OCxREF signal will remain low until the next update event.

Set TMRx to PWM mode, close the external trigger prescaler, and disable the external trigger mode 2; when ETRF input is high, set OCxCEN=0, and the output OCxREF signal is shown in the figure below.

Figure 36 OCxREF Timing Diagram

Set TMRx to PWM mode, close the external trigger prescaler, and disable the external trigger mode 2; when ETRF input is high, set OCxCEN=1, and the output OCxREF signal is shown in the figure below.

ETRF 0CxREF

Figure 37 OCxREF Timing Diagram

14.5 Register address mapping

In the following table, all registers of the advanced timer are mapped to a 16-bit addressable (address) space.

Table 64 Advanced Timer Register Address Mapping

Register name	Description	Offset address
TMRx_CTRL1	Control register 1	0x00
TMRx_CTRL2	Control register 2	0x04
TMRx_SMCTRL	Slave mode control register	0x08
TMRx_DIEN	DMA/Interrupt enable register	0x0C
TMRx_STS	State register	0x10
TMRx_CEG	Control event generation register	0x14
TMRx_CCM1	Capture/Compare mode register 1	0x18
TMRx_CCM2	Capture/Compare mode register 2	0x1C
TMRx_CCEN	Capture/Compare enable register	0x20

Page 180 www.geehy.com

Register name	Description	Offset address
TMRx_CNT	Counter register	0x24
TMRx_PSC	Prescaler register	0x28
TMRx_AUTORLD	Auto reload register	0x2C
TMRx_REPCNT	Repeat count register	0x30
TMRx_CC1	Channel 1 capture/compare register	0x34
TMRx_CC2	Channel 2 capture/compare register	0x38
TMRx_CC3	Channel 3 capure/compare register	0x3C
TMRx_CC4	Channel 4 capture/compare register	0x40
TMRx_BDT	Braking and dead-time register	0x44
TMRx_DCTRL	DMA control register	0x48
TMRx_DMADDR	DMA address register of continuous mode	0x4C

14.6 Register functional description

14.6.1 Control register 1 (TMRx_CTRL1)

Offset address: 0x00 Reset value: 0x0000

Field	Name	R/W	Description
0	CNTEN	R/W	Counter Enable 0: Disable 1: Enable When the timer is configured as external clock, gated mode and encoder mode, it is required to write 1 to the bit by software to start regular work; when it is configured as the trigger mode, it can be written to 1 by hardware.
1	UD	R/W	Update Disable Update event can cause AUTORLD, PSC and CCx to generate the value of update setting. 0: Update event is allowed (UEV) An update event can occur in any of the following situations: The counter overruns/underruns; Set UEG bit; Update generated by slave mode controller. 1: Update event is disabled
2	URSSEL	R/W	Update Request Source Select If interrupt or DMA is enabled, the update event can generate update interrupt or DMA request. Different update request sources can be selected through this bit. 0: The counter overruns or underruns Set UEG bit; Update generated by slave mode controller. 1: The counter overruns or underruns

Field	Name	R/W	Description
3	SPMEN	R/W	Single Pulse Mode Enable When an update event is generated, the output level of the channel can be changed; in this mode, the CNTEN bit will be cleared, the counter will be stopped, and the output level of the channel will not be changed. 0: Disable 1: Enable
4	CNTDIR	R/W	Counter Direction This bit is read-only when the counter is configured as center-aligned mode or encoder mode. 0: Count up 1: Count down
6:5	CAMSEL	R/W	Center Aligned Mode Select In the center-aligned mode, the counter counts up and down alternately; otherwise, it will only count up or down. Different center-aligned modes affect the timing of setting the output compare interrupt flag bit of the output channel to 1; when the counter is disabled (CNTEN=0), select the center-aligned mode. 00: Edge alignment mode 01: Center-aligned mode 1 (the output compare interrupt flag bit of output channel is set to 1 when counting down) 10: Center-aligned mode 2 (the output compare interrupt flag bit of output channel is set to 1 when counting up) 11: Cente-aligned mode 3 (the output compare interrupt flag bit of output channel is set to 1 when counting up/down)
7	ARPEN	R/W	Auto-reload Preload Enable When the buffer is disabled, the program modification TMRx_AUTORLD will immediately modify the values loaded to the counter; when the buffer is enabled, the program modification TMRx_AUTORLD will modify the values loaded to the counter in the next update event. 0: Disable 1: Enable
9:8	CLKDIV	R/W	Clock Divide Factor For the configuration of dead time and digital filter, CK_INT provides the clock, and the dead time and the clock of the digital filter can be adjusted by setting this bit. 00: tots=tck_INT 10: tots=2*tck_INT 11: Reserved
15:10		l	Reserved

14.6.2 Control register 2 (TMRx_CTRL2)

Offset address: 0x04 Reset value: 0x0000

Field	Name	R/W	Description
0	CCPEN	R/W	Capture/Compare Preloaded Enable This bit affects the change of CCxEN, CCxNEN and OCxMOD values. When preloading is disabled, the program modification will immediately

Field	Name	Name R/W Description			
			affect the timer setting; When preloading is enabled, it is only updated after COMG is set, so as to affect the setting of timer; this bit only works on channels with complementary output. 0: Disable		
			1: Enable		
1		Reserved			
2	CCUSEL	R/W	Capture/compare Control Update Select Only when the capture/compare preload is enabled (CCPEN=1), it works only for complementary output channel. 0: It can only be updated by setting COMG bit 1: It can be updated by setting COMG bit or rising edge on TRGI		
3	CCDSEL	R/W	Capture/compare DMA Select 0: Transmit DMA request of CCx when CCx event occurs 1: Transmit DMA request of CCx when an update event occurs		
6:4	MMSEL	R/W	Master Mode Signal Select The signals of timers working in master mode can be used for TRGO, which affects the work of timers in slave mode and cascaded with master timer, and specifically affects the configuration of timers in slave mode. 000: Reset; the reset signal of master mode timer is used for TRGO 001: Enable; the counter enable signal of master mode timer is used for TRGO 010: Update; the update event of master mode timer is used for TRGO 011: Compare pulses; when the master mode timer captures/compares successfully (CCxIFLG=1), a pulse signal is output for TRGO 100: Compare mode 1; OC1REF is used to trigger TRGO 101: Compare mode 2; OC2REF is used to trigger TRGO 110: Compare mode 3; OC3REF is used to trigger TRGO 111: Compare mode 4; OC4REF is used to trigger TRGO		
7	TI1SEL	R/W	Timer Input 1 Selection 0: TMRx_CH1 pin is connected to TI1 input 1: TMRx_CH1, TMRx_CH2 and TMRx_CH3 pins are connected to TI1 input after exclusive		
8	OC1OIS	R/W	OC1 Output Idle State Configure Only the level state after the dead time of OC1 is affected when MOEN=0 and OC1N is realized. 0: OC1=0 1: OC1=1 Note: When LOCKCFG bit in TMRx_BDT register is at the Level 1, 2 or 3, this bit cannot be modified.		
9	OC1NOIS	R/W	OC1N Output Idle State Configure Only the level state after the dead time of OC1 is affected when MOEN=0 and OC1N is realized. 0: OC1N=0 1: OC1N=1 Note: When PLOCKCFG bit in TMRx_BDT register is at the Level 1, 2 or 3, this bit cannot be modified.		
10	OC2OIS	R/W	Configure OC2 output idle state. Refer to OC1OIS bit		

Field	Name R/W Description		Description	
11	OC2NOIS	R/W	Configure OC2N output idle state. Refer to OC1NOIS bit	
12	OC3OIS	R/W	Configure OC3 output idle state. Refer to OC1OIS bit	
13	OC3NOIS	3NOIS R/W Configure OC3N output idle state. Refer to OC1NOIS bit		
14	OC4OIS R/W Configure OC4 output idle state. Refer to OC1OIS bit			
15	Reserved			

14.6.3 Slave mode control register (TMRx_SMCTRL)

Offset address: 0x08 Reset value: 0x0000

Reset value: 0x0000			
Field	Name	R/W	Description
			Slave Mode Function Select
			000: Disable the slave mode, the timer can be used as master mode timer to affect the work of slave mode timer; if CTRL1_CNTEN=1, the prescaler is directly driven by the internal clock.
			001: Encoder mode 1; according to the level of TI1FP1, the counter counts at the edge of TI2FP2.
			010: Encoder mode 2; according to the level of Tl2FP2, the counter counts at the edge of Tl1FP1.
			011: Encoder mode 3; according to the input level of another signal, the counter counts at the edge of TI1FP1 and TI2FP2.
2:0	2:0 SMFSEL	SMFSEL R/W	100: Reset mode; the slave mode timer resets the counter after receiving the rising edge signal of TRGI and generates the signal to update the register.
			101: Gated mode; the slave mode timer starts the counter to work after receiving the TRGI high level signal; it stops the counter when receiving TRGI low level; when receiving TRGI high level signal again, the timer will continue to work; the counter is not reset during the whole period.
			110: Trigger mode, the slave mode timer starts the counter to work after receiving the rising edge signal of TRGI.
			111: External clock mode 1; select the rising edge signal of TRGI as the clock source to drive the counter to work.
3		Reserved	
			Trigger Input Signal Select
			In order to avoid false edge detection when changing the bit value, it must be changed when SMFSEL=0.
			000: Internal trigger ITR0
			001: Internal trigger ITR1
6:4	TRGSEL	R/W	010: Internal trigger ITR2
			011: Internal trigger ITR3
			100: Channel 1 input edge detector TIF_ED
			101: Channel 1 post-filtering timer input TI1FP1
			110: Channel 2 post-filtering timer input TI2FP2
			111: External trigger input (ETRF)

Field	Name	R/W	Description
7	MSMEN	R/W	Master/slave Mode Enable 0: Invalid 1: Enable the master/slave mode
11:8	ETFCFG	R/W	External Trigger Filter Configure 0000: Filter disabled, sampling by f _{DTS} 0001: DIV=1, N=2 0010: DIV=1, N=8 0101: DIV=1, N=8 0100: DIV=2, N=6 0101: DIV=2, N=8 0110: DIV=4, N=6 0111: DIV=4, N=8 1000: DIV=8, N=6 1001: DIV=8, N=8 1010: DIV=16, N=5 1011: DIV=16, N=5 1011: DIV=16, N=8 1101: DIV=32, N=5 1110: DIV=32, N=6 1111: DIV=32, N=8 Sampling frequency=timer clock frequency/DIV; the filter length=N, and a jump is generated by every N events.
13:12	ETPCFG	R/W	External Trigger Prescaler Configure The ETR (external trigger input) signal becomes ETRP after frequency division. The signal frequency of ETRP is at most 1/4 of TMRxCLK frequency; when ETR frequency is too high, the ETRP frequency must be reduced through frequency division. 00: The prescaler is disabled; 01: ETR signal 2 divided frequency 10: ETR signal 4 divided frequency 11: ETR signal 8 divided frequency
14	ECEN	R/W	External Clock Enable Mode2 0: Disable 1: Enable Setting ECEN bit has the same function as selecting external clock mode 1 to connect TRGI to ETRF; slave mode (reset, gating, trigger) can be used at the same time with external clock mode 2, but TRGI cannot be connected to ETRF in such case; when external clock mode 1 and external clock mode 2 are enabled at the same time, the input of external clock is ETRF.
15	ETPOL	R/W	External Trigger Polarity Configure This bit decides whether the external trigger ETR is reversed. 0: The external trigger ETR is not reversed, and the high level or rising edge is valid 1: The external trigger ETR is reversed, and the low level or falling edge is valid

Table 65 TMRx Internal Trigger Connection

Slave timer	ITR1 (TS=000) ITR1 (TS=001) IT		ITR2 (TS=010)	ITR3 (TS=011)
TMR1	TMR5	TMR2	TMR3	TMR4
TMR8	TMR1	TMR2	TMR4	TMR5

14.6.4 **DMA/Interrupt enable register (TMRx_DIEN)**

Offset address: 0x0C Reset value: 0x0000

Field	Name	R/W	Description
0	UIEN	R/W	Update interrupt Enable 0: Disable 1: Enable
1	CC1IEN	R/W	Capture/Compare Channel1 Interrupt Enable 0: Disable 1: Enable
2	CC2IEN	R/W	Capture/Compare Channel2 Interrupt Enable 0: Disable 1: Enable
3	CC3IEN	R/W	Capture/Compare Channel3 Interrupt Enable 0: Disable 1: Enable
4	CC4IEN	R/W	Capture/Compare Channel4 Interrupt Enable 0: Disable 1: Enable
5	COMIEN	R/W	COM Interrupt Enable 0: Disable 1: Enable
6	TRGIEN	R/W	Trigger interrupt Enable 0: Disable 1: Enable
7	BRKIEN	R/W	Break interrupt Enable 0: Disable 1: Enable
8	UDIEN	R/W	Update DMA Request Enable 0: Disable 1: Enable
9	CC1DEN	R/W	Capture/Compare Channel1 DMA Request Enable 0: Disable 1: Enable
10	CC2DEN	R/W	Capture/Compare Channel2 DMA Request Enable 0: Disable 1: Enable

Field	Name	R/W	Description	
11	CC3DEN	R/W	Capture/Compare Channel3 DMA Request Enable 0: Disable 1: Enable	
12	CC4DEN	R/W	Capture/Compare Channel4 DMA Request Enable 0: Disable 1: Enable	
13	COMDEN	R/W	COM DMA Request Enable 0: Disable 1: Enable	
14	TRGDEN	R/W	Trigger DMA Request Enable 0: Disable 1: Enable	
15	Reserved			

14.6.5 State register (TMRx_STS)

Offset address: 0x10 Reset value: 0x0000

	51.1.1 No					
Field	Name	R/W	Description			
	UIFLG	RC_W0	Update Event Interrupt Generate Flag 0: Update event interrupt does not occur 1: Update event interrupt occurs			
			When the counter value is reloaded or reinitialized, an update event will be generated. The bit is set to 1 by hardware and cleared by software; update events are generated in the following situations:			
0			(1) UD=0 on TMRx_CTRL1 register, and when the value of the repeat counter overruns/underruns, an update event will be generated; (2) URSSEL=0 and UD=0 on TMRx_CTRL1 register, configure UEG=1 on TMRx_CEG register to generate update event, and the counter needs to be initialized by software; (3) URSSEL=0 and UD=0 on TMRx_CTRL1 register, generate update event when the counter is initialized by trigger event.			
1	CC1IFLG	RC_W0	Capture/Compare Channel1 Interrupt Flag When the capture/compare channel 1 is configured as output: 0: No matching occurred 1: The value of TMRx_CNT matches the value of TMRx_CC1 When the capture/compare channel 1 is configured as input:			
			O: Input capture did not occur I: Input capture occurred When capture event occurs, the bit is set to 1 by hardware, and it can be cleared by software or cleared when reading TMRx_CC1 register.			
2	CC2IFLG	RC_W0	Captuer/Compare Channel2 Interrupt Flag Refer to STS_CC1IFLG			

Field	Name	R/W	Description				
3	CC3IFLG	RC_W0	Capture/Compare Channel3 Interrupt Flag Refer to STS_CC1IFLG				
4	CC4IFLG	RC_W0	Captuer/Compare Channel4 Interrupt Flag Refer to STS_CC1IFLG				
5	COMIFLG	RC_W0	COM Event Interrupt Generate Flag 0: COM event does not occur 1: COM interrupt waits for response After COM event is generated, this bit is set to 1 by hardware and cleared by software.				
6	TRGIFLG	RC_W0	Trigger Event Interrupt Generate Flag 0: Trigger event interrupt did not occur 1: Trigger event interrupt occurred After Trigger event is generated, this bit is set to 1 by hardware and cleared by software.				
7	BRKIFLG	RC_W0	Brake Event Interrupt Generate Flag 0: Brake event does not occur 1: Brake event occurs When brake input is valid, this bit is set to 1 by hardware; when brake input is invalid, this bit can be cleared by software.				
8		Reserved					
9	CC1RCFLG	RC_W0	Capture/compare Channel1 Repetition Capture Flag 0: Repeat capture does not occur 1: Repeat capture occurs The value of the counter is captured to TMRx_CC1 register, and CC1IFLG=1; this bit is set to 1 by hardware and cleared by software only when the channel is configured as input capture.				
10	CC2RCFLG	RC_W0	Capture/compare Channel2 Repetition Capture Flag Refer to STS_CC1RCFLG				
11	CC3RCFLG	RC_W0	Capture/compare Channel3 Repetition Capture Flag Refer to STS_CC1RCFLG				
12	CC4RCFLG	RC_W0	Capture/compare Channel4 Repetition Capture Flag Refer to STS_CC1RCFLG				
15:13	Reserved						

14.6.6 Control event generation register (TMRx_CEG)

Offset address: 0x14 Reset value: 0x0000

Field	Name	R/W	Description
0	UEG	w	Update Event Generate 0: Invalid 1: Initialize the counter and generate the update event This bit is set to 1 by software, and cleared by hardware. Note: When an update event is generated, the counter of the prescaler will be cleared, but the prescaler factor remains unchanged. In the count-down mode, the counter reads the value of TMRx_AUTORLD; in centeraligned mode or count-up mode, the counter will be cleared to 0.

Field	Name	R/W	Description
1	CC1EG	w	Capture/Compare Channel1 Event Generation 0: Invalid 1: Capture/Compare event is generated This bit is set to 1 by software and cleared automatically by hardware. If Channel 1 is in output mode: When CC1IFLG=1, if CC1IEN and CC1DEN bits are set, the corresponding interrupt and DMA request will be generated. If Channel 1 is in input mode:
			The value of the capture counter is stored in TMRx_CC1 register; configure CC1IFLG=1, and if CC1IEN and CC1DEN bits are also set, the corresponding interrupt and DMA request will be generated; at this time, if CC1IFLG=1, it is required to configure CC1RCFLG=1.
2	CC2EG	W	Capture/Compare Channel2 Event Generation Refer to CC1EG description
3	CC3EG	W	Capture/Compare Channel3 Event Generation Refer to CC1EG description
4	CC4EG	W	Capture/Compare Channel4 Event Generation Refer to CC1EG description
5	COMG	W	Capture/Compare Control Update Event Generate 0: Invalid 1: Capture/Compare update event is generated This bit is set to 1 by software and cleared automatically by hardware. Note: COMG bit is valid only in complementary output channel.
6	TEG	w	Trigger Event Generate 0: Invalid 1: Trigger event is generated This bit is set to 1 by software and cleared automatically by hardware.
7	BEG	w	Brake Event Generate 0: Invalid 1: Brake event is generated This bit is set to 1 by software and cleared automatically by hardware.
15:8			Reserved

14.6.7 Capature/Compare mode register 1 (TMRx_CCM1)

Offset address: 0x18 Reset value: 0x0000

The timer can be configured as input (capture mode) or output (compare mode) by CCxSEL bit. The functions of other bits of the register are different in input and output modes, and the functions of the same bit are different in output mode and input mode. The OCX in the register describes the function of the channel in the output mode, and the ICx in the register describes the function of the channel in the input mode.

Output compare mode:

Field	Name	R/W	Description
1:0	CC1SEL	R/W	Capture/Compare Channel 1 Selection This bit defines the input/output direction and the selected input pin. 00: CC1 channel is output 01: CC1 channel is input, and IC1 is mapped on TI1 10: CC1 channel is input, and IC1 is mapped on TI2 11: CC1 channel is input, and IC1 is mapped on TRC, and only works in internal trigger input Note: This bit can be written only when the channel is closed (TMRx_CCEN register CC1EN=0).
2	OC1FEN	R/W	Output Compare Channel1 Fast Enable 0: Disable 1: Enable This bit is used to improve the response of the capture/compare output to the trigger input event.
3	OC1PEN	R/W	Output Compare Channel1 Preload Enable 0: Preloading function is disabled; write the value of TMRx_CC1 register through the program and it will work immediately. 1: Preloading function is enabled; write the value of TMRx_CC1 register through the program and it will work after an update event is generated. Note: When the protection level is 3 and the channel is configured as output, this bit cannot be modified. When the preload register is uncertain, PWM mode can be used only in single pulse mode (SPMEN=1); otherwise, the following output compare result is uncertain.
6:4	OC1MOD	R/W	Output Compare Channel1 Mode Configure 000: Freeze The output compare has no effect on OC1REF 001: The output value is high when matching. When the value of counter CNT matches the value CCx of capture compare register, OC1REF will be forced to be at high level 010: The output value is low when matching. When the value of the counter matches the value of the capture compare register, OC1REF will be forced to be at low level 011: Output flaps when matching. When the value of the counter matches the value of the capture compare register, flap the level of OC1REF to: The output is forced to be ow Force OC1REF to be at low level 101: The output is forced to be high. Force OC1REF to be at high level 110: PWM mode 1 (set to high when the counter value 110: PWM mode 2 (set to high when the counter value>output compare value; otherwise, set to low) Note: When the protection level is 3 and the channel is configured as output, this bit cannot be modified. In PWM modes 1 and 2, the OC1REF level changes when the comparison result changes or when the output compare mode changes from freeze mode to PWM mode.
7	OC1CEN	R/W	Output Compare Channel1 Clear Enable 0: OC1REF is unaffected by ETRF input. 1: When high level of ETRF input is detected, OC1REF=0

Field	Name	R/W	Description
9:8	CC2SEL	R/W	Capture/Compare Channel2 Select This bit defines the input/output direction and the selected input pin. 00: CC2 channel is output 01: CC2 channel is input, and IC2 is mapped on TI2 10: CC2 channel is input, and IC2 is mapped on TI1 11: CC2 channel is input, and IC2 is mapped on TRC, and only works in internal trigger input Note: This bit can be written only when the channel is closed (TMRx_CCEN register CC2EN=0).
10	OC2FEN	R/W	Output Compare Channel2 Preload Enable
11	OC2PEN	R/W	Output Compare Channel2 Buffer Enable
14:12	OC2MOD	R/W	Output Compare Channel1 Mode
15	OC2CEN	R/W	Output Compare Channel2 Clear Enable

Input capture mode:

	input capture mode:					
Field	Name	R/W	Description			
			Capture/Compare Channel 1 Select			
			00: CC1 channel is output			
			01: CC1 channel is input, and IC1 is mapped on TI1			
1:0	CC1SEL	R/W	10: CC1 channel is input, and IC1 is mapped on TI2			
	00.022		11: CC1 channel is input, and IC1 is mapped on TRC, and only works in			
			internal trigger input			
			Note: This bit can be written only when the channel is closed (TMRx_CCEN bit CC1EN=0).			
			Input Capture Channel 1 Perscaler Configure			
			00: PSC=1			
2.0	IC1PSC	R/W	01: PSC=2			
3:2	ICIPSC		10: PSC=4			
			11: PSC=8			
			PSC is prescaled factor, which triggers capture once every PSC events.			
			Input Capture Channel 1 Filter Configuration			
			0000: Filter disabled, sampling by fors			
			0001: DIV=1,N=2			
			0010: DIV=1,N=4			
			0011: DIV=1,N=8			
			0100: DIV=2,N=6			
			0101: DIV=2,N=8			
7:4	IC1F	R/W	0110: DIV=4, N=6			
			0111: DIV=4, N=8			
			1000: DIV=8, N=6			
			1001: DIV=8, N=8			
			1010: DIV=16,N=5 1011: DIV=16,N=6			
			1100: DIV=16, N=8			
			1100: DIV=16, N=8 1101: DIV=32, N=5			
			1110: DIV=32, N=6			
			1110. DIV-32, IN-0			

Field	Name	R/W	Description
			1111: DIV=32, N=8
			Sampling frequency=timer clock frequency/DIV; the filter length=N, indicating that a jump is generated by every N events.
			Capture/Compare Channel 2 Select
	CC2SEL	- R/W	00: CC2 channel is output
			01: CC2 channel is input, and IC2 is mapped on TI1
9:8			10: CC2 channel is input, and IC2 is mapped on TI2
			11: CC2 channel is input, and IC2 is mapped on TRC, and only works in internal trigger input
			Note: This bit can be written only when the channel is closed (TMRx_CCEN register CC2EN=0).
11:10	IC2PSC	R/W	Input Capture Channel 2 Perscaler Configuration
15:12	IC2F	R/W	Input Capture Channel 2 Filter Configuration

14.6.8 Capture/Compare mode register 2 (TMRx_CCM2)

Offset address: 0x1C Reset value: 0x0000

Refer to the description of the above CCM1 register.

Output compare mode:

Field	Name	R/W	Description
1:0	CC3SEL	R/W	Capture/Compare Channel 1 Selection This bit defines the input/output direction and the selected input pin. 00: CC3 channel is output 01: CC3 channel is input, and IC3 is mapped on TI3 10: CC3 channel is input, and IC3 is mapped on TI4 11: CC3 channel is input, and IC3 is mapped on TRC, and only works in internal trigger input Note: This bit can be written only when the channel is closed (TMRx CCEN register CC3EN=0).
2	OC3FEN	R/W	Output Compare Channel3 Fast Enable 0: Disable 1: Enable This bit is used to improve the response of the capture/compare output to the trigger input event.
3	OC3PEN	R/W	Output Compare Channel3 Preload Enable
6:4	OC3MOD	R/W	Output Compare Channel3 Mode Configure
7	OC3CEN	R/W	Output Compare Channel3 Clear Enable 0: OC3REF is unaffected by ETRF input. 1: When high level of ETRF input is detected, OC1REF=0
9:8	CC4SEL	R/W	Capture/Compare Channel 4 Selection This bit defines the input/output direction and the selected input pin. 00: CC4 channel is output 01: CC4 channel is input, and IC4 is mapped on TI4 10: CC4 channel is input, and IC4 is mapped on TI3

Field	Name	R/W	Description
			11: CC4 channel is input, and IC4 is mapped on TRC, and only works in internal trigger input
			Note: This bit can be written only when the channel is closed (TMRx_CCEN register CC4EN=0).
10	OC4FEN	R/W	Output Compare Channel4 Preload Enable
11	OC4PEN	R/W	Output Compare Channel4 Buffer Enable
14:12	OC4MOD	R/W	Output Compare Channel4 Mode Configure
15	OC4CEN	R/W	Output Compare Channel4 Clear Enable

Input capture mode:

	input capture mode:						
Field	Name	R/W	Description				
1:0	CC3SEL	R/W	Capture/Compare Channel 3 Select 00: CC3 channel is output 01: CC3 channel is input, and IC3 is mapped on TI3 10: CC3 channel is input, and IC3 is mapped on TI4 11: CC3 channel is input, and IC3 is mapped on TRC, and only works in				
			internal trigger input Note: This bit can be written only when the channel is closed (TMRx_CCEN register CC3EN=0).				
3:2	IC3PSC	R/W	Input Capture Channel 3 Perscaler Configuration 00: PSC=1 01: PSC=2 10: PSC=4 11: PSC=8 PSC is prescaled factor, which triggers capture once every PSC events.				
7:4	IC3F	R/W	Input Capture Channel 3 Filter Configuration				
9:8	CC4SEL	R/W	Capture/Compare Channel 4 Select 00: CC4 channel is output 01: CC4 channel is input, and IC4 is mapped on TI4 10: CC4 channel is input, and IC4 is mapped on TI3 11: CC4 channel is input, and IC4 is mapped on TRC, and only works in internal trigger input Note: This bit can be written only when the channel is closed (TMRx_CCEN register CC4EN=0).				
11:10	IC4PSC	R/W	Input Capture Channel 4 Perscaler Configuration				
15:12	IC4F	R/W	Input Capture Channel 4 Filter Configuration				

14.6.9 Capture/Compare enable register (TMRx_CCEN)

Offset address: 0x20 Reset value: 0x0000

Field	Name	R/W	Description
0	CC1EN	R/W	Capture/Compare Channel1 Output Enable When the capture/compare channel 1 is configured as output: 0: Output is disabled 1: Output is enabled

Field	Name	R/W	Description
			When the capture/compare channel 1 is configured as input:
			This bit determines whether the value CNT of the counter can be
			captured and enter TMRx_CC1 register 0: Capture is disabled
			1: Capture is enabled
			Capture/Compare Channel1 Output Polarity Configure
			When CC1 channel is configured as output:
			0: OC1 high level is valid
			1: OC1 low level is valid
1	CC1POL	R/W	When CC1 channel is configured as input:
			0: Phase not reversed: capture at the rising edge of IC1; phase not reversed when IC1 is used as external trigger.
			1: Phase reversed, capature at the falling edge of ICC1; phase reversed when IC1 is used as external trigger.
			Note: When the protection level is 2 or 3, this bit cannot be modified
			Capture/Compare Channel1 Complementary Output Enable
2	CC1NEN	R/W	0: Disable
			1: Enable
			Capture/Compare Channel1 Complementary Output Polarity
3	CC1NPOL	R/W	0: OC1N high level is valid
			1: OC1N low level is valid
			Note: When the protection level is 2 or 3, this bit cannot be modified
4	CC2EN	R/W	Enable output of capture/compare channel 2 (Capture/Compare Channel2 Output Enable)
_	OOZLIN	TX/VV	Refer to CCEN CC1EN
			Capture/Compare Channel2 Output Polarity Configure
5	CC2POL	R/W	Refer to CCEN_CC1POL
	000151	544	Capture/Compare Channel1 Complementary Output Enable
6	CC2NEN	R/W	Refer to CCEN_CC1NEN
-	COONIDOL	D 44/	Capture/Compare Channel2 Complementary Output Polarity Configure
7	CC2NPOL	R/W	Refer to CCEN_CC1NPOL
0	CCSEN	R/W	Capture/Compare Channel3 Output Enable
8	CC3EN	FK/VV	Refer to CCEN_CC1EN
9	CC3POL	R/W	Capture/Compare Channel3 Output Polarity Configure
g	COSFUL	11/11	Refer to CCEN_CC1POL
10	CC3NEN	R/W	Capture/Compare Channel3 Complementary Output Enable
10	OGGINEIN	17///	Refer to CCEN_CC1NEN
11	CC3NPOL	R/W	Capture/Compare Channel3 Complementary Output Polarity Configure
''	COOM OL		Refer to CCEN_CC1NPOL
12	CC4EN	R/W	Capture/Compare Channel4 Output Enable
12	O TEN		Refer to CCEN_CC1EN
13	CC4POL	R/W	Capture/Compare Channel4 Output Polarity
10	0041 OL		Refer to CCEN_CC1POL
15:14			Reserved

14.6.10 Counter register (TMRx_CNT)

Offset address: 0x24 Reset value: 0x0000

Field	Name	R/W	Description
15:0	CNT	R/W	Counter Value

14.6.11 Prescaler register (TMRx_PSC)

Offset address: 0x28 Reset value: 0x0000

Field	Name	R/W	Description
15:0 P	PSC	R/W	Prescaler Value
	F3C		Clock frequency of counter (CK_CNT)=fcK_Psc/(PSC+1)

14.6.12 Auto reload register (TMRx_AUTORLD)

Offset address: 0x2C Reset value: 0xFFFF

Field	Name	R/W	Description
15:0	15:0 AUTORLD	R/W	Auto Reload Value
13.0	AUTORLD	IX/VV	When the value of auto reload is empty, the counter will not count.

14.6.13 Repeat count register (TMRx_REPCNT)

Offset address: 0x30 Reset value: 0x0000

Field	Name	R/W	Description	
7:0	REPCNT	R/W	Repetition Counter Value When the count value of the repeat counter is reduced to 0, an update event will be generated, and the counter will start counting again from the REPCNT value; the new value newly written to this register is valid only when an update event occurs in next cycle.	
15:8	Reserved			

14.6.14 Channel 1 capture/compare register (TMRx_CC1)

Offset address: 0x34 Reset value: 0x0000

Field	Name	R/W	Description
15:0	CC1	R/W	Capture/Compare Channel 1 Value When the capture/compare channel 1 is configured as input mode: CC1 contains the counter value transmitted by the last input capture channel 1 event. When the capture/compare channel 1 is configured as output mode: CC1 contains the current load capture/compare register value
			Compare the value CC1 of the capture and compare channel 1 with the value CNT of the counter to generate the output signal on OC1. When the output compare preload is disabled (OC1PEN=0 for TMRx_CCM1 register), the written value will immediately affect the output comparison results;

Field	Name	R/W	Description
			If the output compare preload is enabled (OC1PEN=1 for TMRx_CCM1 register), the written value will affect the output compare result when an update event is generated.

14.6.15 Channel 2 capture/compare register (TMRx_CC2)

Offset address: 0x38 Reset value: 0x0000

Field	Name	R/W	Description
15:0	CC2	R/W	Capture/Compare Channel 2 Value
13.0	002	17/77	Refer to TMRx_CC1

14.6.16 Channel 3 capture/compare register (TMRx_CC3)

Offset address: 0x3C Reset value: 0x0000

Field	Name	R/W	Description
15:0	CC3	R/W	Capture/Compare Channel 3 Value Refer to TMRx_CC1

14.6.17 Channel 4 capture/compare register (TMRx_CC4)

Offset address: 0x40 Reset value: 0x0000

Field	Name	R/W	Description
15:0 C0	CC4	R/W	Capture/Compare Channel 4 Value
	CC4		Refer to TMRx_CC1

14.6.18 Brake and dead-time register (TMRx_BDT)

Offset address: 0x44 Reset value: 0x0000

Note: According to the lock setting, AOEN, BRKPOL, BRKEN, IMOS, RMOS and DTS[7:0] bits all can be write-protected, and it is necessary to configure them when writing to TMRx BDT register for the first time.

Name	R/W	Description
DTS	R/W	Dead Time Setup DT is the dead duration, and the relationship between DT and register DTS is as follows: $DTS[7:5]=0xx>>DT=DTS[7:0]\times T_{DTS},\ T_{DTS}=T_{DTS};$ $DTS[7:5]=10x>>DT=(64+DTS[5:0])\times T_{DTS},\ T_{DTS}=2\times T_{DTS};$ $DTS[7:5]=110=>DT=(32+DTS[4:0])\times T_{DTS},\ T_{DTS}=8\times T_{DTS};$ $DTS[7:5]=111=>DT=(32+DTS[4:0])\times T_{DTS},\ T_{DTS}=16\times T_{DTS};$ For example: assuming $T_{DTS}=125ns$ (8MHZ), the dead time setting is as follows: If the step time is 125ns, the dead time can be set from 0 to 15875ns; If the step time is 250ns, the dead time can be set from 16us to 31750ns; If the step time is 1us, the dead time can be set from 32us to 63us; If the step time is 2us, the dead time can be set from 64us to 126us.

Field	Name	R/W	Description
			Note: Once LOCK level (LOCKCFG bit in TMRx_BDT register) is set to 1, 2 or 3, these bits cannot be modified.
9:8	LOCKCFG	R/W	Lock Write Protection Mode Configuration 00: Without Lock write protection level; the register can be written directly 01: Lock write protection level 1 It cannot be written to DTS, BRKEN, BRKPOL and AOEN bits of TMRx_BDT, and OCxOIS and OCxNOIS bits of TMRx_CTRL2 register. 02: Lock write protection level 2 It is not allowed to write to all bits with protection level 1 and write to the CCxPOL and OCxNPOL bits in TMRx_CCEN register and the RMOS and IMOS bits in TMRx_BDT register. 11: Lock write protection level 3 It is not allowed to write to all bits with protection level 2, and write to the OCxMOD and OCxPEN bits of TMRx_CCMx register. Note: After system reset, the lock write protect bit can only be written once.
10	IMOS	R/W	Idle Mode Off-state Configure Idle mode means MOEN=0; disable means CcxEN=0; this bit describes the impact of different values for this bit on the output waveform when MOEN=0 and CcxEN changes from 0 to 1. 0: OCx/OCxN output is disabled 1: If CCxEN=1, the invalid level is output during the dead time (the specific level value is affected by the polarity configuration), and the idle level is output after the dead time
11	RMOS	R/W	Run Mode Off-state Configure Run mode means MOEN=1; disable means CcxEN=0; this bit describes the impact of different values for this bit on the output waveform when MOEN=1 and CcxEN changes from 0 to 1. 0: OCx/OCxN output is disabled 1: OCx/OCxN first outptus invalid level (the specific level value is affected by the polarity configuration)
12	BRKEN	R/W	Brake Function Enable 0: Disable 1: Enable Note: When the protection level is 1, this bit cannot be modified.
13	BRKPOL	R/W	Brake Polarity Configure 0: The brake input BRK is valid at low level 1: The brake input BRK is valid at high level Note: When the protection level is 1, this bit cannot be modified. Writing to this bit requires an APB clock delay before it can be used.
14	AOEN	R/W	Automatic Output Enable 0: MOEN can only be set to 1 by software 1: MOEN can be set to 1 by software or be automatically set to 1 in next update event (braking input is ineffective) Note: When the protection level is 1, this bit cannot be modified.
15	MOEN	R/W	PWM Main Output Enable 0: Disable the output of OCx and OCxN or force the output of idle state

Field	Name	R/W	Description	
			When CCxEN and CCxNEN bits of the TMRx_CCEN register are set, turn on OCx and OCxN output	
			When the brake input is valid, it is cleared by hardware asynchronously. Note: Setting to 1 by software or setting to 1 automatically depends on AOEN bit of the TMRx_BDT register.	

14.6.19 DMA control software (TMRx_DCTRL)

Offset address: 0x48 Reset value: 0x0000

Field	Name	R/W	Description		
4:0	DBADDR	R/W	DMA Base Address Setup These bits define the base address of DMA in continuous mode (when reading or writing TMRx_DMADDR register), and DBADDR is defined as the offset from the address of TMRx_CTRL1 register: 00000: TMRx_CTRL1 00001: TMRx_CTRL2		
7:5			Reserved		
12:8	DBLEN	R/W			
15:13	Reserved				

14.6.20 DMA address register of continuous mode (TMRx_DMADDR)

Offset address: 0x4C Reset value: 0x0000

Field	Name	R/W	Description		
15:0	DMADDR	R/W	DMA Register for Burst Transfer Read or write operation access of TMRx_DMADDR register may lead to access operation of the register in the following address: TMRx_CTRL1 address + (DBADDR+DMA index) ×4 Wherein: "TMRx_CTRL1 address" is the address of control register 1 (TMRx_CTRL1); "DBADDR" is the base address defined in TMRx_DCTRL register; "DMA index" is the offset automatically controlled by DMA, and it depends on DBLEN defined in TMRx_DCTRL register.		

15 General-purpose timer (TMR2/3/4/5)

15.1 Introduction

The general-purpose timer takes the time base unit as the core, and has the functions of input capture and output compare, and can be used to measure the pulse width, frequency and duty cycle, and generate the output waveform. It includes a 16-bit or 32-bit auto reload counter (realize count-up, count-down and center-aligned count).

The timer and timer are independent of each other, and they can achieve synchronization and cascading.

15.2 Main characteristics

- (1) Timebase unit
 - Counter: 16-bit or 32-bit counter, count-up, count-down and center alignment count.
 - Prescaler: 16-bit programmable prescaler
 - Auto reloading function
- (2) Clock source selection
 - Internal clock
 - External input
 - External trigger
 - Internal trigger
- (3) Input capture function
 - Counting function
 - PWM input
 - Encoder interface mode
- (4) Output compare function
 - PWM output mode
 - Forced output mode
 - Single-pulse mode
- (5) Master/Slave mode controller of timer
 - Timers can be synchronized and cascaded
 - Support multiple slave modes and synchronization signals
- (6) Interrupt and DMA request event
 - Update event (counter overrun/underrun, counter initialization)
 - Trigger event (counter start, stop, internal/external trigger)
 - Input capture
 - Output compare

(7) Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning purposes

15.3 Structure block diagram

TMRx_CH4 Channel x 0Cx 0CxREF Output Filter Prescaler TMRx_CHx pture/compa T1xFP4 edge TRC detector TMRx_CH3 TI2 TMRx_CH2 Filter Channel x 0CxREF Output 0Cx Prescaler T1xFP2 TMRx CHx edge TMRx_CH1 ETRF Repeat counter Auto reload register I1F_ED CK_CNT ITR1 ITR2 TI1FP1 TI2FP2 CK PSC External TRGI detector Input filter External ETRF T12FP2 Other time DAC/ADC Internal clock CK INT

Figure 38 General-purpose Timer Structure Block Diagram

15.4 Functional description

15.4.1 Clock source selection

The general-purpose timer has four clock sources.

Internal clock

It is TMRx_CLK from RCM, namely the driving clock of the timer; when the slave mode controller is disabled, the clock source CK_PSC of the prescaler is driven by the internal clock CK_INT.

External clock mode 1

The trigger signal generated from the input channel TI1/2/3/4 of the timer after polarity selection and filtering is connected to the slave mode controller to control the work of the counter. Besides, the pulse signal generated by the input of Channel 1 after double-edge detection of the rising edge and the falling edge

is logically equal or the future signal is TI1F_ED signal, namely double-edge signal of TIF_ED. Specially the PWM input can only be input by TI1/2.

External clock mode 2

After polarity selection, frequency division and filtering, the signal from external trigger interface (ETR) is connected to slave mode controller through trigger input selector to control the work of counter.

Internal trigger input

The timer is set to work in slave mode, and the clock source is the output signal of other timers. At this time, the clock source has no filtering, and the synchronization or cascading between timers can be realized. The master mode timer can reset, start, stop or provide clock for the slave mode timer.

15.4.2 Timebase unit

The time base unit in the general-purpose timer contains three registers

- 16-bit counter register (CNT)
- 16-bit auto reload register (AUTORLD)
- 16-bit prescaler register (PSC)

Counter CNT

There are three counting modes for the counter in the general-purpose timer

- Count-up mode
- Count-down mode
- Center-aligned mode

Count-up mode

Set to the count-up mode by CNTDIR bit of configuration control register (TMRx_CTRL1).

When the counter is in count-up mode, the counter will count up from 0; every time a pulse is generated, the counter will increase by 1 and when the value of the counter (TMRx_CNT) is equal to the value of the auto reload (TMRx_AUTORLD), the counter will start to count again from 0, a count-up overrun event will be generated, and the value of the auto reload (TMRx_AUTORLD) is written in advance.

When the counter overruns, an update event will be generated. At this time, the auto reload shadow register and the prescaler buffer will be updated. The update event can be disabled by UD bit of configuration control register TMRx_CTRL1.

The figure below is Timing Diagram when Division Factor is 1 or 2 in Count-up Mode

CK_PSC CNT EN PSC=1 CK_CNT 21 22 27 Counter register Counter overrun Update event PSC=2 CK_CNT 0024 0025 0026 0000 0002 0003 Counter register Counter overrun Update event

Figure 39 Timing Diagram when Division Factor is 1 or 2 in Count-up Mode

Count-down mode

Set to the count-down mode by CNTDIR bit of configuration control register (TMRx_CTRL1).

When the counter is in count-down mode, the counter will start to count down from the value of the auto reload (TMRx_AUTORLD); every time a pulse is generated, the counter will decrease by 1 and when it becomes 0, the counter will start to count again from (TMRx_AUTORLD), meanwhile, a count-down overrun event will be generated, and the value of the auto reload (TMRx_AUTORLD) is written in advance.

When the counter overruns, an update event will be generated. At this time, the auto reload shadow register and the prescaler buffer will be updated. The update event can be disabled by configuring the UD bit of the TMRx_CTRL1 register.

CK_PSC CNT EN PSC=1 CK_CNT Counter register Counter overrun Update event PSC=2 CK_CNT 0023 0001 0026 0025 0024 0002 0000 Counter register Counter overrun Update event

Figure 40 Timing Diagram when Division Factor is 1 or 2 in Count-down Mode

Center-aligned mode

Set to the center-aligned mode by CNTDIR bit of configuration control register (TMRx CTRL1).

When the counter is in center-aligned mode, the counter counts up from 0 to the value of auto reload (TMRx_AUTORLD), then counts down to 0 from the value of the auto reload (TMRx_AUTORLD), which will repeat; in counting up, when the counter value is (AUTORLD-1), a counter overrun event will be generated; in counting down, when the counter value is 1, a counter underrun event will be generated.

CK_PSC CNT EN PSC=1 CK CNT 01 02 03 Counter register Counter underrun Counter overrun Update event PSC=2 CK CNT 0003 0002 0000 0001 0002 0001 Counter register Counter overrun Update event

Figure 41 Timing Diagram when Division Factor is 1 or 2 in Center-aligned Mode

Prescaler PSC

The prescaler is 16 bits and programmable, and it can divide the clock frequency of the counter to any value between 1 and 65536 (controlled by TMRx_PSC register), and after frequency division, the clock will drive the counter CNT to count. The prescaler has a buffer, which can be changed during running.

15.4.3 Input capture

Input capture channel

The general-purpose timer has four independent capture/compare channels, each of which is surrounded by a capture/compare register.

In the input capture, the measured signal will enter from the external pin T1/2/3/4 of the timer, first pass through the edge detector and input filter, and then into the capture channel. Each capture channel has a corresponding capture register. When the capture occurs, the value of the counter CNT will be latched in the capture register CCx. Before entering the capture register, the

signal will pass through the prescaler, which is used to set how many events to capture at a time.

Input capture application

Input capture is used to capture external events, and can give the time flag to indicate the occurrence time of the event and measure the pulse jump edge events (measure the frequency or pulse width), for example, if the selected edge appears on the input pin, the TMRx_CCx register will capture the current value of the counter and the CCxIFLG bit of the state register TMRx_STS will be set to 1; if CCxIEN=1, an interrupt will be generated.

In capture mode, the timing, frequency, period and duty cycle of a waveform can be measured. In the input capture mode, the edge selection is set to rising edge detection. When the rising edge appears on the capture channel, the first capture occurs, at this time, the value of the counter CNT will be latched in the capture register CCx; at the same time, it will enter the capture interrupt, a capture will be recorded in the interrupt service program and the value will be recorded. When the next rising edge is detected, the second capture occurs, the value of counter CNT will be latched in capture register CCx again, at this time, it will enter the capture interrupt again, the value of capture register will be read, and the cycle of this pulse signal will be obtained through capture.

15.4.4 **Output compare**

There are eight modes of output compare: freeze, channel x is valid level when matching, channel x is invalid level when matching, flip, force is invalid, force is valid, PWM mode 1 and PWM mode 2, which are configured by OCxMOD bit in TMRx_CCMx register and can control the waveform of output signal in output compare mode.

Output compare application

In the output compare mode, the position, polarity, frequency and time of the pulse generated by the timer can be controlled.

When the value of the counter is equal to that of the capture/compare register, the channel output can be set as high level, low level or flip by configuring the OCxMOD bit in TMRx_CCMx register and the CCxPOL bit in the output polarity TMRx CCEN register.

When CCxIFLG=1 in TMRx_STS register, if CCxIEN=1 in TMRx_DIEN register, an interrupt will be generated; if CCDSEL=1 in TMRx_CTRL2 register, DMA request will be generated.

15.4.5 **PWM output mode**

PWM mode is an adjustable pulse signal output by the timer. The pulse width of the signal is determined by the value of the compare register CCx, and the cycle

is determined by the value of the auto reload AUTORLD.

PWM output mode contains PWM mode 1 and PWM mode 2; PWM mode 1 and PWM mode 2 are divided into count-up, count-down and edge alignment counting; in PWM mode 1, if the value of the counter CNT is less than the value of the compare register CCx, the output level will be valid; otherwise, it will be invalid.

Set the timing diagram in PWM mode 1 when CCx=5, AUTORLD=7:

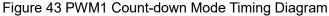



Figure 42 PWM1 Count-up Mode Timing Diagram

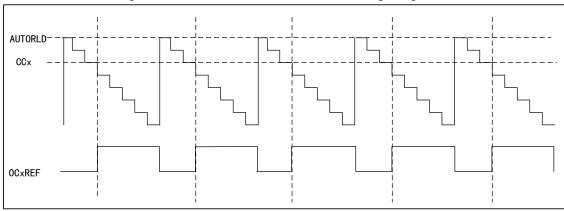
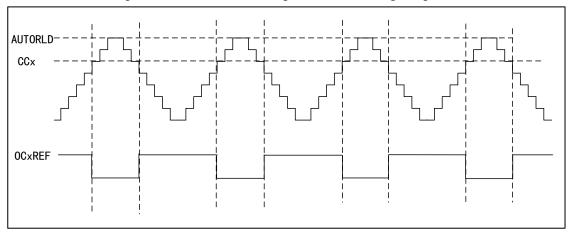



Figure 44 PWM1 Center-aligned Mode Timing Diagram

In PWM mode 2, if the value of the counter CNT is less than that of the compare register CCx, the output level will be invalid; otherwise, it will be valid.

Set the timing diagram in PWM mode 2 when CCx=5, AUTORLD=7

Figure 45 PWM2 Count-up Mode Timing Diagram

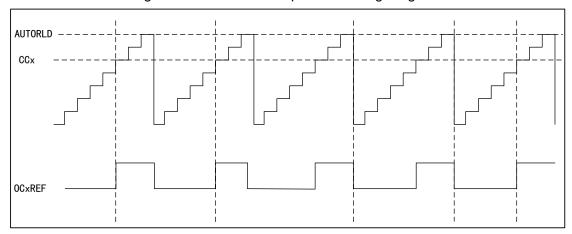


Figure 46 PWM2 Count-down Mode Timing Diagram

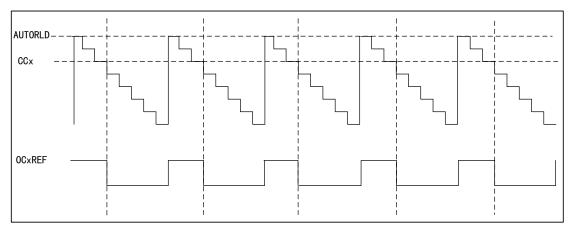
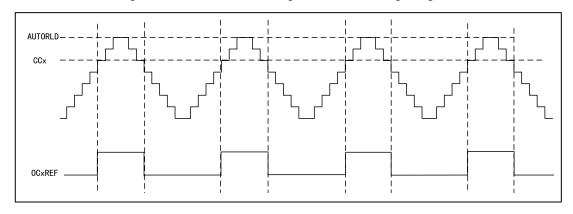



Figure 47 PWM2 Center-aligned Mode Timing Diagram

15.4.6 **PWM input mode**

PWM input mode is a particular case of input capture.

In PWM input mode, as only TI1FP1 and TI1FP2 are connected to the slave

mode controller, input can be performed only through the channels TMRx_CH1 and TMRx_CH2, which need to occupy the capure registers of CH1 and CH2.

In PWM input mode, the PWM signal enters from TMRx_CH1, and the signal will be divided into two channels, one can measure the period, and the other can measure the duty cycle. In the configuration, it is only required to set the polarity of one channel, and the other will be automatically configured with the opposite polarity.

In this mode, the slave mode controller should be configured as the reset mode (SMFSEL bit of TMRx_SMCTRL register)

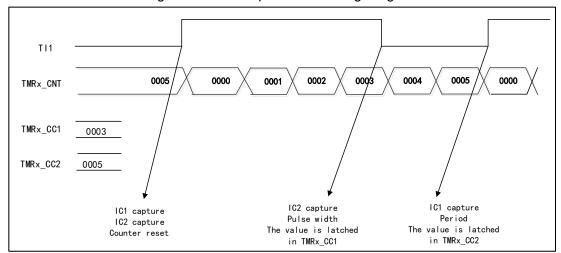
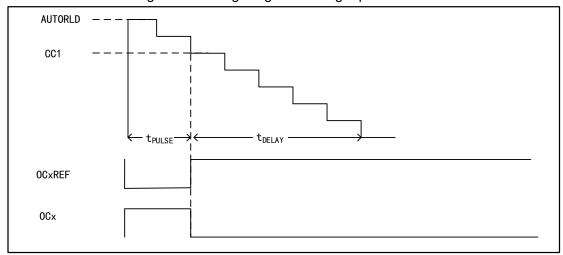


Figure 48 PWM Input Mode Timing Diagram

15.4.7 Single-pulse mode


The single-pulse mode is a special case of timer compare output, and is also a special case of PWM output mode.

Set SPMEN bit of TMRx_CTRL1 register, and select the single-pulse mode. After the counter is started, a certain number of pulses will be output before the update event occurs. When an update event occurs, the counter will stop counting, and the subsequent PWM waveform output will no longer be changed.

After a certain controllable delay, a pulse with controllable pulse width is generated in single-pulse mode through the program. The delay time is defined by the value of TMRx_CCx register; in the count-up mode, the delay time is CCx and the pulse width is AUTORLD-CCx; in the count-down mode, the delay time is AUTORLD-CCx and the pulse width is CCx.

Figure 49 Timing Diagram in Single-pulse Mode

15.4.8 Forced output mode

In the forced output mode, the comparison result is ignored, and the corresponding level is directly output according to the configuration instruction.

- CCxSEL=00 for TMRx CCMx register, set CCx channel as output
- OCxMOD=100/101 for TMRx_CCMx register, set to force OCxREF signal to invalid/valid state

In this mode, the corresponding interrupt and DMA request will still be generated.

15.4.9 Encoder interface mode

The encoder interface mode is equivalent to an external clock with direction selection. In the encoder interface mode, the content of the timer can always indicate the position of the encoder.

The selection method of encoder interface is as follows:

- By setting SMFSEL bit of TMRx_SMCTRL register, set the counter to count on the edge of TI1 channel /TI2 channel, or count on the edge of TI1 and TI2 at the same time.
- Select the polarity of TI1 and TI2 by setting the CC1POL and CC2POL bits of TMRx CCEN register.
- Select to filter or not by setting the IC1F and IC2F bits of TMRx CCM1 register.

The two input TI1 and TI2 can be used as the interface of incremental encoder. The counter is driven by the effective jump of the signals TI1FP1 and TI2FP2 after filtering and edge selection in TI1 and TI2.

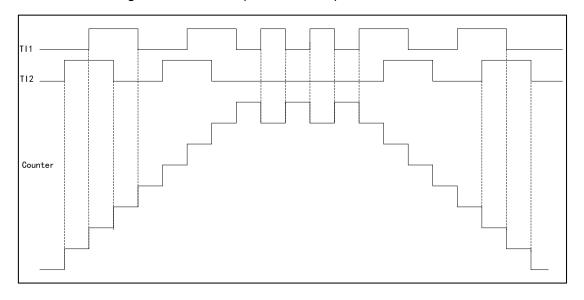
The count pulse and direction signal are generated according to the input signals of TI1 and TI2

 The counter will count up/down according to the jumping sequence of the input signal

 Set CNTDIR of control register TMRx_CTRL1 to be read-only (CNTDIR will be re-calculated due to jumping of any input end)

The change mechanism of counter count direction is shown in the figure below:

Table 66 Relationship between Count Direction and Encoder

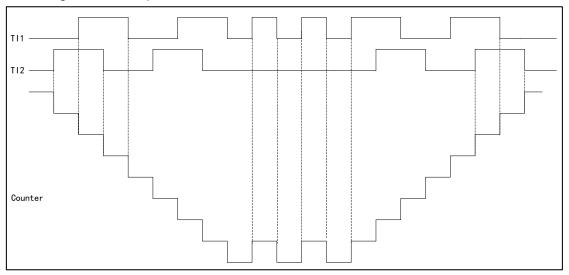

Effective edge		Count only in TI1		Count only in TI2		Count in both TI1 and TI2	
Level of re	Level of relative signal		Low	High	Low	High	Low
	Rising			Count	Countin	Count	Countum
TI1FP1	edge			down	Count up	down	Count up
IIIFFI	Falling	_	_	Count up	Count	Count up	Count
	edge			Count up	down	Count up	down
	Rising	Count up	Count			Count up	Count
TI2FP2	edge	Count up	down	_		Count up	down
	Falling	Count	Carration			Count	Count up
	edge	down	Count up			down	Count up

The external incremental encoder can be directly connected with MCU, not needing external interface logic, so the comparator is used to convert the differential output of the encoder to digital signal to increase the immunity from noise interference.

Among the following examples:

- IC1FP1 is mapped to TI1
- IC2FP2 is mapped to TI2
- Neither IC1FP1 nor IC2FP2 is reverse phase
- The input signal is valid at the rising edge and falling edge
- Enable the counter

Figure 50 Counter Operation Example in Encoder Mode



For example, when TI1 is at low level, and TI2 is in rising edge state, the

counter will count up.

Figure 51 Example of Encoder Interface Mode of IC1FP1 Reversed Phase

For example, when TI1 is at low level, and the rising edge of TI2 jumps, the counter will count down.

15.4.10 Slave mode

TMRx timer can synchronize external trigger

- Reset mode
- Gated mode
- Trigger mode

SMFSEL bit in TMRx_SMCTRL register can be set to select the mode

SMFSEL=100 set the reset mode, SMFSEL=101 set the gated mode, SMFSEL=110 set the trigger mode.

In the reset mode, when a trigger input event occurs, the counter and prescaler will be initialized, and the rising edge of the selected trigger input (TRGI) will reinitialize the counter and generate a signal to update the register.

In the gated mode, the enable of the counter depends on the high level of the selected input. When the trigger input is high, the clock of the counter will be started. Once the trigger input becomes low, the counter will stop (but not be reset). The start and stop of the counter are controlled.

In the trigger mode, the enable of the counter depends on the event on the selected input, the counter is started (but is not reset) at the rising edge of the trigger input, and only the start of the counter is controlled.

15.4.11 Timer interconnection

See the chapter of "14.4.14 Timer Interconnection" for details.

15.4.12 Interrupt and DMA request

The timer can generate an interrupt when an event occurs during operation

- Update event (counter overrun/underrun, counter initialization)
- Trigger event (counter start, stop, internal/external trigger)
- Capture/Compare event

Some internal interrupt events can generate DMA requests, and special interfaces can enable or disable DMA requests.

15.4.13 Clear OCxREF signal when external events occur

This function is used for output compare and PWM mode.

In one channel, the high level of ETRF input port will reduce the signal of OCxREF to low level, and the OCxCEN bit in capture/compare register TMRx_CCMx is set to 1, and OCxREF signal will remain low until the next update event.

Set TMRx to PWM mode, close the external trigger prescaler, and disable the external trigger mode 2; when ETRF input is high, set OCxCEN=0, and the output OCxREF signal is shown in the figure below.

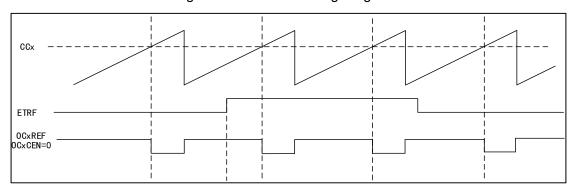


Figure 52 OCxREF Timing Diagram

Set TMRx to PWM mode, close the external trigger prescaler, and disable the external trigger mode 2; when ETRF input is high, set OCxCEN=1, and the output OCxREF signal is shown in the figure below.

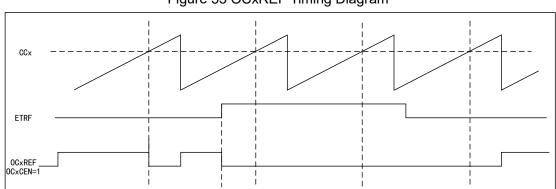


Figure 53 OCxREF Timing Diagram

15.5 Register address mapping

In the following table, all registers of the general-purpose timer are mapped to a 16-bit addressable (address) space.

Table 67 General-purpose Timer Register Address Mapping

Register name	Description	Offset address
TMRx_CTRL1	Control register 1	0x00
TMRx_CTRL2	Control register 2	0x04
TMRx_SMCTRL	Slave mode control register	0x08
TMRx_DIEN	DMA/Interrupt enable register	0x0C
TMRx_STS	State register	0x10
TMRx_CEG	Control event generation register	0x14
TMRx_CCM1	Capture/Compare mode register 1	0x18
TMRx_CCM2	Capture/Compare mode register 2	0x1C
TMRx_CCEN	Enable the capture/compare channel register	0x20
TMRx_CNT	Counter register	0x24
TMRx_PSC	Prescaler register	0x28
TMRx_AUTORLD	Auto reload register	0x2C
TMRx_CC1	Channel 1 capture/compare register	0x34
TMRx_CC2	Channel 2 capture/compare register	0x38
TMRx_CC3	Channel 3 capure/compare register	0x3C
TMRx_CC4	Channel 4 capture/compare register	0x40
TMRx_DCTRL	DMA control register	0x48
TMRx_DMADDR	DMA address register of continuous mode	0x4C
TMR2_OPT	TMR2 option register	0x50
TMR5_OPT	TMR5 option register	0x50

15.6 Register functional description

15.6.1 Control register 1 (TMRx_CTRL1)

Offset address: 0x00 Reset value: 0x0000

Field	Name	R/W	Description		
0	CNTEN	R/W	Counter Enable 0: Disable 1: Enable		

Field	Name	R/W	Description		
			When the timer is configured as external clock, gated mode and encoder mode, it is required to write 1 to the bit by software to start regular work; when it is configured as the trigger mode, it can be written to 1 by hardware.		
			Update Disable		
			Update event can cause AUTORLD, PSC and CCx to generate the value of update setting.		
			0: Update event is allowed (UEV)		
1	UD	R/W	An update event can occur in any of the following situations:		
			The counter overruns/underruns; Set UEG bit; Update generated by slave mode controller. 1: Update event is disabled		
			Update Request Source Select		
			If interrupt or DMA is enabled, the update event can generate update interrupt or DMA request. Different update request sources can be selected through this bit.		
2	URSSEL	R/W	0: The counter overruns or underruns		
			Set UEG bit		
			Update generated by slave mode controller		
			1: The counter overruns or underruns		
			Single Pulse Mode Enable When an update event is generated, the output level of the channel can		
3	SPMEN	R/W	be changed; in this mode, the CNTEN bit will be cleared, the counter will be stopped, and the output level of the channel will not be changed. 0: Disable		
			1: Enable		
			Counter Direction.		
4	CNTDIR	R/W	When the counter is configured in central alignment mode or encoder mode, the bit is read-only.		
			0: Count up		
			1: Count down		
			Center Aligned Mode Select		
			In the center-aligned mode, the counter counts up and down alternately; otherwise, it will only count up or down. Different center-aligned modes affect the timing of setting the output compare interrupt flag bit of the output channel to 1; when the counter is disabled (CNTEN=0), select the center-aligned mode.		
6:5	CAMSEL	R/W	00: Edge alignment mode		
			01: Center-aligned mode 1 (the output compare interrupt flag bit of output channel is set to 1 when counting down)		
			10: Center-aligned mode 2 (the output compare interrupt flag bit of output channel is set to 1 when counting up)		
			11: Cente-aligned mode 3 (the output compare interrupt flag bit of output channel is set to 1 when counting up/down)		
			Auto-reload Preload Enable		
7	ARPEN	R/W	When the buffer is disabled, the program modification TMRx_AUTORLD will immediately modify the values loaded to the counter; when the buffer is enabled, the program modification TMRx_AUTORLD will modify the values loaded to the counter in the next update event.		

Field	Name	R/W	Description		
			0: Disable		
			1: Enable		
9:8	CLKDIV	R/W	Clock Divide Factor For the configuration of dead time and digital filter, CK_INT provides the clock, and the dead time and the clock of the digital filter can be adjusted by setting this bit. 00: t_DTS=t_{CK_INT} 01: t_DTS=2×t_{CK_INT} 10: t_DTS=4×t_{CK_INT} 11: Reserved		
15:10	Reserved				

15.6.2 Control register 2 (TMRx_CTRL2)

Offset address: 0x04 Reset value: 0x0000

	Teset value. 0,000					
Field	Name	Name R/W Description				
2:0		Reserved				
			Capture/compare DMA Select			
3	CCDSEL	R/W	0: Transmit DMA request of CCx when CCx event occurs			
			1: Transmit DMA request of CCx when an update event occurs			
			Master Mode Signal Select			
		ISEL R/W	The signals of timers working in master mode can be used for TRGO, which affects the work of timers in slave mode and cascaded with master timer, and specifically affects the configuration of timers in slave mode.			
	MMSEL		000: Reset; the reset signal of master mode timer is used for TRGO			
			001: Enable; the counter enable signal of master mode timer is used for TRGO			
6:4			010: Update; the update event of master mode timer is used for TRGO			
			011: Compare pulses; when the master mode timer captures/compares successfully (CCxIFLG=1), a pulse signal is output for TRGO			
			100: Compare mode 1; OC1REF is used to trigger TRGO			
			101: Compare mode 2; OC2REF is used to trigger TRGO			
			110: Compare mode 3; OC3REF is used to trigger TRGO			
			111: Compare mode 4; OC4REF is used to trigger TRGO			
			Timer Input 1 Selection			
7	TI1SEL	R/W	0: TMRx_CH1 pin is connected to TI1 input			
,	711022		1: TMRx_CH1, TMRx_CH2 and TMRx_CH3 pins are connected to TI1 input after exclusive			
15:8	Reserved					

15.6.3 Slave mode control register (TMRx_SMCTRL)

Offset address: 0x08 Reset value: 0x0000

Field	Name	R/W	Description
2:0	SMFSEL	R/W	Slave Mode Function Select

Field	Name	R/W	Description		
			000: Disable the slave mode, the timer can be used as master mode timer to affect the work of slave mode timer; if CTRL1_CNTEN=1, the prescaler is directly driven by the internal clock.		
			001: Encoder mode 1; according to the level of TI1FP1, the counter counts at the edge of TI2FP2.		
			010: Encoder mode 2; according to the level of TI2FP2, the counter counts at the edge of TI1FP1.		
			011: Encoder mode 3; according to the input level of another signal, the counter counts at the edge of TI1FP1 and TI2FP2.		
			100: Reset mode; the slave mode timer resets the counter after receiving the rising edge signal of TRGI and generates the signal to update the register.		
			101: Gated mode; the slave mode timer starts the counter to work after receiving the TRGI high level signal; it stops the counter when receiving TRGI low level; when receiving TRGI high level signal again, the timer will continue to work; the counter is not reset during the whole period.		
			110: Trigger mode, the slave mode timer starts the counter to work after receiving the rising edge signal of TRGI.		
			111: External clock mode 1; select the rising edge signal of TRGI as the clock source to drive the counter to work.		
3	Reserved				
6:4	TRGSEL	R/W	Trigger Input Signal Select In order to avoid false edge detection when changing the bit value, it must be changed when SMFSEL=0. 000: Internal trigger ITR0 001: Internal trigger ITR1 010: Internal trigger ITR2 011: Internal trigger ITR3 100: Channel 1 input edge detector TIF_ED 101: Channel 1 post-filtering timer input TI1FP1 110: Channel 2 post-filtering timer input TI2FP2		
			111: External trigger input (ETRF)		
7	MSMEN	R/W	Master/slave Mode Enable 0: Invalid 1: Enable the master/slave mode		
11:8	ETFCFG	R/W	External Trigger Filter Configure 0000: Filter disabled, sampling by f _{DTS} 0001: DIV=1, N=2 0010: DIV=1, N=4 0011: DIV=1, N=8 0100: DIV=2, N=6 0101: DIV=2, N=8 0110: DIV=4, N=6 0111: DIV=4, N=8 1000: DIV=8, N=6 1001: DIV=8, N=8 1010: DIV=8, N=8 1010: DIV=16, N=5		

Field	Name	R/W	Description
			1011: DIV=16, N=6
			1100: DIV=16, N=8
			1101: DIV=32,N=5
			1110: DIV=32, N=6
			1111: DIV=32,N=8
			Sampling frequency=timer clock frequency/DIV; the filter length=N, and a jump is generated by every N events.
			External Trigger Prescaler Configure
13:12	ETPCFG	R/W	The ETR (external trigger input) signal becomes ETRP after frequency division. The signal frequency of ETRP is at most 1/4 of TMRxCLK frequency; when ETR frequency is too high, the ETRP frequency must be reduced through frequency division.
			00: The prescaler is disabled;
			01: ETR signal 2 divided frequency
			10: ETR signal 4 divided frequency
			11: ETR signal 8 divided frequency
			Enable external clock mode 2 (External Clock Enable Mode2) 0: Disable 1: Enable
14	ECEN	R/W	Setting ECEN bit has the same function as selecting external clock mode 1 to connect TRG1 to ETRF; slave mode (reset, gating, trigger) can be used at the same time with external clock mode 2, but TRGI cannot be connected to ETRF in such case; when external clock mode 1 and external clock mode 2 are enabled at the same time, the input of external clock is ETRF.
			External Trigger Polarity Configure
15	ETPOL		This bit decides whether the external trigger ETR is reversed.
		ETPOL R/W	0: The external trigger ETR is not reversed,and the high level or rising edge is valid
			1: The external trigger ETR is reversed, and the low level or falling edge is valid

Table 68 TMRx Internal Trigger Connection

			,,,	
Slave timer	ITR0 (TS=000)	ITR1 (TS=001)	ITR2 (TS=010)	ITR3 (TS=011)
TMR2	TMR1	TMR8	TMR3	TMR4
TMR3	TMR1	TMR2	TMR5	TMR4
TMR4	TMR1	TMR2	TMR3	TMR8
TMR5	TMR2	TMR3	TMR4	TMR8

15.6.4 **DMA/Interrupt enable register (TMRx_DIEN)**

Offset address: 0x0C Reset value: 0x0000

Field	Name	R/W	Description	
0	UIEN	R/W	Update interrupt Enable 0: Disable	
			1: Enable	

Field	Name	R/W	Description				
1	CC1IEN	R/W	Capture/Compare Channel1 Interrupt Enable 0: Disable 1: Enable				
2	CC2IEN	R/W	Capture/Compare Channel2 Interrupt Enable 0: Disable 1: Enable				
3	CC3IEN	R/W	Capture/Compare Channel3 Interrupt Enable 0: Disable 1: Enable				
4	CC4IEN	R/W	Capture/Compare Channel4 Interrupt Enable 0: Disable 1: Enable				
5			Reserved				
6	TRGIEN	R/W	Trigger interrupt Enable 0: Disable 1: Enable				
7		Reserved					
8	UDIEN	Update DMA Request Enable R/W 0: Disable 1: Enable					
9	CC1DEN	R/W	Capture/Compare Channel1 DMA Request Enable 0: Disable 1: Enable				
10	CC2DEN	R/W	Capture/Compare Channel2 DMA Request Enable 0: Disable 1: Enable				
11	CC3DEN	Capture/Compare Channel3 DMA Request Enable					
12	CC4DEN	Capture/Compare Channel4 DMA Request Enable					
13	Reserved						
14	TRGDEN R/W Trigger DMA Request Enable 0: Disable 1: Enable						
15	Reserved						

15.6.5 State register (TMRx_STS)

Offset address: 0x10 Reset value: 0x0000

Field	Name	R/W	Description			
0	UIFLG	RC_W0	Update Event Interrupt Generate Flag 0: Update event interrupt does not occur 1: Update event interrupt occurs When the counter value is reloaded or reinitialized, an update event will be generated. The bit is set to 1 by hardware and cleared by software; update events are generated in the following situations: (1) UD=0 on TMRx_CTRL1 register, and when the value of the repeat counter overruns/underruns, an update event will be generated; (2) URSEL=0 and UD=0 on TMRx_CTRL1 register, configure UG = 1 on TMRx_CEG register to generate update event, and the counter needs to be initialized by software; (3) URSEL=0 and UD=0 on TMRx_CTRL1 register, generate update event when the counter is initialized by trigger event.			
1	CC1IFLG	RC_W0	Capture/Compare Channel 1 Interrupt Flag When the capture/compare channel 1 is configured as output: 0: No matching occurred 1: The value of TMRx_CNT matches the value of TMRx_CC1 When the capture/compare channel 1 is configured as input: 0: Input capture did not occur 1: Input capture occurred When capture event occurs, the bit is set to 1 by hardware, and it can be cleared by software or cleared when reading TMRx_CC1 register.			
2	CC2IFLG	RC_W0	Capture/Compare Channel2 new Interrupt Flag Refer to STS_CC1IFLG			
3	CC3IFLG	RC_W0	Capture/Compare Channel3 Interrupt Flag Refer to STS_CC1IFLG			
4	CC4IFLG	RC_W0	Captuer/Compare Channel4 Interrupt Flag Refer to STS_CC1IFLG			
5			Reserved			
6	TRGIFLG	RC_W0	Trigger Event Interrupt Generate Flag 0: Trigger event interrupt did not occur 1: Trigger event interrupt occurred After Trigger event is generated, this bit is set to 1 by hardware and cleared by software.			
8:7	Reserved					
9	CC1RCFLG	RC_W0	Capture/compare Channel1 Repetition Capture Flag 0: Repeat capture does not occur 1: Repeat capture occurs The value of the counter is captured to TMRx_CC1 register, and CC1IFLG=1; this bit is set to 1 by hardware and cleared by software only when the channel is configured as input capture.			
10	CC2RCFLG	RC_W0	Capture/compare Channel2 Repetition Capture Flag Refer to STS_CC1RCFLG			

Field	Name	R/W	Description		
11	CC3RCFLG	RC_W0	Capture/compare Channel3 Repetition Capture Flag Refer to STS_CC1RCFLG		
12	CC4RCFLG	RC_W0	Capture/compare Channel4 Repetition Capture Flag Refer to STS_CC1RCFLG		
15:13	Reserved				

15.6.6 Control event generation register (TMRx_CEG)

Offset address: 0x14 Reset value: 0x0000

Field	Name	R/W	Description		
0	UEG	w	Update Event Generate 0: Invalid 1: Initialize the counter and generate the update event This bit is set to 1 by software, and cleared by hardware. Note: When an update event is generated, the counter of the prescaler will be cleared, but the prescaler factor remains unchanged. In the count-down mode, the counter reads the value of TMRx_AUTORLD; in center-aligned mode or count-up mode, the counter will be cleared to 0.		
1	CC1EG	W	Capture/Compare Channel1 Event Generation 0: Invalid 1: Capture/Compare event is generated This bit is set to 1 by software and cleared automatically by hardware. If Channel 1 is in output mode When CC1IFLG=1, if CC1IEN and CC1DEN bits are set, the corresponding interrupt and DMA request will be generated. If Channel 1 is in input mode The value of the capture counter is stored in TMRx_CC1 register; configure CC1IFLG=1, and if CC1IEN and CC1DEN bits are also set, the corresponding interrupt and DMA request will be generated; at this time, if CC1IFLG=1, it is required to configure CC1RCFLG=1.		
2	CC2EG	W	Capture/Compare Channel2 Event Generation Refer to CC1EG description		
3	CC3EG	W	Capture/Compare Channel3 Event Generation Refer to CC1EG description		
4	CC4EG	W	Capture/Compare Channel4 Event Generation Refer to CC1EG description		
5	Reserved				
6	TEG	TEG W Trigger Event Generate 0: Invalid 1: Trigger event is generated This bit is set to 1 by software and cleared automatically by hardware.			
15:7	Reserved				

15.6.7 Capature/Compare mode register 1 (TMRx_CCM1)

Offset address: 0x18 Reset value: 0x0000

The timer can be configured as input (capture mode) or output (compare mode) by CCxSEL bit. The functions of other bits of the register are different in input and output modes, and the functions of the same bit are different in output mode and input mode. The OCX in the register describes the function of the channel in the output mode, and the ICx in the register describes the function of the channel in the input mode.

Output compare mode:

Field	Name	R/W	Perceintion
rieiu	INAITIE	IT./ VV	Description
1:0	CC1SEL	R/W	Capture/Compare Channel 1 Selection This bit defines the input/output direction and the selected input pin. 00: CC1 channel is output 01: CC1 channel is input, and IC1 is mapped on TI1 10: CC1 channel is input, and IC1 is mapped on TI2 11: CC1 channel is input, and IC1 is mapped on TRC, and only works in internal trigger input Note: This bit can be written only when the channel is closed (TMRx_CCEN register CC1EN=0).
2	OC1FEN	R/W	Output Compare Channel1 Fast Enable 0: Disable 1: Enable This bit is used to improve the response of the capture/compare output to the trigger input event.
3	OC1PEN	R/W	 Output Compare Channel1 Preload Enable 0: Preloading function is disabled; write the value of TMRx_CC1 register through the program and it will work immediately. 1: Preloading function is enabled; write the value of TMRx_CC1 register through the program and it will work after an update event is generated. Note: When the protection level is 3 and the channel is configured as output, this bit cannot be modified. When the preload register is uncertain, PWM mode can be used only in single pulse mode (SPMEN=1); otherwise, the following output compare result is uncertain.
6:4	OC1MOD	R/W	Output Compare Channel1 Mode Configure 000: Freeze The output compare has no effect on OC1REF 001: The output value is high when matching. When the value of counter CNT matches the value CCx of capture/compare register, OC1REF will be forced to be at high level 010: The output value is low when matching. When the value of the counter matches the value of the capture/compare register, OC1REF will be forced to be at low level 011: Output flaps when matching. When the value of the counter matches the value of the capture/compare register, flap the level of OC1REF to: The output is forced to be ow Force OC1REF to be at low level 101: The output is forced to be high. Force OC1REF to be at high level 110: PWM mode 1 (set to high when the counter value <output (set="" 111:="" 2="" compare="" counter="" high="" low)="" mode="" otherwise,="" pwm="" set="" the="" to="" value="" value;="" when="">output compare value; otherwise, set to low) Note: When the protection level is 3 and the channel is configured as output, this bit cannot be modified. In PWM modes 1 and 2, the OC1REF</output>

Field	Name	R/W	Description
			level changes when the comparison result changes or when the output compare mode changes from freeze mode to PWM mode.
7	OC1CEN	R/W	Output Compare Channel1 Clear Enable 0: OC1REF is unaffected by ETRF input. 1: When high level of ETRF input is detected, OC1REF=0
9:8	CC2SEL	R/W	Capture/Compare Channel2 Select This bit defines the input/output direction and the selected input pin. 00: CC2 channel is output 01: CC2 channel is input, and IC2 is mapped on TI2 10: CC2 channel is input, and IC2 is mapped on TI1 11: CC2 channel is input, and IC2 is mapped on TRC, and only works in internal trigger input Note: This bit can be written only when the channel is closed (TMRx_CCEN register CC2EN=0).
10	OC2FEN	R/W	Output Compare Channel2 Preload Enable
11	OC2PEN	R/W	Output Compare Channel2 Buffer Enable
14:12	OC2MOD	R/W	Output Compare Channel1 Mode
15	OC2CEN	R/W	Output Compare Channel2 Clear Enable

Input capture mode:

Field	Name	•		
Field	Name	R/W	Description	
			Capture/Compare Channel 1 Select	
			00: CC1 channel is output	
			01: CC1 channel is input, and IC1 is mapped on TI1	
1:0	CC1SEL	R/W	10: CC1 channel is input, and IC1 is mapped on TI2	
			11: CC1 channel is input, and IC1 is mapped on TRC, and only works in internal trigger input	
			Note: This bit can be written only when the channel is closed	
			(TMRx_CCEN register CC1EN=0).	
			Input Capture Channel 1 Perscaler Configure	
			00: PSC=1	
3:2	IC1PSC	R/W	01: PSC=2	
0.2	1011 00		10: PSC=4	
			11: PSC=8	
			PSC is prescaled factor, which triggers capture once every PSC events.	
			Input Capture Channel 1 Filter Configuration	
			0000: Filter disabled, sampling by f _{DTS}	
			0001: DIV=1,N=2	
			0010: DIV=1,N=4	
			0011: DIV=1,N=8	
7:4	IC1F	R/W	0100: DIV=2,N=6	
			0101: DIV=2,N=8	
			0110: DIV=4, N=6	
			0111: DIV=4, N=8	
			1000: DIV=8, N=6	
			1001: DIV=8,N=8	

Field	Name	R/W	Description	
			1010: DIV=16, N=5	
			1011: DIV=16, N=6	
			1100: DIV=16, N=8	
			1101: DIV=32,N=5	
			1110: DIV=32,N=6	
			1111: DIV=32,N=8	
			Sampling frequency=timer clock frequency/DIV; the filter length=N, indicating that a jump is generated by every N events.	
			Capture/Compare Channel 2 Select	
			00: CC2 channel is output	
			01: CC2 channel is input, and IC2 is mapped on TI1	
9:8	CC2SFI	R/W	10: CC2 channel is input, and IC2 is mapped on TI2	
0.0	CCZSEL		11: CC2 channel is input, and IC2 is mapped on TRC, and only works in internal trigger input	
			Note: This bit can be written only when the channel is closed (TMRx_CCEN register CC2EN=0).	
11:10	IC2PSC	R/W	Input Capture Channel 2 Perscaler Configuration	
15:12	IC2F	R/W	Input Capture Channel 2 Filter Configuration	

15.6.8 Capture/Compare mode register 2 (TMRx_CCM2)

Offset address: 0x1C Reset value: 0x0000

Refer to the description of the above CCM1 register.

Output compare mode:

Field	Name	R/W	Description
1:0	CC3SEL	R/W	Capture/Compare Channel 1 Selection This bit defines the input/output direction and the selected input pin. 00: CC3 channel is output 01: CC3 channel is input, and IC3 is mapped on TI3 10: CC3 channel is input, and IC3 is mapped on TI4 11: CC3 channel is input, and IC3 is mapped on TRC, and only works in internal trigger input Note: This bit can be written only when the channel is closed (TMRx_CCEN register CC3EN=0).
2	OC3FEN	R/W	Output Compare Channel3 Fast Enable 0: Disable 1: Enable This bit is used to improve the response of the capture/compare output to the trigger input event.
3	OC3PEN	R/W	Output Compare Channel3 Preload Enable
6:4	OC3MOD	R/W	Output Compare Channel3 Mode Configure
7	OC3CEN	R/W	Output Compare Channel3 Clear Enable 0: OC3REF is unaffected by ETRF input. 1: When high level of ETRF input is detected, OC1REF=0

Field	Name	R/W	Description
9:8	CC4SEL	R/W	Capture/Compare Channel 4 Selection This bit defines the input/output direction and the selected input pin. 00: CC4 channel is output 01: CC4 channel is input, and IC4 is mapped on TI4 10: CC4 channel is input, and IC4 is mapped on TI3 11: CC4 channel is input, and IC4 is mapped on TRC, and only works in internal trigger input Note: This bit can be written only when the channel is closed (TMRx_CCEN register CC4EN=0).
10	OC4FEN	R/W	Output Compare Channel4 Preload Enable
11	OC4PEN	R/W	Output Compare Channel4 Buffer Enable
14:12	OC4MOD	R/W	Output Compare Channel4 Mode Configure
15	OC4CEN	R/W	Output Compare Channel4 Clear Enable

Input capture mode:

Field	Name	R/W	Description
1:0	CC3SEL	R/W	Capture/Compare Channel 3 Select 00: CC3 channel is output 01: CC3 channel is input, and IC3 is mapped on TI3 10: CC3 channel is input, and IC3 is mapped on TI4 11: CC3 channel is input, and IC3 is mapped on TRC, and only works in internal trigger input Note: This bit can be written only when the channel is closed (TMRx_CCEN register CC3EN=0).
3:2	IC3PSC	R/W	Input Capture Channel 3 Perscaler Configuration 00: PSC=1 01: PSC=2 10: PSC=4 11: PSC=8 PSC is prescaled factor, which triggers capture once every PSC events.
7:4	IC3F	R/W	Input Capture Channel 3 Filter Configuration
9:8	CC4SEL	R/W	Capture/Compare Channel 4 Select 00: CC4 channel is output 01: CC4 channel is input, and IC4 is mapped on TI4 10: CC4 channel is input, and IC4 is mapped on TI3 11: CC4 channel is input, and IC4 is mapped on TRC, and only works in internal trigger input Note: This bit can be written only when the channel is closed (TMRx_CCEN register CC4EN=0).
11:10	IC4PSC	R/W	Input Capture Channel 4 Perscaler Configuration
15:12	IC4F	R/W	Input Capture Channel 4 Filter Configuration

15.6.9 Enable capture/compare channel register (TMRx_CCEN)

Offset address: 0x20 Reset value: 0x0000

Field	Name	R/W	Description
0	CC1EN	R/W	Capture/Compare Channel 1 Output Enable When the capture/compare channel 1 is configured as output: 0: Output is disabled 1: Output is enabled When the capture/compare channel 1 is configured as input: This bit determines whether the value CNT of the counter can be captured and enter TMRx_CC1 register 0: Capture is disabled 1: Capture is enabled
1	CC1POL	R/W	Capture/Compare Channel 1 Output Polarity Configure When CC1 channel is configured as output: 0: OC1 high level is valid 1: OC1 low level is valid When CC1 channel is configured as input: 0: Phase not reversed: capture at the rising edge of IC1; phase not reversed when IC1 is used as external trigger. 1: Phase reversed, capature at the falling edge of ICC1; phase reversed when IC1 is used as external trigger. Note: When the protection level is 2 or 3, this bit cannot be modified
3:2	Reserved		
4	CC2EN	R/W	Capture/Compare Channel2 Output Enable Refer to CCEN_CC1EN
5	CC2POL	R/W	Capture/Compare Channel2 Output Polarity Configure Refer to CCEN_CC1POL
7:6			Reserved
8	CC3EN	R/W	Capture/Compare Channel3 Output Enable Refer to CCEN_CC1EN
9	CC3POL	R/W	Capture/Compare Channel3 Output Polarity Configure Refer to CCEN_CC1POL
11:10	Reserved		
12	CC4EN	R/W	Capture/Compare Channel4 Output Enable Refer to CCEN_CC1EN
13	CC4POL	R/W	Capture/Compare Channel4 Output Polarity Refer to CCEN_CC1POL
15:14			Reserved

Table 69 Output Control Bit of Standard OCx Channel

CCxEN bit	OCx output state
0	Output is disabled (OCx=0, OCx_EN=0)
1	OCx=OCxREF+polarity, OCx_EN=1

Note: The state of external I/O pin connected to the standard OCx channel depends on the state of the OCx channel and the GPIO and AFIO registers.

15.6.10 Counter register (TMRx_CNT)

Offset address: 0x24 Reset value: 0x0000

Field	Name	R/W	Description
15:0	CNT	R/W	Counter Value
31:16	CNT	R/W	Counter Value (only TMR2/TMR5)

15.6.11 Prescaler register (TMRx_PSC)

Offset address: 0x28 Reset value: 0x0000

Field	Name	R/W	Description
15:0	DSC.	R/W	Prescaler Value
13.0	PSC	Clock frequency of counter (CK_CNT)=fck_Psc/(PSC+1)	Clock frequency of counter (CK_CNT)=fck_Psc/(PSC+1)

15.6.12 Auto reload register (TMRx_AUTORLD)

Offset address: 0x2C Reset value: 0xFFFF

Field	Name	R/W	Description
15:0	AUTORLD	R/W	Auto Reload Value When the value of auto reload is empty, the counter will not count.
31:16	AUTORLD	R/W	Auto Reload Value (only TMR2/TMR5)

15.6.13 Channel 1 capture/compare register (TMRx_CC1)

Offset address: 0x34 Reset value: 0x0000

Field	Name	R/W	Description
15:0	CC1		Capture/Compare Channel 1 Value When the capture/compare channel 1 is configured as input mode: CC1 contains the counter value transmitted by the last input capture channel 1 event. When the capture/compare channel 1 is configured as output mode: CC1 contains the current load capture/compare register value Compare the value CC1 of the capture and compare channel 1 with the
10.0			value CNT of the counter to generate the output signal on OC1. When the output compare preload is disabled (OC1PEN=0 for TMRx_CCM1 register), the written value will immediately affect the output comparison results; If the output compare preload is enabled (OC1PEN=1 for TMRx_CCM1 register), the written value will affect the output compare result when an update event is generated.
31:16	CC1	R/W	Capture/Compare Channel 1 Value (only TMR2/TMR5)

15.6.14 Channel 2 capture/compare register (TMRx_CC2)

Offset address: 0x38 Reset value: 0x0000

Field	Name	R/W	Description
15:0	CC2	R/W	Capture/Compare Channel 2 Value Refer to TMRx_CC1
31:16	CC2	R/W	Capture/Compare Channel 2 Value (only TMR2/TMR5) Refer to TMRx_CC1

15.6.15 Channel 3 capture/compare register (TMRx_CC3)

Offset address: 0x3C Reset value: 0x0000

Field	Name	R/W	Description
15:0	CC3	R/W	Capture/Compare Channel 3 Value Refer to TMRx_CC1
31:16	CC3	R/W	Capture/Compare Channel 3 Value (only TMR2/TMR5) Refer to TMRx_CC1

15.6.16 Channel 4 capture/compare register (TMRx_CC4)

Offset address: 0x40 Reset value: 0x0000

Field	Name	R/W	Description
15:0	CC4	R/W	Capture/Compare Channel 4 Value Refer to TMRx_CC1
31:16	CC4	R/W	Capture/Compare Channel 4 Value (only TMR2/TMR5) Refer to TMRx_CC1

15.6.17 DMA control software (TMRx_DCTRL)

Offset address: 0x48 Reset value: 0x0000

Field	Name	R/W	Description	
4:0	DBADDR	R/W	DMA Base Address Setup These bits define the base address of DMA in continuous mode (when reading or writing TMRx_DMADDR register), and DBADDR is defined as the offset from the address of TMRx_CTRL1 register: 00000: TMRx_CTRL1 00001: TMRx_CTRL2	
7:5		Reserved		
12:8	DBLEN	R/W	DMA Burst Transfer Length Setup These bits define the transfer length and transfer times of DMA in continuous mode. The data transferred can be 16 bits and 8 bits. When reading/writing TMRx_DMADDR register, the timer will conduct a continuous transmission; 00000: Transmission once 00001: Transmission twice 00010: Transmission for three times	

Field	Name	R/W	Description	
			10001: Transmission for 18 times	
			The transmission address formula is as follows:	
			Transmission address=TMRx_CTRL1 address (slave address) +DBADDR+DMA index; DMA index=DBLEN	
			For example: DBLEN=7, DBADDR=TMR1_CTRL1 (slave address) means the address of the data to be transmitted, while the address +DBADDR+7 of TMRx_CTRL1 means the address of the data to be written/read,	
			Data transmission will occur to: TMRx_CTRL1 address + seven registers starting from DBADDR.	
			The data transmission will change according to different DMA data length:	
			When the transmission data is set to 16 bits, the data will be transmitted to seven registers	
			When the transmission data is set to 8 bits, the data of the first register is the MSB bit of the first data, the data of the second register is the LSB bit of the first data, and the data will still be transmitted to seven registers.	
15:13		Reserved		

15.6.18 DMA address register of continuous mode (TMRx_DMADDR)

Offset address: 0x4C Reset value: 0x0000

Field	Name	R/W	Description
15:0	DMADDR	R/W	DMA Register for Burst Transfer Read or write operation access of TMRx_DMADDR register may lead to access operation of the register in the following address: TMRx_CTRL1 address + (DBADDR+DMA index) ×4 Wherein: "TMRx_CTRL1 address" is the address of control register 1 (TMRx_CTRL1); "DBADDR" is the base address defined in TMRx_DCTRL register; "DMA index" is the offset automatically controlled by DMA, and it depends on DBLEN defined in TMRx_DCTRL register.

15.6.19 TMR2 option register (MR2_OPT)

Offset address: 0x50 Reset value: 0x0000

Field	Name	R/W	Description	
9:0		Reserved		
11:10	RMPSEL	R/W	Timer2 Internal Trigger 1 Remap Select 00: TMR8_TRGOUT 01: PTP trigger output is connected to TMR2_ITR1 10: OTG_FS SOF is connected to TMR2_ITR1 input 11: OTG_HS1 SOF is connected to TMR2_ITR1 input Note: Clear through software	
15:12		Reserved		

15.6.20 TMR5 option register (TMR5_OPT)

Offset address: 0x50 Reset value: 0x0000

Field	Name	R/W	Description	
5:0		Reserved		
7:6	RMPSEL	R/W	Timer5 Channel4 Input Remap Select 00: TMR5 Channel 4 is connected to GPIO 01: LSICLK internal clock is connected to TMR5_CH 4 input for calibration 10: LSECLK internal clock is connected to TMR5_CH4 input for calibration 11: RTC wake-up interrupt is connected to TMR5_CH4 input for calibration Note: Clear through software	
15:8	Reserved			

16 General-purpose timer (TMR9/10/11/12/13/14)

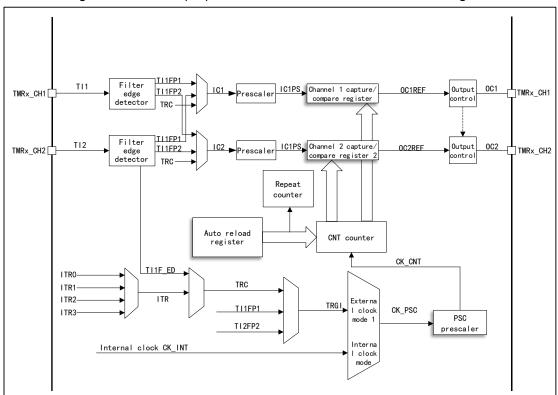
16.1 Introduction

The general-purpose timer takes the time base unit as the core, and has the functions of input capture and output compare, and can be used to measure the pulse width, frequency and duty cycle, and generate the output waveform. It includes a 16-bit auto reload counter (realize count-up, count-down and centeraligned count).

16.2 Main characteristics of TMR9/12

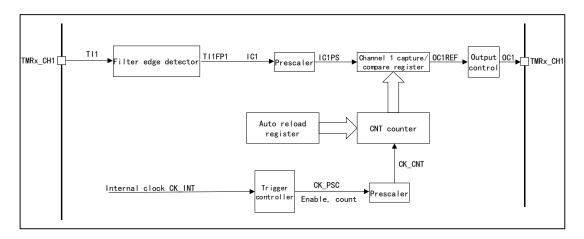
- (1) Timebase unit
 - Counter: 16-bit counter, count-up, count-down and center-aligned count
 - Prescaler: 16-bit programmable prescaler
 - Auto reloading function
- (2) Clock source
 - Internal clock
- (3) Timer function
 - Input capture
 - Output compare
 - PWM output mode
 - Forced output mode
 - Single-pulse mode output
- (4) Master/Slave mode controller of timer
 - Timers can be synchronized and cascaded
 - Support multiple slave modes and synchronization signals
- (5) Interrupt and DMA request event
 - Update event (counter overrun/underrun, counter initialization)
 - Input capture
 - Output compare

16.3 Main characteristics of TMR10/11/13/14


- (1) Timebase unit
 - Counter: 16-bit counter, count-up, count-down and center-aligned count
 - Prescaler: 16-bit programmable prescaler
 - Auto reloading function
- (2) Clock source

- Internal clock
- (3) Timer function
 - Input capture
 - Output compare
 - PWM output mode
 - Forced output mode
 - Single-pulse mode output
- (4) Interrupt and DMA request event
 - Update event (counter overrun/underrun, counter initialization)
 - Input capture
 - Output compare

16.4 TMR9/12 structure block diagram


Figure 54 General-purpose Timer TMR9/12 Structure Block Diagram

16.5 TMR10/11/13/14 structure block diagram

Figure 55 General-purpose Timer TMR10/11/13/14 Structure Block Diagram

16.6 Functional description

16.6.1 Clock source

Internal clock

It is TMRx_CLK from RCM, namely the driving clock of the timer; when the slave mode controller is disabled, the clock source CK_PSC of the prescaler is driven by the internal clock CK_INT.

16.6.2 Timebase unit

The time base unit in the general-purpose timer contains three registers

- 16-bit counter register (CNT)
- 16-bit auto reload register (AUTORLD)
- 16-bit prescaler register (PSC)

Counter CNT

There are three counting modes for the counter in the general-purpose timer

- Count-up mode
- Count-down mode
- Center-aligned mode

Count-up mode

Set to the count-up mode by CNTDIR bit of configuration control register (TMRx CTRL1).

When the counter is in count-up mode, the counter will count up from 0; every time a pulse is generated, the counter will increase by 1 and when the value of

the counter (TMRx_CNT) is equal to the value of the auto reload (TMRx_AUTORLD), the counter will start to count again from 0, a count-up overrun event will be generated, and the value of the auto reload (TMRx_AUTORLD) is written in advance.

When the counter overruns, an update event will be generated. At this time, the repeat count register, the auto reload register and the prescaler register will be updated. The update event can be disabled by UD bit of configuration control register TMRx_CTRL1.

The figure below is Timing Diagram when Division Factor is 1 or 2 in Count-up Mode

CK PSC CNT EN PSC=1 CK_CNT 22 26 27 23 Counter register Update event PSC=2 CK_CNT 0003 0000 0001 0002 0024 0025 0026 Counter register Counter overrun Update event

Figure 56 Timing Diagram when Division Factor is 1 or 2 in Count-up Mode

Count-down mode

Set to the count-down mode by CNTDIR bit of configuration control register (TMRx CTRL1).

When the counter is in count-down mode, the counter will start to count down from the value of the auto reload (TMRx_AUTORLD); every time a pulse is generated, the counter will decrease by 1 and when it becomes 0, the counter

will start to count again from (TMRx_AUTORLD), meanwhile, a count-down overrun event will be generated, and the value of the auto reload (TMRx_AUTORLD) is written in advance.

When the counter overruns, an update event will be generated. At this time, the repeat count register, the auto reload register and the prescaler register will be updated. The update event can be disabled by configuring the UD bit of the TMRx_CTRL1 register.

The figure below is Timing Diagram when Division Factor is 1 or 2 in Countdown Mode.

CK PSC CNT EN PSC=1 CK_CNT 05 06 Counter register Counter overrun Update event PSC=2 CK CNT 0002 0001 0026 0025 0024 0023 0000 Counter register Counter overrun Update event

Figure 57 Timing Diagram when Division Factor is 1 or 2 in Count-down Mode

Center-aligned mode

Set to the center-aligned mode by CNTDIR bit of configuration control register (TMRx CTRL1).

When the counter is in center-aligned mode, the counter counts up from 0 to the value of auto reload (TMRx_AUTORLD), then counts down to 0 from the value of the auto reload (TMRx_AUTORLD), which will repeat; in counting up, when

the counter value is (AUTORLD-1), a counter overrun event will be generated; in counting down, when the counter value is 1, a counter underrun event will be generated.

The figure below is Timing Diagram when Division Factor is 1 or 2 in Centeraligned Mode

CK_PSC CNT EN PSC=1 CK_CNT Counter register Counter underrun Counter overrun Update event PSC=2 CK_CNT 0003 0002 0000 0001 0002 0001 Counter register Counter overrun

Figure 58 Timing Diagram when Division Factor is 1 or 2 in Center-aligned Mode

Prescaler PSC

Update event

The prescaler is 16 bits and programmable, and it can divide the clock frequency of the counter to any value between 1 and 65536 (controlled by TMRx_PSC register), and after frequency division, the clock will drive the counter CNT to count. The prescaler has a buffer, which can be changed during running.

16.6.3 Input capture

Input capture channel

The general-purpose timer has four independent capture/compare channels, each of which is surrounded by a capture/compare register.

In the input capture, the measured signal will enter from the external pin T1/2/3/4 of the timer, first pass through the edge detector and input filter, and then into the capture channel. Each capture channel has a corresponding capture register. When the capture occurs, the value of the counter CNT will be latched in the capture register CCx. Before entering the capture register, the signal will pass through the prescaler, which is used to set how many events to capture at a time.

Input capture application

Input capture is used to capture external events, and can give the time flag to indicate the occurrence time of the event and measure the pulse jump edge events (measure the frequency or pulse width), for example, if the selected edge appears on the input pin, the TMRx_CCx register will capture the current value of the counter and the CCxIFLG bit of the state register TMRx_STS will be set to 1; if CCxIEN=1, an interrupt will be generated.

In capture mode, the timing, frequency, period and duty cycle of a waveform can be measured. In the input capture mode, the edge selection is set to rising edge detection. When the rising edge appears on the capture channel, the first capture occurs, at this time, the value of the counter CNT will be latched in the capture register CCx; at the same time, it will enter the capture interrupt, a capture will be recorded in the interrupt service program and the value will be recorded. When the next rising edge is detected, the second capture occurs, the value of counter CNT will be latched in capture register CCx again, at this time, it will enter the capture interrupt again, the value of capture register will be read, and the cycle of this pulse signal will be obtained through capture.

16.6.4 Output compare

There are eight modes of output compare: freeze, channel x is valid level when matching, channel x is invalid level when matching, flip, force is invalid, force is valid, PWM mode 1 and PWM mode 2, which are configured by OCxMOD bit in TMRx_CCMx register and can control the waveform of output signal in output compare mode.

Output compare application

In the output compare mode, the position, polarity, frequency and time of the pulse generated by the timer can be controlled.

When the value of the counter is equal to that of the capture/compare register, the channel output can be set as high level, low level or flip by configuring the OCxMOD bit in TMRx_CCMx register and the CCxPOL bit in the output polarity TMRx_CCEN register.

When CCxIFLG=1 in TMRx_STS register, if CCxIEN=1 in TMRx_DIEN register, an interrupt will be generated; if CCDSEL=1 in TMRx_CTRL2 register, DMA

request will be generated.

16.6.5 PWM input mode (only applicable to TMR9/12)

PWM input mode is a particular case of input capture.

In PWM input mode, as only TI1FP1 and TI1FP2 are connected to the slave mode controller, input can be performed only through the channels TMRx_CH1 and TMRx_CH2, which need to occupy the capure registers of CH1 and CH2.

In the PWM input mode, the PWM signal enters from TMRx_CH1, and the signal will be divided into two channels, one can measure the cycle and the other can measure the duty cycle. In the configuration, it is only required to set the polarity of one channel, and the other will be automatically configured with the opposite polarity.

In this mode, the slave mode controller should be configured as the reset mode (SMFSEL bit of TMRx_SMCTRL register).

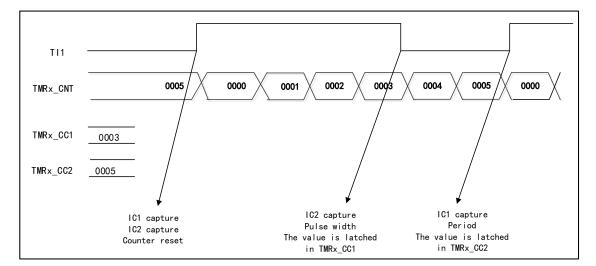


Figure 59 PWM Input Mode Timing Diagram

16.6.6 **PWM output mode**

PWM mode is an adjustable pulse signal output by the timer. The pulse width of the signal is determined by the value of the compare register CCx, and the cycle is determined by the value of the auto reload AUTORLD.

PWM output mode contains PWM mode 1 and PWM mode 2; PWM mode 1 and PWM mode 2 are divided into count-up, count-down and edge alignment counting; in PWM mode 1, if the value of the counter CNT is less than the value of the compare register CCx, the output level will be valid; otherwise, it will be invalid.

Set the timing diagram in PWM mode 1 when CCx=5, AUTORLD=7.

Figure 460 PWM1 Center-aligned Mode Timing Diagram

In PWM mode 2, if the value of the counter CNT is less than that of the compare register CCx, the output level will be invalid; otherwise, it will be valid.

Set the timing diagram in PWM mode 2 when CCx=5, AUTORLD=7

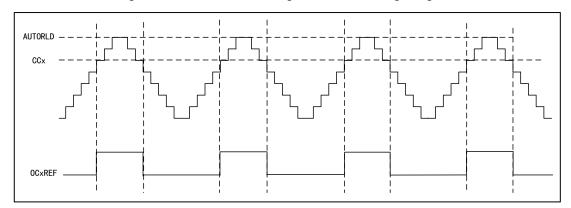
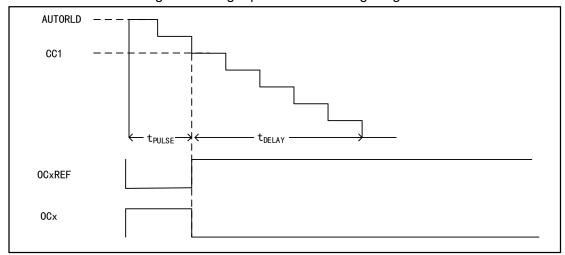


Figure 61 PWM2 Center-aligned Mode Timing Diagram

16.6.7 Single-pulse mode


The single-pulse mode is a special case of timer compare output, and is also a special case of PWM output mode.

Set SPMEN bit of TMRx_CTRL1 register, and select the single-pulse mode. After the counter is started, a certain number of pulses will be output before the update event occurs. When an update event occurs, the counter will stop counting, and the subsequent PWM waveform output will no longer be changed.

After a certain controllable delay, a pulse with controllable pulse width is generated in single-pulse mode through the program. The delay time is defined by the value of TMRx_CCx register; in the count-up mode, the delay time is CCx and the pulse width is AUTORLD-CCx; in the count-down mode, the delay time is AUTORLD-CCx and the pulse width is CCx.

Figure 62 Single-pulse Mode Timing Diagram

16.6.8 Forced output mode

In the forced output mode, the comparison result is ignored, and the corresponding level is directly output according to the configuration instruction.

- CCxSEL=00 for TMRx CCMx register, set CCx channel as output
- OCxMOD=100/101 for TMRx_CCMx register, set to force OCxREF signal to invalid/valid state

In this mode, the corresponding interrupt and DMA request will still be generated.

16.7 TMR9/12 register address mapping

In the following table, all registers of TMR9/12 are mapped to a 16-bit addressable (address) space.

Table 70 TMR9/12 Register Address Mapping

Register name	Description	Offset address
TMRx_CTRL1	Control register 1	0x00
TMRx_CTRL2	Control register 2	0x04
TMRx_SMCTRL	Slave mode control register	0x08
TMRx_DIEN	DMA/Interrupt enable register	0x0C
TMRx_STS	State register	0x10
TMRx_CEG	Control event generation register	0x14
TMRx_CCM1	Capture/Compare mode register 1	0x18
TMRx_CCEN	Capture/Compare enable register	0x20
TMRx_CNT	Counter register	0x24
TMRx_PSC	Prescaler register	0x28

Register name	Description	Offset address
TMRx_AUTORLD	Auto reload register	0x2C
TMRx_CC1	Channel 1 capture/compare register	0x34
TMRx_CC2	Channel 2 capture/compare register	0x38

16.8 TMR9/12 register functional description

16.8.1 Control register 1 (TMRx_CTRL1)

Offset address: 0x00 Reset value: 0x0000

Field	Name	R/W	Description	
0	CNTEN	R/W	Counter Enable 0: Disable 1: Enable When the timer is configured as external clock, gated mode and encoder mode, it is required to write 1 to the bit by software to start regular work; when it is configured as the trigger mode, it can be written to 1 by hardware.	
1	UD	R/W	Update Disable Update event can cause AUTORLD, PSC and CCx to generate the value of update setting. 0: Update event is allowed (UEV) An update event can occur in any of the following situations: The counter overruns/underruns; Set UEG bit; Update generated by slave mode controller. 1: Update event is disabled	
2	URSSEL	R/W	Update Request Source Select If interrupt or DMA is enabled, the update event can generate update interrupt or DMA request. Different update request sources can be selected through this bit. 0: The counter overruns or underruns Set UEG bit Update generated by slave mode controller 1: The counter overruns or underruns	
3	SPMEN	R/W	Single Pulse Mode Enable When an update event is generated, the output level of the channel can be changed; in this mode, the CNTEN bit will be cleared, the counter will be stopped, and the output level of the channel will not be changed. 0: Disable 1: Enable	
6:4		Reserved		
7	ARPEN	R/W	Auto-reload Preload Enable When the buffer is disabled, the program modification TMRx_AUTORLD will immediately modify the values loaded to the counter; when the buffer is enabled, the program modification TMRx_AUTORLD will modify the values loaded to the counter in the next update event.	

Field	Name	R/W Description	
			0: Disable
			1: Enable
9:8	CLKDIV	R/W	Clock Divide Factor For the configuration of dead time and digital filter, CK_INT provides the clock, and the dead time and the clock of the digital filter can be adjusted by setting this bit. 00: t_DTS=t_{CK_INT} 01: t_DTS=2×t_{CK_INT} 10: t_DTS=4×t_{CK_INT} 11: Reserved
15:10	Reserved		

16.8.2 Control register 2 (TMRx_CTRL2)

Offset address: 0x04 Reset value: 0x0000

Field	Name	R/W	Description		
3:0		Reserved			
6:4	MMSEL	R/W	Master Mode Signal Select The signals of timers working in master mode can be used for TRGO, which affects the work of timers in slave mode and cascaded with master timer, and specifically affects the configuration of timers in slave mode. 000: Reset; the reset signal of master mode timer is used for TRGO 001: Enable; the counter enable signal of master mode timer is used for TRGO 010: Update; the update event of master mode timer is used for TRGO 011: Compare pulses; when the master mode timer captures/compares successfully (CCxIFLG=1), a pulse signal is output for TRGO 100: Compare mode 1; OC1REF is used to trigger TRGO 101: Compare mode 2; OC2REF is used to trigger TRGO 110: Compare mode 4; OC3REF is used to trigger TRGO		
15:7	Reserved				

16.8.3 Slave mode control register (TMRx_SMCTRL)

Offset address: 0x08 Reset value: 0x0000

Field	Name	R/W	Description
2:0	SMFSEL	R/W	Slave Mode Function Select 000: Disable the slave mode, the timer can be used as master mode timer to affect the work of slave mode timer; if CTRL1_CNTEN=1, the prescaler is directly driven by the internal clock. 001: Encoder mode 1; according to the level of TI1FP1, the counter counts at the edge of TI2FP2. 010: Encoder mode 2; according to the level of TI2FP2, the counter counts at the edge of TI1FP1.

Field	Name	R/W	Description
			011: Encoder mode 3; according to the input level of another signal, the counter counts at the edge of TI1FP1 and TI2FP2.
			100: Reset mode; the slave mode timer resets the counter after receiving the rising edge signal of TRGI and generates the signal to update the register.
			101: Gated mode; the slave mode timer starts the counter to work after receiving the TRGI high level signal; it stops the counter when receiving TRGI low level; when receiving TRGI high level signal again, the timer will continue to work; the counter is not reset during the whole period.
			110: Trigger mode, the slave mode timer starts the counter to work after receiving the rising edge signal of TRGI.
			111: External clock mode 1; select the rising edge signal of TRGI as the clock source to drive the counter to work.
3			Reserved
6:4	TRGSEL	R/W	Trigger Input Signal Select In order to avoid false edge detection when changing the bit value, it must be changed when SMFSEL=0. 000: Internal trigger ITR0 001: Internal trigger ITR1 010: Internal trigger ITR2 011: Internal trigger ITR3 100: Channel 1 input edge detector TIF_ED 101: Channel 1 post-filtering timer input TI1FP1 110: Channel 2 post-filtering timer input TI2FP2 111: External trigger input (ETRF)
7	MSMEN	R/W	Master/slave Mode Enable 0: Invalid 1: Enable the master/slave mode
15:8		•	Reserved

16.8.4 **DMA/Interrupt enable register (TMRx_DIEN)**

Offset address: 0x0C Reset value: 0x0000

Field	Name	R/W	Description		
0	UIEN	R/W	Update interrupt Enable 0: Disable 1: Enable		
1	CC1IEN	R/W	Capture/Compare Channel1 Interrupt Enable 0: Disable 1: Enable		
2	CC2IEN	R/W	Capture/Compare Channel2 Interrupt Enable 0: Disable 1: Enable		
5:3	Reserved				

Field	Name	R/W	Description		
6	TRGIEN	R/W	Trigger interrupt Enable 0: Disable 1: Enable		
15:7		Reserved			

16.8.5 State register (TMRx_STS)

Offset address: 0x10 Reset value: 0x0000

	Reset value:	1	
Field	Name	R/W	Description
			Update Event Interrupt Generate Flag
			0: Update event interrupt does not occur
			1: Update event interrupt occurs
			When the counter value is reloaded or reinitialized, an update event will be generated. The bit is set to 1 by hardware and cleared by software; update events are generated in the following situations:
0	UIFLG	RC_W0	(1) UD=0 on TMRx_CTRL1 register, and when the value of the repeat counter overruns/underruns, an update event will be generated;
			(2) URSEL=0 and UD=0 on TMRx_CTRL1 register, configure UG = 1 on TMRx_CEG register to generate update event, and the counter needs to be initialized by software;
			(3) URSEL=0 and UD=0 on TMRx_CTRL1 register, generate update event when the counter is initialized by trigger event.
			Capture/Compare Channel1 Interrupt Flag
			When the capture/compare channel 1 is configured as output:
			0: No matching occurred
			1: The value of TMRx_CNT matches the value of TMRx_CC1
1	CC1IFLG	RC_W0	When the capture/compare channel 1 is configured as input:
		_	0: Input capture did not occur
			1: Input capture occurred
			When a capture event occurs, the bit is set to 1 by hardware, and it can be cleared by software or cleared when reading TMRx_CC1 register.
2	CC2IFLG	RC_W0	Capture/Compare Channel2 new Interrupt Flag Refer to STS_CC1IFLG
5:3			Reserved
			Trigger Event Interrupt Generate Flag
			0: Trigger event interrupt did not occur
6	TRGIFLG	RC_W0	1: Trigger event interrupt occurred
		_	After Trigger event is generated, this bit is set to 1 by hardware and cleared by software.
8:7			Reserved
			Capture/compare Channel1 Repetition Capture Flag
9	CC1RCFLG	RC_W0	0: Repeat capture does not occur
			1: Repeat capture occurs

Field	Name	R/W	Description		
			The value of the counter is captured to TMRx_CC1 register, and CC1IFLG=1; this bit is set to 1 by hardware and cleared by software only when the channel is configured as input capture.		
10	CC2RCFLG	RC_W0	Capture/compare Channel2 Repetition Capture Flag Refer to STS_CC1RCFLG		
15:11	Reserved				

16.8.6 Control event generation register (TMRx_CEG)

Offset address: 0x14 Reset value: 0x0000

Field	Name	R/W	Description				
0	UEG	W	Update Event Generate 0: Invalid 1: Initialize the counter and generate the update event This bit is set to 1 by software, and cleared by hardware. Note: When an update event is generated, the counter of the prescaler will be cleared, but the prescaler factor remains unchanged. In the count-down mode, the counter reads the value of TMRx_AUTORLD; in center-aligned mode or count-up mode, the counter will be cleared to 0.				
1	CC1EG	W	Capture/Compare Channel1 Event Generation 0: Invalid 1: Capture/Compare event is generated This bit is set to 1 by software and cleared automatically by hardware. If Channel 1 is in output mode: When CC1IFLG=1, if CC1IEN and CC1DEN bits are set, the corresponding interrupt and DMA request will be generated. If Channel 1 is in input mode: The value of the capture counter is stored in TMRx_CC1 register; configure CC1IFLG=1, and if CC1IEN and CC1DEN bits are also set, the corresponding interrupt and DMA request will be generated; at this time, if CC1IFLG=1, it is required to configure CC1RCFLG=1.				
2	CC2EG	W	Capture/Compare Channel2 Event Generation Refer to CC1EG description				
5:3		Reserved					
6	TEG	W	Trigger Event Generate 0: Invalid 1: Trigger event is generated This bit is set to 1 by software and cleared automatically by hardware.				
15:7			Reserved				

16.8.7 Capature/Compare mode register 1 (TMRx_CCM1)

Offset address: 0x18 Reset value: 0x0000

The timer can be configured as input (capture mode) or output (compare mode) by CCxSEL bit. The functions of other bits of the register are different in input and output modes, and the functions of the same bit are different in output

mode and input mode. The OCX in the register describes the function of the channel in the output mode, and the ICx in the register describes the function of the channel in the input mode.

Output compare mode:

Field	Name	R/W	Description
1:0	CC1SEL	R/W	Capture/Compare Channel 1 Select This bit defines the input/output direction and the selected input pin. 00: CC1 channel is output 01: CC1 channel is input, and IC1 is mapped on TI1 10: CC1 channel is input, and IC1 is mapped on TI2 11: CC1 channel is input, and IC1 is mapped on TRC, and only works in internal trigger input Note: This bit can be written only when the channel is closed (TMRx_CCEN register CC1EN=0).
2	OC1FEN	R/W	Output Compare Channel1 Fast Enable 0: Disable 1: Enable This bit is used to improve the response of the capture/compare output to the trigger input event.
3	OC1PEN	R/W	Output Compare Channel1 Preload Enable 0: Preloading function is disabled; write the value of TMRx_CC1 register through the program and it will work immediately. 1: Preloading function is enabled; write the value of TMRx_CC1 register through the program and it will work after an update event is generated. Note: When the protection level is 3 and the channel is configured as output, this bit cannot be modified. When the preload register is uncertain, PWM mode can be used only in single pulse mode (SPMEN=1); otherwise, the following output compare result is uncertain.
6:4	OC1MOD	R/W	Output Compare Channel1 Mode Configure 000: Freeze The output compare has no effect on OC1REF 001: The output value is high when matching. When the value of counter CNT matches the value CCx of capture/compare register, OC1REF will be forced to be at high level 010: The output value is low when matching. When the value of the counter matches the value of the capture/compare register, OC1REF will be forced to be at low level 011: Output flaps when matching. When the value of the counter matches the value of the capture/compare register, flap the level of OC1REF 100: The output is forced to be ow Force OC1REF to be at low level 101: The output is forced to be high. Force OC1REF to be at high level 110: PWM mode 1 (set to high when the counter value <output (set="" 111:="" 2="" compare="" counter="" high="" low)="" mode="" otherwise,="" pwm="" set="" the="" to="" value="" value;="" when="">output compare value; otherwise, set to low) Note: When the protection level is 3 and the channel is configured as output, this bit cannot be modified. In PWM modes 1 and 2, the OC1REF level changes when the compare result changes or when the output compare mode changes from freeze mode to PWM mode.</output>
7		1	Reserved

Field	Name	R/W	Description	
9:8	CC2SEL	R/W	Capture/Compare Channel2 Select This bit defines the input/output direction and the selected input pin. 00: CC2 channel is output 01: CC2 channel is input, and IC2 is mapped on TI2 10: CC2 channel is input, and IC2 is mapped on TI1 11: CC2 channel is input, and IC2 is mapped on TRC, and only works in internal trigger input Note: This bit can be written only when the channel is closed (TMRx_CCEN register CC2EN=0).	
10	OC2FEN	R/W	Output Compare Channel2 Preload Enable	
11	OC2PEN	R/W	Output Compare Channel2 Buffer Enable	
14:12	OC2MOD	R/W	Output Compare Channel2 Mode	
15	Reserved			

Input capture mode:

	iliput ca		
Field	Name	R/W	Description
			Capture/Compare Channel 1 Select
			00: CC1 channel is output
			01: CC1 channel is input, and IC1 is mapped on TI1
1:0	CC1SEL	R/W	10: CC1 channel is input, and IC1 is mapped on TI2
			11: CC1 channel is input, and IC1 is mapped on TRC, and only works in
			internal trigger input
			Note: This bit can be written only when the channel is closed (TMRx_CCEN bit CC1EN=0).
			Input Capture Channel 1 Perscaler Configure
			00: PSC=1
3:2	IC1PSC	R/W	01: PSC=2
3.2	ICTPSC	K/VV	10: PSC=4
			11: PSC=8
			PSC is prescaled factor, which triggers capture once every PSC events.
			Input Capture Channel 1 Filter Configure
			0000: Filter disabled, sampling by f _{DTS}
			0001: DIV=1,N=2
			0010: DIV=1,N=4
			0011: DIV=1,N=8
			0100: DIV=2,N=6
			0101: DIV=2,N=8
7:4	IC1F	R/W	0110: DIV=4,N=6
			0111: DIV=4,N=8
			1000: DIV=8, N=6
			1001: DIV=8, N=8
			1010: DIV=16, N=5
			1011: DIV=16, N=6
			1100: DIV=16, N=8
			1101: DIV=32, N=5
			1110: DIV=32, N=6

Field	Name	R/W	Description
			1111: DIV=32, N=8
			Sampling frequency=timer clock frequency/DIV; the filter length=N, indicating that a jump is generated by every N events.
			Capture/Compare Channel 2 Select
	CC2SEL	SEL R/W	00: CC2 channel is output
			01: CC2 channel is input, and IC2 is mapped on TI1
9:8			10: CC2 channel is input, and IC2 is mapped on TI2
			11: CC2 channel is input, and IC2 is mapped on TRC, and only works in internal trigger input
			Note: This bit can be written only when the channel is closed (TMRx_CCEN register CC2EN=0).
11:10	IC2PSC	R/W	Input Capture Channel 2 Perscaler Configuration
15:12	IC2F	R/W	Input Capture Channel 2 Filter Configuration

16.8.8 Capture/Compare enable register (TMRx_CCEN)

Offset address: 0x20 Reset value: 0x0000

Field	Name	R/W	Description
0	CC1EN	R/W	Capture/Compare Channel1 Output Enable When the capture/compare channel 1 is configured as output: 0: Output is disabled 1: Output is enabled When the capture/compare channel 1 is configured as input: This bit determines whether the value CNT of the counter can be captured and enter TMRx_CC1 register 0: Capture is disabled 1: Capture is enabled
1	CC1POL	R/W	Capture/Compare Channel1 Output Polarity Configure When CC1 channel is configured as output: 0: OC1 high level is valid 1: OC1 low level is valid When CC1 channel is configured as input: CC1POL and CC1NPOL control the polarity of the triggered or captured signals TI1FP1 and TI2FP1 at the same time 00: Non-phase-inverting/rising edge: TIxFP1 is not reversed phase (triggered in gated and encoder mode), and is captured at the rising edge of TIxFP1 (reset trigger, capture, external clock and trigger mode). 01: Inverted phase/Falling edge: TIxFP1 is reversed phase (triggered in gated and encoder mode), and is captured at the rising edge of TIxFP1 (reset trigger, capture, external clock and trigger mode). 10: Reserved 11: Non-phase-inverting/Rising and falling edges: TIxFP1 is not reversed phase (triggered in gated mode, cannot be used in encoder mode), and is captured at the rising edge of TIxFP1 (reset trigger, capture, external clock and trigger mode).

Field	Name	R/W	Description	
2	Reserved			
3	CC1NPOL	R/W	Capture/Compare Channel1 Output Polarity Configure When CC1 channel is configured as output: CC1NPOL remains in cleared state all the time When CC1 channel is configured as input: This bit and CC1POL control the polarity of the triggered or captured signals TI1FP1 and TI2FP1 at the same time.	
4	CC2EN	R/W	Capture/Compare Channel2 Output Enable Refer to CCEN_CC1EN	
5	CC2POL	R/W	Capture/Compare Channel2 Output Polarity Configure Refer to CCEN_CC1POL	
6	Reserved			
7	CC2NPOL	R/W	Capture/Compare Channel2 Output Polarity Configure Refer to CCEN_CC1NPOL	
15:8	Reserved			

Table 71 Output Control Bit of Standard OCx Channel

CCxEN bit	OCx output state
0	Output is disabled (OCx=0, OCx_EN=0)
1	OCx=OCxREF+polarity, OCx_EN=1

Note: The state of external I/O pin connected to the standard OCx channel depends on the state of the OCx channel and the GPIO and AFIO registers.

16.8.9 Counter register (TMRx_CNT)

Offset address: 0x24 Reset value: 0x0000

Field	Name	R/W	Description
15:0	CNT	R/W	Counter Value

16.8.10 Prescaler register (TMRx_PSC)

Offset address: 0x28 Reset value: 0x0000

Field	Name	R/W	Description
15:0	PSC	R/W	Prescaler Value
13.0	F30	IX/VV	Clock frequency of counter (CK_CNT)=fcK_PSC/(PSC+1)

16.8.11 Auto reload register (TMRx_AUTORLD)

Offset address: 0x2C Reset value: 0xFFFF

Field	Name	R/W	Description
15:0	AUTORLD	R/W	Auto Reload Value When the value of auto reload is empty, the counter will not count.

16.8.12 Channel 1 capture/compare register (TMRx_CC1)

Offset address: 0x34 Reset value: 0x0000

Field	Name	R/W	Description
			Capture/Compare Channel 1 Value
			When the capture/compare channel 1 is configured as input mode:
			CC1 contains the counter value transmitted by the last input capture channel 1 event.
			When the capture/compare channel 1 is configured as output mode:
			CC1 contains the current load capture/compare register value
15:0	CC1	R/W	Compare the value CC1 of the capture and compare channel 1 with the value CNT of the counter to generate the output signal on OC1.
			When the output compare preload is disabled (OC1PEN=0 for TMRx_CCM1 register), the written value will immediately affect the output comparison results;
			If the output compare preload is enabled (OC1PEN=1 for TMRx_CCM1 register), the written value will affect the output compare result when an update event is generated.

16.8.13 Channel 2 capture/compare register (TMRx_CC2)

Offset address: 0x38 Reset value: 0x0000

Field	Name	R/W	Description
15:0	CC2	R/W	Capture/Compare Channel 2 Value Refer to TMRx_CC1

16.9 TMR10/11/13/14 register address mapping

In the following table, all registers of TMR10/11/13/14 are mapped to a 16-bit addressable (address) space.

Table 72 TMR10/11/13/14 Register Address Mapping

Register name	Description	Offset address
TMRx_CTRL1	Control register 1	0x00
TMRx_DIEN	DMA/Interrupt enable register	0x0C
TMRx_STS	State register	0x10
TMRx_CEG	Control event generation register	0x14
TMRx_CCM1	Capture/Compare mode register 1	0x18
TMRx_CCEN	Capture/Compare enable register	0x20
TMRx_CNT	Counter register	0x24
TMRx_PSC	Prescaler register	0x28
TMRx_AUTORLD	Auto reload register	0x2C
TMRx_CC1	Channel 1 capture/compare register	0x34

Register name	Description	Offset address
TMR11_OPT	Option register	0x50

16.10 TMR10/11/13/14 register functional description

16.10.1 Control register 1 (TMRx_CTRL1)

Offset address: 0x00 Reset value: 0x0000

Field	Name	R/W	Description
	1101110		·
0	CNTEN	R/W	Counter Enable 0: Disable 1: Enable When the timer is configured as external clock, gated mode and encoder mode, it is required to write 1 to the bit by software to start regular work; when it is configured as the trigger mode, it can be written to 1 by hardware.
1	UD	R/W	Update Disable Update event can cause AUTORLD, PSC and CCx to generate the value of update setting. 0: Update event is allowed (UEV) An update event can occur in any of the following situations: The counter overruns/underruns; Set UEG bit; Update generated by slave mode controller. 1: Update event is disabled
2	URSSEL	R/W	Update Request Source Select If interrupt or DMA is enabled, the update event can generate update interrupt or DMA request. Different update request sources can be selected through this bit. 0: The counter overruns or underruns Set UEG bit Update generated by slave mode controller 1: The counter overruns or underruns
6:3	Reserved		
			Auto-reload Preload Enable
7	ARPEN	R/W	When the buffer is disabled, the program modification TMRx_AUTORLD will immediately modify the values loaded to the counter; when the buffer is enabled, the program modification TMRx_AUTORLD will modify the values loaded to the counter in the next update event. 0: Disable 1: Enable
9:8	CLKDIV	R/W	Clock Divide Factor For the configuration of dead time and digital filter, CK_INT provides the clock, and the dead time and the clock of the digital filter can be adjusted by setting this bit. 00: tdts=tck_int 10: tdts=4*tck_int

Field	Name	R/W	Description
			11: Reserved
15:10			Reserved

16.10.2 DMA/Interrupt enable register (TMRx_DIEN)

Offset address: 0x0C Reset value: 0x0000

Field	Name	e R/W	Description
0	UIEN	N R/W	Update interrupt Enable 0: Disable 1: Enable
1	CC1IEN	EN R/W	Capture/Compare Channel1 Interrupt Enable 0: Disable 1: Enable
15:2	Reserved		

16.10.3 State register (TMRx_STS)

Offset address: 0x10 Reset value: 0x0000

Field	Name	R/W	Description			
0	UIFLG	RC_W0	Update Event Interrupt Generate Flag 0: Update event interrupt does not occur 1: Update event interrupt occurs When the counter value is reloaded or reinitialized, an update event will be generated. The bit is set to 1 by hardware and cleared by software; update events are generated in the following situations: (1) UD=0 on TMRx_CTRL1 register, and when the value of the repeat counter overruns/underruns, an update event will be generated; (2) URSEL=0 and UD=0 on TMRx_CTRL1 register, configure UG = 1 on TMRx_CEG register to generate update event, and the counter needs to be initialized by software; (3) URSEL=0 and UD=0 on TMRx_CTRL1 register, generate update event when the counter is initialized by trigger event.			
1	CC1IFLG	RC_W0	Capture/Compare Channel1 Interrupt Flag When the capture/compare channel 1 is configured as output: 0: No matching occurred 1: The value of TMRx_CNT matches the value of TMRx_CC1 When the capture/compare channel 1 is configured as input: 0: Input capture did not occur 1: Input capture occurred When a capture event occurs, the bit is set to 1 by hardware, and it can be cleared by software or cleared when reading TMRx_CC1 register.			
8:2	Reserved					

Field	Name	R/W	Description		
9	CC1RCFLG	RC_W0	Capture/compare Channel1 Repetition Capture Flag 0: Repeat capture does not occur 1: Repeat capture occurs The value of the counter is captured to TMRx_CC1 register, and CC1IFLG=1; this bit is set to 1 by hardware and cleared by software only when the channel is configured as input capture.		
15:10	Reserved				

16.10.4 Control event generation register (TMRx_CEG)

Offset address: 0x14 Reset value: 0x0000

Field	Name	R/W	Description		
			Update Event Generate 0: Invalid		
			1: Initialize the counter and generate the update event		
0	UEG	W	This bit is set to 1 by software, and cleared by hardware.		
			Note: When an update event is generated, the counter of the prescaler will be cleared, but the prescaler factor remains unchanged. In the count-down mode, the counter reads the value of TMRx_AUTORLD; in center-aligned mode or count-up mode, the counter will be cleared to 0.		
			Capture/Compare Channel1 Event Generation 0: Invalid		
			1: Capture/Compare event is generated		
			This bit is set to 1 by software and cleared automatically by hardware.		
			If Channel 1 is in output mode:		
1	CC1EG	W	When CC1IFLG=1, if CC1IEN and CC1DEN bits are set, the correspond interrupt and DMA request will be generated.		
			If Channel 1 is in input mode:		
	The value of the capture counter is stored in TMRx_CC1 CC1IFLG=1, and if CC1IEN and CC1DEN bits a	The value of the capture counter is stored in TMRx_CC1 register; configure CC1IFLG=1, and if CC1IEN and CC1DEN bits are also set, the corresponding interrupt and DMA request will be generated; at this time, if CC1IFLG=1, it is required to configure CC1RCFLG=1.			
15:2	Reserved				

16.10.5 Capature/Compare mode register 1 (TMRx_CCM1)

Offset address: 0x18 Reset value: 0x0000

The timer can be configured as input (capture mode) or output (compare mode) by CCxSEL bit. The functions of other bits of the register are different in input and output modes, and the functions of the same bit are different in output mode and input mode. The OCx in the register describes the function of the channel in the output mode, and the ICxx in the register describes the function of the channel in the input mode.

Output compare mode:

Field	Name	R/W	Description		
1:0	CC1SEL	R/W	Capture/Compare Channel 1 Select This bit defines the input/output direction and the selected input pin. 00: CC1 channel is output 01: CC1 channel is input, and IC1 is mapped on TI1 10: CC1 channel is input, and IC1 is mapped on TI2 11: CC1 channel is input, and IC1 is mapped on TRC, and only works in internal trigger input Note: This bit can be written only when the channel is closed (TMRx_CCEN register CC1EN=0).		
2	OC1FEN	R/W	Output Compare Channel1 Fast Enable 0: Disable 1: Enable This bit is used to improve the response of the capture/compare output to the trigger input event.		
3	OC1PEN	R/W	Output Compare Channel1 Preload Enable 0: Preloading function is disabled; write the value of TMRx_CC1 register through the program and it will work immediately. 1: Preloading function is enabled; write the value of TMRx_CC1 register through the program and it will work after an update event is generated. Note: When the protection level is 3 and the channel is configured as output, this bit cannot be modified. When the preload register is uncertain, PWM mode can be used only in single pulse mode (SPMEN=1); otherwise, the following output compare result is uncertain.		
6:4	OC1MOD	R/W	Output Compare Channel1 Mode Configure 000: Freeze The output compare has no effect on OC1REF 001: The output value is high when matching. When the value of counter CNT matches the value CCx of capture/compare register, OC1REF will be forced to be at high level 010: The output value is low when matching. When the value of the counter matches the value of the capture/compare register, OC1REF will be forced to be at low level 011: Output flaps when matching. When the value of the counter matches the value of the capture/compare register, flap the level of OC1REF 100: The output is forced to be ow Force OC1REF to be at low level 101: The output is forced to be high. Force OC1REF to be at high level 110: PWM mode 1 (set to high when the counter value <output (set="" 111:="" 2="" compare="" counter="" high="" low)="" mode="" otherwise,="" pwm="" set="" the="" to="" value="" value;="" when="">output compare value; otherwise, set to low) Note: When the protection level is 3 and the channel is configured as output, this bit cannot be modified. In PWM modes 1 and 2, the OC1REF level changes when the comparison result changes or when the output compare mode changes from freeze mode to PWM mode.</output>		
15:7		Reserved			

Input capture mode:

Field	Name	R/W	Description
1:0	CC1SEL	R/W	Capture/Compare Channel 1 Select 00: CC1 channel is output 01: CC1 channel is input, and IC1 is mapped on TI1 10: CC1 channel is input, and IC1 is mapped on TI2 11: CC1 channel is input, and IC1 is mapped on TRC, and only works in internal trigger input Note: This bit can be written only when the channel is closed (TMRx_CCEN bit CC1EN=0).
3:2	IC1PSC	R/W	Input Capture Channel 1 Perscaler Configure 00: PSC=1 01: PSC=2 10: PSC=4 11: PSC=8 PSC is prescaled factor, which triggers capture once every PSC events.
7:4	IC1F	R/W	Input Capture Channel 1 Filter Configure 0000: Filter disabled, sampling by fbts 0001: DIV=1, N=2 0010: DIV=1, N=4 0011: DIV=1, N=8 0100: DIV=2, N=6 0101: DIV=2, N=8 0110: DIV=4, N=6 0111: DIV=4, N=8 1000: DIV=8, N=6 1001: DIV=8, N=8 1010: DIV=16, N=5 1011: DIV=16, N=5 1101: DIV=16, N=8 1101: DIV=32, N=5 1110: DIV=32, N=6 1111: DIV=32, N=8 Sampling frequency=timer clock frequency/DIV; the filter length=N, indicating that a jump is generated by every N events.
15:8		l	Reserved

16.10.6 Capture/Compare enable register (TMRx_CCEN)

Offset address: 0x20 Reset value: 0x0000

Field	Name	R/W	Description
0	CC1EN	R/W	Capture/Compare Channel1 Output Enable When the capture/compare channel 1 is configured as output: 0: Output is disabled 1: Output is enabled When the capture/compare channel 1 is configured as input: This bit determines whether the value CNT of the counter can be captured and enter TMRx_CC1 register 0: Capture is disabled

Field	Name	R/W	Description
			1: Capture is enabled
1	CC1POL	R/W	Capture/Compare Channel Output Polarity Configure When CC1 channel is configured as output: 0: OC1 high level is valid 1: OC1 low level is valid When CC1 channel is configured as input: CC1POL and CC1NPOL control the polarity of the triggered or captured signals TI1FP1 and TI2FP1 at the same time 00: Non-phase-inverting/rising edge: TIxFP1 is not reversed phase (triggered in gated and encoder mode), and is captured at the rising edge of TIxFP1 (reset trigger, capture, external clock and trigger mode). 01: Inverted phase/Falling edge: TIxFP1 is reversed phase (triggered in gated and encoder mode), and is captured at the rising edge of TIxFP1 (reset trigger, capture, external clock and trigger mode). 10: Reserved 11: Non-phase-inverting/Rising and falling edges: TIxFP1 is not reversed phase (triggered in gated mode, cannot be used in encoder mode), and is captured at the rising edge of TIxFP1 (reset trigger, capture, external clock and trigger mode).
2			Reserved
3	CC1NPOL	R/W	Capture/Compare Channel1 Output Polarity Configure When CC1 channel is configured as output: CC1NPOL remains in cleared state all the time When CC1 channel is configured as input: This bit and CC1POL control the polarity of the triggered or captured signals TI1FP1 and TI2FP1 at the same time.
15:4			Reserved

Table 73 Output Control Bit of Standard OCx Channel

CCxEN bit	OCx output state
0	Output is disabled (OCx=0, OCx_EN=0)
1	OCx=OCxREF+polarity, OCx_EN=1

Note: The state of external I/O pin connected to the standard OCx channel depends on the state of the OCx channel and the GPIO and AFIO registers.

16.10.7 Counter register (TMRx_CNT)

Offset address: 0x24 Reset value: 0x0000

Field	Name	R/W	Description
15:0	CNT	R/W	Counter Value

16.10.8 Prescaler register (TMRx_PSC)

Offset address: 0x28

Reset value: 0x0000

Field	Name	R/W	Description
15:0	5:0 PSC	R/W	Prescaler Value
13.0		TX/ V V	Clock frequency of counter (CK_CNT)=fcK_PSC/(PSC+1)

16.10.9 Auto reload register (TMRx_AUTORLD)

Offset address: 0x2C Reset value: 0xFFFF

Field	Name	R/W	Description
15:0	i:0 AUTORLD	D R/W	Auto Reload Value
13.0	AUTORED	IX/VV	When the value of auto reload is empty, the counter will not count.

16.10.10 Channel 1 capture/compare register (TMRx_CC1)

Offset address: 0x34 Reset value: 0x0000

Field	Name	R/W	Description
15:0	CC1	R/W	Capture/Compare Channel 1 Value When the capture/compare channel 1 is configured as input mode: CC1 contains the counter value transmitted by the last input capture channel 1 event. When the capture/compare channel 1 is configured as output mode: CC1 contains the current load capture/compare register value Compare the value CC1 of the capture/compare channel 1 with the value CNT of the counter to generate the output signal on OC1. When the output compare preload is disabled (OC1PEN=0 for TMRx_CCM1 register), the written value will immediately affect the output comparison results; If the output compare preload is enabled (OC1PEN=1 for TMRx_CCM1 register), the written value will affect the output compare result when an update event is generated.

16.10.11 Option register (TMR11_OPT)

Offset address: 0x50 Reset value: 0x0000

Field	Name	R/W	Description
1:0	RMPSEL	R/W	Timer11 Input 1 Remap Select 00: TMR11 channel 1 is connected to GPIO 01: TMR11 channel 1 is connected to GPIO 10: HSECLK_RTC clock is connected to TMR11_CH1 input 11: TMR11 channel 1 is connected to GPIO
15:2			Reserved

17 Basic timer (TMR6/7)

17.1 Introduction

The basic timers TMR6 and TMR7 have an unsigned 16-bit counter, auto reload register, prescaler and trigger controller.

The basic timer provides time reference for general-purpose timer and provides clock for DAC. DMA request can be generated by configuration.

17.2 Main characteristics

- (1) Counter: 16-bit counter, which can only count up
- (2) Prescaler: 16-bit programmable prescaler
- (3) Clock source: There is only internal clock
- (4) Single-pulse mode
- (5) Provide clock for DAC

17.3 Structure block diagram

Auto reload register

Counter CNT

CK_CNT

CK_PSC

PSC

Prescaler

processing

Controller

TRG0

Figure 63 Basic Timer Structure Block Diagram

17.4 Functional description

17.4.1 Clock source selection

The basic timer is driven by internal clock source TMRx_CLK

Configure the CNTEN bit of TMRx_CTRL1 register to enable the counter; when CNTEN bit is set, the internal clock CK_INT can generate CK_INT to drive the counter through the controller and prescaler.

17.4.2 Timebase unit

The time base unit in the basic timer contains three registers:

- 16-bit counter register (CNT)
- 16-bit auto reload register (AUTORLD)
- 16-bit prescaler register (PSC)

Counter CNT

The basic timer only has one count mode: count-up

Count-up mode

When the counter is in count-up mode, the counter will count up from 0; every time a pulse is generated, the counter will increase by 1 and when the value of the counter (TMRx_CNT) is equal to the value of the auto reload (TMRx_AUTORLD), then the counter will start to count again from 0, a count-up overrun event will be generated, and the value of the auto reload (TMRx_AUTORLD) is written in advance.

Disable the update event and set UD bit of TMRx_CTRL1 register to 1.

Generate the update interrupt or DMA request and set URSSEL bit in TMRx_CTRL1 register.

When an update event occurs, both the auto reload register and the prescaler register will be updated.

CNT_EN PSC=1 CK CNT Counter register Update event CK CNT PSC=2 0025 0000 0002 0024 0001 0026 Counter register Counter overrun Update event

Figure 64 Timer Timing Diagram, the internal clock division factor is 1 or 2

Prescaler PSC

The prescaler is 16 bits and programmable, and it can divide the clock frequency of the counter to any value between 1 and 65536 (controlled by TMRx_PSC register), and after frequency division, the clock will drive the counter CNT to count. The prescaler has a buffer, which can be changed during running.

17.5 Register address mapping

In the following table, all registers of the basic timer are mapped to a 16-bit addressable (address) space.

Table 74 TMR6/7 Register Address Mapping

Register name	Description	Offset address
TMRx_CTRL1	Control register 1	0x00
TMRx_CTRL2	Control register 2	0x04
TMRx_DIEN	DMA/Interrupt enable register	0x0C
TMRx_STS	State register	0x10

Register name	Description	Offset address
TMRx_CEG	Control event generation register	0x14
TMRx_CNT	Counter register	0x24
TMRx_PSC	Prescaler register	0x28
TMRx_AUTORLD	Auto reload register	0x2C

17.6 Register functional description

17.6.1 Control register 1 (TMRx_CTRL1)

Offset address: 0x00 Reset value: 0x0000

Field	Name	R/W	Description
0	CNTEN	R/W	Counter Enable 0: Disable 1: Enable When the timer is configured as external clock, gated mode and encoder mode, it is required to write 1 to the bit by software to start regular work; when it is configured as the trigger mode, it can be written to 1 by hardware.
1	UD	R/W	Update Disable Update event can cause AUTORLD, PSC and CCx to generate the value of update setting. 0: Update event is allowed (UEV) An update event can occur in any of the following situations: The counter overruns/underruns; Set UEG bit; Update generated by slave mode controller. 1: Update event is disabled
2	URSSEL	R/W	Update Request Source Select If interrupt or DMA is enabled, the update event can generate update interrupt or DMA request. Different update request sources can be selected through this bit. 0: The counter overruns or underruns Set UEG bit Update generated by slave mode controller 1: The counter overruns or underruns
3	SPMEN	R/W	Single Pulse Mode Enable When an update event is generated, the output level of the channel can be changed; in this mode, the CNTEN bit will be cleared, the counter will be stopped, and the output level of the channel will not be changed. 0: Disable 1: Enable
6:4	Reserved		

Field	Name	R/W	Description
7	ARPEN	R/W	Auto-reload Preload Enable When the buffer is disabled, the program modification TMRx_AUTORLD will immediately modify the values loaded to the counter; when the buffer is enabled, the program modification TMRx_AUTORLD will modify the values loaded to the counter in the next update event. 0: Disable 1: Enable
15:8	Reserved		

17.6.2 Control register 2 (TMRx_CTRL2)

Offset address: 0x04 Reset value: 0x0000

Field	Name	R/W	Description
2:0			Reserved
3	CCDSEL	R/W	Capture/compare DMA Select 0: Transmit DMA request of CCx when CCx event occurs 1: Transmit DMA request of CCx when an update event occurs
6:4	MMSEL	R/W	Master Mode Signal Select The signals of timers working in master mode can be used for TRGO, which affects the work of timers in slave mode and cascaded with master timer, and specifically affects the configuration of timers in slave mode. 000: Reset; the reset signal of master mode timer is used for TRGO 001: Enable; the counter enable signal of master mode timer is used for TRGO 010: Update; the update event of master mode timer is used for TRGO 011: Compare pulses; when the master mode timer captures/compares successfully (CCxIFLG=1), a pulse signal is output for TRGO 100: Compare mode 1; OC1REF is used to trigger TRGO 101: Compare mode 2; OC2REF is used to trigger TRGO 110: Compare mode 4; OC3REF is used to trigger TRGO
15:7			Reserved

17.6.3 **DMA/Interrupt enable register (TMRx_DIEN)**

Offset address: 0x0C Reset value: 0x0000

Field	Name	R/W	Description	
			Update interrupt Enable	
0	UIEN	R/W	0: Disable	
			1: Enable	
7:1		Reserved		
			Update DMA Request Enable	
8	UDIEN	R/W	0: Disable	
			1: Enable	
15:9			Reserved	

17.6.4 State register (TMRx_STS)

Offset address: 0x10 Reset value: 0x0000

Field	Name	R/W	Description
0	UIFLG	RC_W0	Update Event Interrupt Generate Flag 0: Update event interrupt does not occur 1: Update event interrupt occurs When the counter value is reloaded or reinitialized, an update event will be generated. The bit is set to 1 by hardware and cleared by software; update events are generated in the following situations: (1) UD=0 on TMRx_CTRL1 register, and when the value of the repeat counter overruns/underruns, an update event will be generated; (2) URSEL=0 and UD=0 on TMRx_CTRL1 register, configure UG = 1 on TMRx_CEG register to generate update event, and the counter needs to be initialized by software; (3) URSEL=0 and UD=0 on TMRx_CTRL1 register, generate update event when the counter is initialized by trigger event.
15:1	Reserved		

17.6.5 Control event generation register (TMRx_CEG)

Offset address: 0x14 Reset value: 0x0000

Field	Name	R/W	Description	
0	UEG	W	Update Event Generate 0: Invalid 1: Initialize the counter and generate the update event This bit is set to 1 by software, and cleared by hardware. Note: When an update event is generated, the counter of the prescaler will be cleared, but the prescaler factor remains unchanged. In the count-down mode, the counter reads the value of TMRx_AUTORLD; in center-aligned mode or count-up mode, the counter will be cleared to 0.	
15:1	Reserved			

Note: The state of external I/O pin connected to the standard OCx channel depends on the state of the OCx channel and the GPIO and AFIO registers.

17.6.6 Counter register (TMRx_CNT)

Offset address: 0x24 Reset value: 0x0000

Field	Name	R/W	Description
15:0	CNT	R/W	Counter Value

17.6.7 Prescaler register (TMRx_PSC)

Offset address: 0x28 Reset value: 0x0000

Field	Name	R/W	Description
15:0	15:0 PSC	R/W	Prescaler Value
13.0			Clock frequency of counter (CK_CNT)=fcK_Psc/(PSC+1)

17.6.8 Auto reload register (TMRx_AUTORLD)

Offset address: 0x2C Reset value: 0xFFFF

Field	Name	R/W	Description
15:0	15:0 AUTORLD	R/W	Auto Reload Value
13.0			When the value of auto reload is empty, the counter will not count.

18 Watchdog timer (WDT)

18.1 Introduction

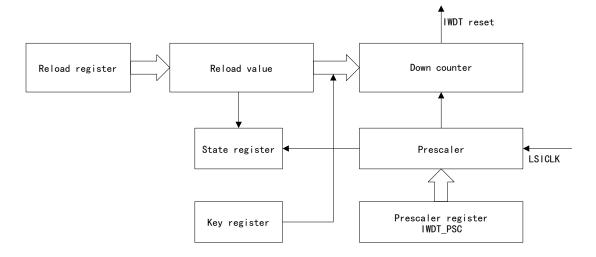
The watchdog is used to monitor system failures caused by software errors. There are two watchdog devices on the chip: independent watchdog and window watchdog, which improve the security, and make the time more accurate and the use more flexible.

The independent watchdog will reset only when the counter is reduced to 0, and the value of refresh counter will not be reset until it is not reduced to 0.

The window watchdog will reset when the counter decreases to 0x3F. When the count value of the counter is before the window value of the configuration register, the refresh counter will also be reset.

18.2 Independent watchdog timer (IWDT)

18.2.1 Introduction


The independent watchdog consists of an 8-bit prescaler IWDT_PSC, 12-bit count-down counter, 12-bit reload register IWDT_CNTRLD, key register IWDT_KEY and state register IWDT_STS.

The independent watchdog has an independent clock source, and even if the master clock fails, it is still valid.

The independent watchdog is applicable to the situations where an independent environment is required but the accuracy requirement is not high.

18.2.2 Structure block diagram

Figure 65 Independent Watchdog Structure Block Diagram

Note: The watchdog function is in the V_{DD} power supply area and can work normally in the shutdown or standby mode.

18.2.3 Functional description

18.2.3.1 Key register

Write 0xCCCC in the key register to enable the independent watchdog, then the counter starts to count down, and when the counter counts to 0x000, a reset will be generated.

Write 0xAAAA in the key register, and the value of the reload register will be reloaded to the counter to prevent the watchdog from resetting.

Write 0X5555 in the key register to rewrite the value of the prescaler register and the reload register.

18.2.3.2 Regiser access protection

The prescaler register and reload register have the function of write protection. If you want to rewrite these two registers, you need to write 0x5555 in the key register. If you write other value in the key register, the protection of the register will be started again.

Write 0xAAAA to the key register and the write protection function will also be enabled.

18.2.3.3 Hardware watchdog

After the "hardware watchdog" function is enabled, and the system is powered on and reset, the watchdog will run automatically. If 0xAAAA is not written to the key register, reset will be generated after the counter finishes counting.

18.2.3.4 **Debug mode**

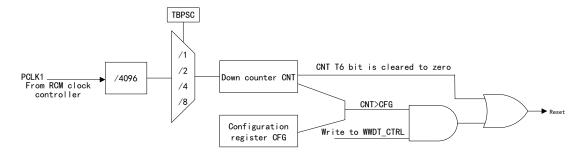
The independent watchdog can be configured in debug mode and choose to stop or continue to work. Depend on DBGMCU_CFG register IWDT_STS bit.

Table 75 Min/max timeout when LSICLK=28kHz

PSC	Min timeout value	Max timeout value
0	0.125ms	512ms
1	0.25ms	1024ms
2	0.5ms	2048ms
3	1ms	4096ms
44	2ms	8192ms
5	4ms	16384ms
6	8ms	32768ms

18.3 Window watchdog timer (WWDT)

18.3.1 Introduction


The window watchdog contains a 7-bit free-running down counter, prescaler and control register WWDT_CTRL, configuration register WWDT_CFG and state register WWDT_STS.

The window watchdog clock comes from PCLK1, and the counter clock is obtained from the CK counter clock through frequency division by prescaler (configured by the configuration register).

The window watchdog is applicable when precise timing is needed.

18.3.2 Structure block diagram

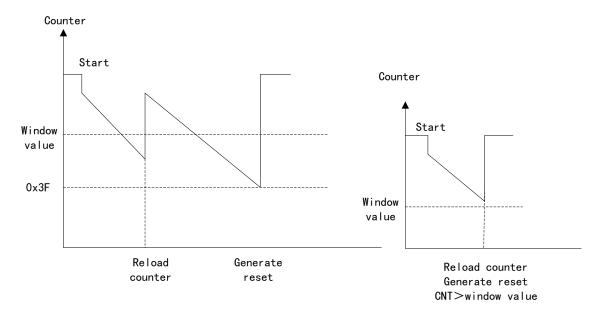
Figure 66 Window Watchdog Structure Block Diagram

18.3.3 Functional description

Enable window watchdog timer; the reset conditions are:

- When the counter count is less than 0x40, a reset will be generated.
- The reload counter will be reset before the counter counts to the value of the window register.

After reset, the watchdog is always disabled and it can be enabled only by setting the WWDTEN bit of WWDT CTRL control register.


The counter of window watchdog is in free state. When the watchdog is disabled, the counter will continue to count down. The counter must be reloaded between the value of window register and 0x40 to avoid reset.

Setting the EWIEN bit of the configuration register can enable the early wake-up interrupt. When the count reaches 0x40, the interrupt will be generated. Entering the interrupt service program (ISR) can be used to prevent the window watchdog from resetting. EWIEN interrupt can be cleared by writing 0 in the state register.

The unique window of the window watchdog timer can effectively monitor whether the program is faulty. For example, assuming that the running time of a program segment is T,

Figure 67 Window Watchdog Timing Diagram

The calculation formula of window watchdog timer timeout is as follows:

$$T_{WWDT}\text{=}T_{PCLK1}\text{x}2^{WTB}\text{x} \hspace{0.1in} (T\text{[5:0]+1})$$

Wherein:

T_{WWDT}: WWDT timeout

• T_{PCLK1}: Clock cycle of APB1 (in ms)

Minimum/Maximum timeout when PCLK1=36MHZ:

Table 76 Min/Max Timeout when PCLK1=36MHz

WTB	Min timeout value	Max timeout value
0	136.53µs	8.74ms
1	273.07µs	17.48ms
2	546.13µs	34.95ms
3	1092.27μs	69.91ms

18.4 IWDT register address mappin

Table 77 IWDT Register Address Mapping

Register name	Description	Offset address
IWDT_KEY	Key register	0x00
IWDT_PSC	Prescaler register	0x04
IWDT_CNTRLD	Counter reload register	0x08
IWDT_STS	State register	0x0C

18.5 IWDT register functional description

These peripheral registers can be operated by half word (16 bits) or word (32 bits).

18.5.1 Key register (IWDT_KEY)

Offset address: 0x00

Reset value: 0x0000 0000 (reset in standby mode)

Field	Name	R/W	Description
15:0	KEY	W	Allow Access IWDT Register Key Value Writing 0x5555 means enabled access to IWDT_PSC and IWDT_CNTRLD registers; When the software writes 0xAAAA, it means to execute the reload counter, and a certain interval is required to prevent the watchdog from resetting. Write 0xCCCC and the watchdog will be enabled (the hardware watchdog is unrestricted by this command word); This register is write-only and the read-out vlue is 0x0000.
31:16	Reserved		

18.5.2 Prescaler register (IWDT_PSC)

Offset address: 0x04

Reset value: 0x0000 0000

Field	Name	R/W	Description
2:0	PSC	R/W	Prescaler Factor Configure Support write protection function; when writing 0x5555 in the IWDT_KEY register, it is allowed to access the register; in the process of writing this register, only when IWDT_STS register PSCUFLG=0, can the prescaler factor be changed; in the process of reading this register, only when PSCUFLG=0, can the read-out value of PSC register be valid. 000: PSC=4 001: PSC=8 010: PSC=16 011: PSC=32 100: PSC=64 101: PSC=128 110: PSC=256
31:3	Reserved		

18.5.3 Counter reload register (IWDT_CNTRLD)

Offset address: 0x08

Reset value: 0x0000 0FFF (reset in standby mode)

Field	Name	R/W	Description
11:0	CNTRLD	R/W	Watchdog Counter Reload Value Setup It supports write protection function and defines the value loaded to the watchdog counter when 0xAAAA is written by IWDT_KEY register; in the process of writing this register, this register can be modified only when

Field	Name	R/W	Description
			CNTUFLG=0. In the process of reading this register, when CNTUFLG=0 in IWDT_STS register, the read value is valid.
			The watchdog timeout cyclecan be calculated by the reload value and clock prescaled value.
31:12		Reserved	

18.5.4 State register (IWDT_STS)

Offset address: 0x0C

Reset value: 0x0000 0000 (not reset in standby mode)

Field	Name	R/W	Description
0	PSCUFLG	R	Watchdog Prescaler Factor Update Flag When the prescaler factor is updated, it is set to 1 by hardware; after the prescaler factor is updated, the bit is cleared by hardware; the prescaler factor is updated only when the PSCUFLG bit is cleared.
1	CNTUFLG	R	Watchdog Counter Reload Value Update Flag When the counter reload value is updated, it is set to 1 by hardware; after the counter reload value is updated, the bit is cleared by hardware; the counter reload value is updated only when the CNTUFLG bit is cleared.
31:2	Reserved		

18.6 WWDT register address mappin

Table 78 WWDT Register Address Mapping

Register name	Description	Offset address
WWDT_CTRL	Control register	0x00
WWDT_CFG	Configuration register	0x04
WWDT_STS	State register	0x08

18.7 WWDT register functional description

These peripheral registers can be operated by half word (16 bits) or word (32 bits).

18.7.1.1 Control register (WWDT_CTRL)

Offset address: 0x00
Reset value: 0x0000 007F

Field	Name	R/W	Description
6:0	CNT	R/W	Counter Value Setup This counter is 7 bits, and CNT6 is the most significant bit These bits are used to store the counter value of the watchdog. When the count value decreases from 0x40 to 0x3F, WWDT reset will be generated.

Field	Name	R/W	Description
7	WWDTEN	R/S	Window Watchdog Enable This bit is set to 1 by software and can be cleared by hardware only after reset. When WWDTEN=1, WWDT can generate a reset. 0: Disable 1: Enable
31:8	Reserved		

18.7.1.2 Configuration register (WWDT_CFG)

Offset address: 0x04 Reset value: 0x0000 007F

Field	Name	R/W	Description		
6:0	WIN	R/W	Window Value Setup This window value is 7 bits, which is used to compare with the down counter.		
8:7	TBPSC	R/W	Timer Base Prescaler Factor Configure Divide the frequency on the basis of PCLK1/4096 00: No frequency division 01: Two-divided frequency 10: Four-divided frequency 11: Eight-divided frequency		
9	EWIEN	R/S	Early Wakeup Interrupt Enable 0: No effect 1: When the counter value reaches 0x40, an interrupt will be generated; this interrupt is cleared by hardware after reset.		
31:10	Reserved				

18.7.1.3 State register (WWDT_STS)

Offset address: 0x08 Reset value: 0x0000 0000

Field Name R/W Description

EWIFLG RC_W0 Early Wakeup Interrupt Occur Flag
0: Not occur
1: When the counter value reaches 0x40, it is set to 1 by hardware; if the interrupt is not enabled, the bit will also be set to 1; it can be cleared by writing 0 by software.

Reserved

19 Real-time clock (RTC)

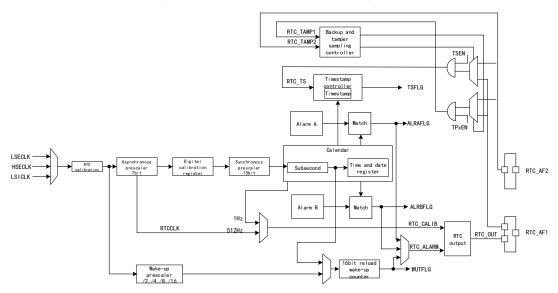
19.1 Full name and abbreviation description of terms

Table 79 Full name and abbreviation description of terms

Full name in English	English abbreviation
Second	SEC
Alarm	ALR
Prescaler	PSC

19.2 Introduction

It has sub-second, time and date registers with BCD coding, as well as corresponding alarm registers, and can realize timestamp function together with external pins. It supports clock calibration function and time compensation.


19.3 Main characteristics

- (1) Timebase unit
- (2) Clock calibration
- (3) Subsecond, time and date
- (4) Time error compensation
- (5) Alarm (subsecond, time and date mask)
- (6) Timestamp
- (7) Tamper detection
- (8) 2 kinds of RTC outputs
- (9) Backup domain
- (10) Multiple interrupt control
- (11) Automatic wakeup of low power

19.4 Structure block diagram

Figure 68 RTC Structure Block Diagram

Note:

- (1) Alternate function output: RTC_OUT is output in one of the following two forms
- RTC_CALIB: This output is enabled through CALOEN bit of RTC_CTRL register, and when the frequency of LSECLK is 32.768kHz, the clock output is 512Hz or 1Hz.
- RTC ALARM: This output, Alarm A, is enabled through OUTSEL bit of RTC CTRL register.
- (2) Alternate function input:
- RTC TS: Timestamp event
- RTC_TAMP1: Tamper event detection 1
- RTC_TAMP2: Tamper event detection 2
- (3) The multiplexing function of RTC_AF1 and RTC_AF2 is connected to PC13 and PI8 respectively

19.5 Functional description

19.5.1 Timebase unit

Clock source

RTC has three clock sources:

- External LSECLK crystal oscillator
- External HSECLK crystal oscillator
- Internal LSICLK

Select different clock sources by configuring the register of the clock controller CCM.

Prescaler

When backup power supply is used, the power consumption of RTC peripherals

should be as low as possible. Considering power consumption, RTC internally adopts dual prescaler, 7-bit asynchronous prescaler APSC and 15-bit synchronous prescaler SPSC.

RTCCLK first passes through the asynchronous prescaler, and the clock after frequency division reaches the synchronous prescaler. Two prescalers can be reasonably configured to generate a 1Hz clock for date.

When the prescaler is used, it is suggested that the asynchronous prescaler should be adjusted as high as possible to reduce power consumption.

The synchronous prescaled value can also be used as the reload value of the subsecond counter.

19.5.2 Clock calibration

Clock synchronization

RTC can realize clock synchronization according to external high-precision clook and the register RTC_SHIFT. The deviation between RTC clock and external clock is detected mainly by acquiring the timestamps of subsecond time period twice. Since the synchronous prescaled value is used as the reload value of the subsecond counter, and the SFSEC bit of register RTC_SHIFT is used in the subsecond counter, the SFSEC bit can be adjusted to finely tune the RTC clock and increase or decrease several cycles artificially.

Reference clock

RTC has internal reference clock detection, which can be used to compensate the deviation of external LSECLK crystal oscillator. Set RCLKDEN bit to enable the reference clock detection, compare the external 50Hz or 60Hz reference clock with the internal 1Hz clock of RTC through RTC_REFIN pin, and through this mechanism, the 1Hz clock after LSECLK frequency division is automatically compensated.

After the reference clock detection is enabled, the synchronous and asynchronous prescaler of the clock unit must be configured as the default value.

The reference clock detection cannot be used simultaneously with the clock synchronization, and it should be disabled in standby mode.

RTC coarse digital calibration

RTC_DCAL register can be configured as positive or negative calibration to update the date in advance or with delay, so the effective frequency can be adjusted.

RTC precision digital calibration

RTC uses 2²⁰ RTCCLK as a calibration cycle by default. In addition, 2¹⁹ and 2¹⁸ RTCCLK can be set as a calibration cycle through the registers CALW16 and CALW8. When LSECLK is used as RTCCLK clock source, the calibration cycle of RTC is 32s, 16s, 8s.

- 16s calibration cycle; the hardware sets RECALF[0] to "0"
- 8s calibration cycle; the hardware sets RECALF[1:0] to "00"

Take 32s calibration cycle as an example, the calibration mechanism is to add or reduce some RTCCLK signals in the calibration cycle.

- When RECALF is used, RECALF RTCCLK are reduced every 2²⁰ RTCCLK
- When ICALFEN is used and ICALFEN=1, one RTCCLK is added every 2¹¹ RTCCLK
- When RECALF is used and ICALFEN, (512 * ICALFEN RECALF)
 RTCCLK are added every 2²⁰ RTCCLK

19.5.3 RTC write protection

In order to prevent counting exception caused by accidental write, RTC register adopts write protection mechanism. Only when the write protection is removed, can the register with write protection function be operated.

After power-on, RTC register will enter the write protection state and the protection cannot be removed by system reset. The write protection can be removed by writing special keywords '0xCA' and '0x53' to the register RTC_WRPROT. If the wrong keyword is written, RTC will immediately enable write protection.

19.5.4 Date register

RTC has subsecond, time and date shadow registers encoded by BCD, which are RTC_SUBSEC, RTC_TIME and RTC_DATE respectively. The current date can be obtained by accessing the shadow register or obtained directly from the date register. The time system of 24 hours and 12 hours can be selected by TIMEFCFG bit of configuration register RTC_CTRL.

RTC updates the shadow register every two RTCCLK cycles, and sets the flag bit RSFLG. When waking up from stop or standby mode, generally the shadow register will not be updated, which requires waiting for 1-2 RTCCLK cycles. The reset of shadow register is caused by system reset.

The shadow register is synchronized with f_{APB1}.

The way to read the date can be selected by RCMCFG bit of configuration register RTC CTRL.

RCMCFG=0, read the date from the shadow register

In this mode, it is recommended that f_{APB1} should be greater than 7*f_{RTCCLK}. If

f_{APB1} is too small, to ensure the normal reading of date value, it is required to read the shadow register twice. If the date obtained twice is the same, the date is read successfully.

After the shadow register is updated, the flag bit RSFLG will be set. The software can read the date only after the bit RSFLG is set. Every time the date is read, the RSFLG flag should be cleared manually.

When waking up from stop or standby mode, since the shadow register is not updated, the RSFLG flag should be cleared immediately.

RCMCFG=1, read the date from the date register

When f_{APB1} is less than $7*f_{RTCCLK}$ or the system is woken from low-power mode, it is recommended to read the date directly from the date register.

If RSFLG flag bit is not set to 1 when reading the date just at the stage of date register change, it is required to read the date twice. Therefore, it is also recommended to read the date register twice. When the read date value is the same twice, it means that the date is read successfully.

19.5.5 Time compensation

Due to seasonal changes, time compensation is sometimes needed to make it more suitable for daily needs. RTC is integrated with time compensation unit and its summer time flag. Users can choose whether to turn on time compensation according to their own needs.

By setting STCCFG bit of the register RTC_CTRL, the summer time will increase by 1 hour; by setting WTCCFG bit of the register RTC_CTRL, the winter time will will decrease by 1. BAKP flag is used to record whether the summer time is set.

19.5.6 **Programmable alarm**

As a real-time clock, RTC integrates alarm function, and it runs mainly through alarm configuration register and alarm mask, in combination with date register.

Configure the alarm and alarm mask through the register RTC_ALRMA/RTC_ALRMASS and RTC_ALRMB/RTC_ALRMBSS, and the alarm mask informs RTC to pay attention to the time period of the alarm. After the alarm function is enabled, the alarm will be triggered only when the concerned time period reaches the set value. At this time, the alarm flag is set. If the alarm interrupt is enabled, the interrupt processing will be triggered.

Select "seconds" as the time period of the alarm, and only when the synchronous prescaler value is greater than 3, can the alarm operate normally.

19.5.7 Timestamp

RTC supports timestamp function and the RTC TS pin works together with the

timestamp register.

The timestamp polarity is detected through TSETECFG bit of the register RTC_CTRL. When RTC_TS pin recognizes the external timestamp edge signal, RTC will automatically latch the current date in the subsecond, time and date timestamp registers, and the timestamp flag bit TSFLG will be set to 1. If the timestamp interrupt is enabled, the timestamp interrupt processing will be triggered.

When TSFLG flag bit is set to 1, and a timestamp event occurs, the timestamp will overrun, and the flag bit TSOVRFLG will be set to 1. If a timestamp event is detected once TSFLG flag is cleared, both TSFLG and TSOVRFLG flags will be set to 1.

TAMPER multiplexing function

RTC_TAMP1 multiplexing function can be mapped to RTC_AF1 or RTC_AF2, and it is determined by TP1MSEL bit of RTC_TACFG register. After TP1MSEL is modified, clear TP1EN bit to zero to avoid accidental setting of TP1FLG. Corresponding RTC_TAMP2 pin of RTC_TAMP2 multiplexing function.

19.5.8 Backup domain

After the main power supply V_{DD} is powered off, the backup domain register will be powered by V_{BAT} automatically. System resetting, NRST pin resetting, and resetting after the low mode is waken up will not affect the backup domain register. When V_{BAT} is powered off or tamper event occurs, the backup domain register will be reset.

The backup domain register can be used to cache user data, and can be used as a state flag to realize some function application by using the characteristics that the system reset data will remain unchanged.

19.5.9 Tamper detection

Tamper detection is a kind of data self-destruction protection device to prevent data leakage caused by tamper. Through the hardware circuit design, the tamper detection signal is sent to the tamper detection pin.

Tamper detection has multiple tamper detection pins, and each pin is enabled by a register bit separately. In order to detect real tamper events better, signal filtering can be configured, and tamper detection polarity can be configured for each pin.

Tamper detection polarity

The low level/rising edge and high level/falling edge can be selected as tamper detection polarity through TPxAL bit in the register RTC TACFG.

Tamper signal filter

TPSFSEL bit of the register RTC_TACFG is used to configure the sampling frequency of tamper detection, and TPFCSEL bit of RTC_TACFG is used to configure after how many valid tamper signals are detected continuously, an tamper event can be generated.

In particular, if an tamper signal has been generated on the tamper detection pin before the tamper detection pin is enabled, an tamper event will be immediately generated on the enabled tamper detection pin.

Tamper timestamp

At some times, in order to record the tamper detection events, RTC can latch the current tamper timestamp and this function can be enabled quickly through TPTSEN bit of the register RTC_TACFG, not needing to enable the timestamp function additionally.

19.5.10 Automatic wake-up

Compared with RTC alarm, the hardware structure of the automatic wake-up is simpler, and it has no complicated configuration process of RTC alarm, so it is a good scheme to wake up the low power consumption.

There is a 16-bit self-decrement reload counter in RTC, and it is used to wake up the device automatically.

The clock of this counter is selected by WUCLKSEL bit of the register RTC_CTRL, and by selecting different clocks, the automatic wake-up cycle can be configured from 122µs to 36h. First turn off the automatic wake-up, namely, clear WUTEN; when WUTWFLG flag bit is set to 1, configure WUCLKSEL bit of the RTC_CTRL register and the reload register RTC_AUTORLD.

When the counter decreases to 0, a wake-up event will be generated, WUTFLG flag bit will be set to 1, and before entering the next round of automatic wake-up, this flag bit must be cleared.

19.5.11 RTC output

RTC output transmits the internal RTC calibration clock, alarm signal, and automatic wake-up signal to the outside.

RTC calibration clock

Calibration clock output is generally used to observe the accuracy of RTC clock source, and the observed value is used to calibrate the clock source. 512Hz and 1Hz signal output sources can be selected through CALOSEL bit of RTC_CTRL register, and CALOEN bit of RTC_CTRL register can enable the calibration output.

Calibration multiplexing function output

When CALOEN bit of RTC_CTRL register is set, RTC_AF1 will enable the calibration multiplexing function.

Alarm and automatic wake-up signal

When the alarm or automatic wake-up is running, these two events can be output as pulse signals. OUTSEL bit of RTC_CTRL register is used to select the signal output source, and POLCFG bit is used to configure the output polarity.

19.6 Register address mapping

Table 80 RTC Register Address Mapping

Register name	Description	Offset address
RTC_TIME	RTC time register	0x00
RTC_DATE	RTC date register	0x04
RTC_CTRL	RTC control register	0x08
RTC_STS	RTC state register	0x0C
RTC_PSC	RTC prescaler register	0x10
RTC_AUTORLD	RTC auto reload register	0x14
RTC_DCAL	RTC coarse calibration register	0x18
RTC_ALRMA	RTC alarm A register	0x1C
RTC_ALRMB	RTC alarm B register	0x20
RTC_WRPROT	RTC write protection register	0x24
RTC_SUBSEC	RTC subsecond register	0x28
RTC_SHIFT	RTC shift register	0x2C
RTC_TSTIME	RTC timestamp time register	0x30
RTC_TSDATE	RTC timestamp date register	0x34
RTC_TSSUBSEC	RTC timestamp subsecond register	0x38
RTC_CAL	RTC calibration register	0x3C
RTC_TACFG	RTC tamper and multiplexing configuration register	0x40
RTC_ALRMASS	RTC alarm A subsecond register	0x44
RTC_ALRMBSS	RTC alarm B subsecond register	0x48
RTC_BAKPx	RTC backup register	0x50-0x9C

19.7 Register functional description

19.7.1 RTC time register (RTC_TIME)

RTC_TIME is time shadow register, and this register can be written only in initialization mode to be put in write protection state.

Offset address: 0x00

Reset value of backup domain: 0x0000 0000

System reset: RCMCFG =0: 0x0000 0000; RCMCFG =1: 0xXXXX XXXX

Field	Name	R/W	Description		
3:0	SECU	R/W	Second Ones Unit in BCD Format Setup		
6:4	SECT	R/W	Second Ten's Place Unit in BCD Format Setup)		
7			Reserved		
11:8	MINU	R/W	Minute Ones Unit in BCD Format Setup		
14:12	MINT	R/W	Minute Ten's Place Unit in BCD Format Setup		
15		Reserved			
19:16	HRU	R/W	Hour Ones Unit in BCD Format Setup		
21:20	HRT	R/W	Hour Ten's Place Unit in BCD Format Setup		
22	TIMEFCFG	R/W	Time Format Configure 0: AM or 24-hour system 1: PM		
31:23	Reserved				

19.7.2 RTC date regiter (RTC_DATE)

RTC_DATE is date shadow register, and this register can be written only in initialization mode to be put in write protection state.

Offset address: 0x04

Reset value of backup domain: 0x0000 2101

System reset: RCMCFG =0: 0x0000 0000; RCMCFG =1: 0xXXXX XXXX

Field	Name	R/W	Description	
3:0	DAYU	R/W Day Ones Unit in BCD Format Setup		
5:4	DAYT	R/W	R/W Day Ten's Place Unit in BCD Format Setup	
7:6		Reserved		
11:8	MONU	R/W	Month Ones Unit in BCD Format Setup	
12	MONT	R/W	Month Ten's Place Unit in BCD Format Setup	
15:13	WEEKSEL	R/W	Week Day Units Select 000: Disable 001: Monday 111: Sunday	

Field	Name	R/W	Description	
19:16	YRU	R/W	Year Ones Unit in BCD Format Setup	
23:20	YRT	R/W	Year Ten's Place Unit in BCD Format Setup	
31:24		Reserved		

19.7.3 RTC control register (RTC_CTRL)

- (1) The bits 7, 6 and 4 of this register can be written only in initialization mode.
- (2) It is not recommended to rewrite this register when the number of hours in the date increases, which is because the correct increment of hours may be masked.
- (3) The written values of STCCFG and WTCCFG will take effect from next second.
- (4) This register is under write protection.

Offset address: 0x08

Reset value of backup domain: 0x0000 0000

System reset: 0xXXXX XXXX

Field	Name	R/W	Description
2:0	WUCLKSEL	R/W	Wakeup Clock Select 000: RTC/16 001: RTC/8 010: RTC/4 011: RTC/2 10x: clk_spre (usually 1Hz) 11x: clk_spre (usually 1Hz) and add 216 to WUAUTORE counter value
3	TSETECFG	R/W	Time Stamp Event Trigger Edge Configure This bit indicates that RTC_TS generates a timestamp event on rising edge or falling edge. 0: Rising edge 1: Falling edge This bit can be changed only when TSEN=0.
4	RCLKDEN	R/W	RTC_REFIN reference clock detection enable 0: Disable 1: Enable SPSC must be 0x00FF.
5	RCMCFG	R/W	Read Calendar Value Mode Configure 0: The date value is read from the shadow register, and the shadow register is updated every two RTCCLK cycles 1, read the date value from the date register If the clock frequency of APB1 is lower than seven times of RTCCLK frequency, RCMCFG must be set to 1.

Field	Name	R/W	Description
6	TIMEFCFG	R/W	Time Format Configure 0: 24-hour/day format 1: AM/PM time format
7	DCALEN	R/W	Coarse Digital Calibration Enable 0: Disable 1: Enable Require APSC≥6
8	ALRAEN	R/W	Alarm A Function Enable 0: Disable 1: Enable
9	ALRBEN	R/W	Alarm B Function Enable 0: Disable 1: Enable
10	WUTEN	R/W	Wakeup Timer Enable 0: Disable 1: Enable
11	TSEN	R/W	Time Stamp Enable 0: Disable 1: Enable
12	ALRAIEN	R/W	Alarm A Interrupt Enable 0: Disable 1: Enable
13	ALRBIEN	R/W	Alarm B Interrupt Enable 0: Disable 1: Enable
14	WUTIEN	R/W	Wakeup Timer Interrupt Enable 0: Disable 1: Enable
15	TSIEN	R/W	Time Stamp Interrupt Enable 0: Disable 1: Enable
16	STCCFG	R/W	Summer Time Change Configure The bit will always be 0 in the reading process; if this bit is set not in the initialization mode, the date time will increase by 1. 0: Invalid 1: The current time increases by 1 hour to calibrate the summer time variation
17	WTCCFG	R/W	Winter Time Change Configure The bit will always be 0 in the reading process; if this bit is set not in the initialization mode, and HRx of RCT_TIME register is 0, this bit is invalid, and if HRx is not 0, the date time will decrease by 1. 0: Invalid 1: The current time increases by 1 hour to calibrate the winter time variation

Field	Name	R/W	Description
18	BAKP	R/W	Backup Value Setup This bit indicates whether the summer time has changed and is written by the user.
19	CALOSEL	R/W	Calibration Output Value Select When CALOEN=1, this bit is used to select the output signal of RTC_CALIB. 0: 512Hz 1: 1Hz The above frequency is valid when RTCCLK is 32.768kHz and the prescaler is at the default value (APSC=127, SPSC=255).
20	POLCFG	R/W	Output Polarity Configure This bit indicates the level state of the pin when ALRAFLG/ALRBFLG/WUTFLG bit is set to 1 (depending on OUTSEL bit). 0: High level 1: Low level
22:21	OUTSEL	R/W	Output Way Select This bit is used to select the flag bit associated with RTC_ALARM output 00: Disable 01: Alarm A output 10: Alarm B output 11: Wake-up output
23	CALOEN	R/W	Calibration Output Enable This bit is used to enable RTC_CAL output 0: Disable 1: Enable
31:24			Reserved

19.7.4 RTC state register (RTC_STS)

This register (except RTC_STS[13:8] bit) is in write protection state.

Offset address: 0x0C

Reset value of backup domain: 0x0000 0007

System reset: 0xXXXX XXXX

Field	Name	R/W	Description
0	ALRAWFLG	R	Alarm A Write Occur Flag When ALRAEN=0 for RTC_CTRL, the value of alarm A will change and this bit will be set to 1 by hardware; this bit will be cleared by hardware in initialization mode. 0: The alarm A cannot be updated 1: The alarm A can be updated
1	ALRBWFLG	R	Alarm B Write Occur Flag When ALRBEN=0 for RTC_CTRL, the value of alarm A will change and this bit will be set to 1 by hardware; this bit will be cleared by hardware in initialization mode. 0: The alarm B cannot be updated 1: The alarm B can be updated

Field	Name	R/W	Description
2	WUTWFLG	R	Wakeup Timer Write Occur Flag When WUTEN=0 and the value of wake-up timer can be changed, this bit can be set by hardware. 0: It is not allowed to update the wake-up timer configuration 1: It is allowed to update the wake-up timer configuration
3	SOPFLG	R	Shift Operation Pending Occur Flag 0: Not occur 1: Occurred When a shift operation is generated by writing to RTC_SHIFT register, this bit will be set to 1 by hardware immediately. After corresponding shift operation is performed, this bit will be cleared by software. It is invalid to write to SOPFLG.
4	INITSFLG	R	Initialization State Occur Flag When the "year" field in the date is not "0", this bit will be set by hardware. 0: Not occur 1: Occurred
5	RSFLG	RC_W0	Registers Synchronization Occur Flag When the content in the date register is copied to the shadow registers (RTC_SUBSEC, RTC_TIME and RTC_DATE), this bit is set to 1 by hardware; when shifting operation is pending (SOPFLG=1) or is in the mode that the shadow register is ignored (RCMCFG=1), this bit is cleared by hardware in initialized mode; or this bit can be cleared by software. This bit is cleared by hardware/software in initialization mode. 0: Not synchronized 1: Synchronized
6	RINITFLG	R	Register Initialization Occur Flag This bit is set to "1", RTC is in initialization state, and the time, date and prescaler registers can be updated. 0: Cannot be initialized 1: Initialized
7	INITEN	R/W	Initialization Mode Enable 0: Free run mode 1: Initialization mode; it is used to program RTC_TIME, RTC_DATE and RTC_PSC. The counter stops counting, and after INITEN is reset, the counter will start counting from a new value.
8	ALRAFLG	RC_W0	Alarm A Match Occur Flag When RTC_TIME and RTC_DATE match the alarm A register RTC_ALRMA, this flag is set by hardware. This flag can be cleared by writing 0 by software.
9	ALRBFLG	RC_W0	Alarm B Match Occur Flag When RTC_TIME and RTC_DATE match the alarm B register RTC_ALRMB, this flag is set by hardware. This flag can be cleared by writing 0 by software.

Field	Name	R/W	Description
10	WUTFLG	RC_W0	Wakeup Timer Occur Flag When the auto refresh counter counts to 0, this bit will be set to 1 by hardware; it is cleared by writing 0 by software. Clear this flag 1.5 RTCCLK cycles before WUTFLG is set to 1 again.
11	TSFLG	RC_W0	Flag for occurrence of timestamp (Time Stamp Occur Flag) When a timestamp event occurs, this flag is set to 1 by hardware; it is cleared by writing 0 by software.
12	TSOVRFLG	RC_W0	Time Stamp Overflow Occur Flag When TSFLG=1 and a timestamp event is generated, this flag bit is set to 1 by hardware; it is cleared by writing 0 by software. It is recommended to clear this bit after TSFLG flag bit is cleared.
13	TP1FLG	RC_W0	RTC_TP1FLG Detection Occur Flag When a tamper event is detected in RTC_TP1FLG input, this flag is set to 1 by hardware, and it can be cleared by writing 0 by software.
14	TP2FLG	RC_W0	RTC_TP2FLG Detection Occur Flag When a tamper event is detected in RTC_TP2FLG input, this flag is set to 1 by hardware, and it can be cleared by writing 0 by software.
15	Reserved		
16	RCALPFLG	R	Recalibration Pending Occur Flag When the software writes to RTC_CAL, this bit is set to 1 automatically, and the RTC_CAL register is locked. This bit will return 0 when other new calibration setting is performed.
31:17	Reserved		

19.7.5 RTC prescaler reegister (RTC_PSC)

The register can only be written in the initialization mode, and the initialization must be completed by two independent write accesses, which is in write protected state.

Offset address: 0x10

Reset value of backup domain: 0x007F 00FF

System reset: 0xXXXX XXXX

Field	Name	R/W	Description
14:0	SPSC	R/W	Synchronous Prescaler Coefficient ck_spre frequency=ck_apre frequency/(SPSC+1)
15	Reserved		
22:16	APSC	R/W	Asynchronous Prescaler Coefficient ck_apre frequency=RTCCLK frequency/(APSC+1)
31:23	Reserved		

19.7.6 RTC auto reload register (RTC_AUTORLD)

This register can be written only when WUTEFLG of RTC_STS is set to 1, and it is in write protection state.

Offset address: 0x14

Reset value of backup domain: 0x0000 FFFF

System reset: 0xXXXX XXXX

Field	Name	R/W	Description
15:0	WUAUTORE	R/W	Wakeup Auto-reload Value Setup When the wake-up counter is waken up (WUTEN=1), this flag bit will be set to 1 in each CLK_WUAUTORE cycle, and CLK_WUAUTORE cycle can be set by WUCLKSEL bit of RTC_CTRL register. When WUCLKSEL[2]=1, the wake-up counter will be set to 17 bits, WUCLKSEL[1] is WUAUTORE[16], and is the most critical bit reloaded to the timer. After WUTEN is set, CLK_WUAUTORE cycle will appear to the first assertion of WUTFLG Disable WUCLKSEL[2:0]=011(RTCCLK/2) from WUAUTORE[15:0] to 0x0000.
31:16	Reserved		

19.7.7 RTC coarse calibration register (RTC_DCAL)

Offset address: 0x18

Reset value of backup domain: 0x0000 0000

System reset: 0xXXXX XXXX

Field	Name	R/W	Description
4:0	DCAL	R/W	Digital Calibration DCALCFG=0 (positive calibration) 00000: + 0 ppm 00001: + 4 ppm (rounded-off value) 00010: + 8 ppm (rounded-off value) 11111: + 126 ppm (rounded-off value) DCALCFG=1 (negative calibration) 00000: - 0 ppm 00001: - 2 ppm (rounded-off value) 00010: - 4 ppm (rounded-off value) 11111: - 63ppm (rounded-off value)
6:5	Reserved		
7	DCALCFG	R/W	Digital Calibration Configure 0: Positive calibration - increase the date update frequency 1: Negative calibration - decrease the date update frequency
31:8	Reserved		

19.7.8 RTC alarm A register (RTC_ALRMA)

This register can be written only when ALRWFLG of RTC_STS is set to 1 or in initialization mode, and it is in write protection state.

Offset address: 0x1C

Reset value of backup domain: 0x0000 0000

System reset: 0xXXXX XXXX

Field	Name	R/W	Description
3:0	SECU	R/W	Second Ones Unit in BCD Format Setup
6:4	SECT	R/W	Second Ten's Place Unit in BCD Format Setup
7	SECMEN	R/W	Alarm A Seconds Mask Enable 0: If the "second" matches, set Alarm A 1: Mask the effect of the "second" value on Alarm A
11:8	MINU	R/W	Minute Ones Unit in BCD Format Setup
14:12	MINT	R/W	Minute Ten's Place Unit in BCD Format Setup
15	MINMEN	R/W	Alarm A Minutes Mask Enable 0: If the "minute" matches, set Alarm A 1: Mask the effect of the "minute" value on Alarm A
19:16	HRU	R/W	Hour Ones Unit in BCD Format Setup
21:20	HRT	R/W	Hour Ten's Place Unit in BCD Format Setup
22	TIMEFCFG	R/W	Time Format Configure 0: AM or 24-hour system 1: PM
23	HRMEN	R/W	Alarm A Hours Mask Enable 0: If the "hour" matches, set Alarm A 1: Mask the effect of the "hour" value on Alarm A
27:24	DAYU	R/W	Day Ones Unit in BCD Format Setup
29:28	DAYT	R/W	Day Ten's Place Unit in BCD Format Setup
30	WEEKSEL	R/W	Week Day Select 0: DAYU means date 1: DAYU means the number of weeks. DAYT has no effect.
31	DATEMEN	R/W	Alarm A Date Mask Enable 0: If the date/week matches, set Alarm A 1: Mask the effect of the date/week value on Alarm A

19.7.9 RTC alarm B register (RTC_ALRMB)

This register can be written only when ALRWFLG of RTC_STS is set to 1 or in initialization mode, and it is in write protection state.

Offset address: 0x20

Reset value of backup domain: 0x0000 0000

System reset: 0xXXXX XXXX

Field	Name	R/W	Description
3:0	SECU	R/W	Second Ones Unit in BCD Format Setup

		D.044	5
Field	Name	R/W	Description
6:4	SECT	R/W	Second Ten's Place Unit in BCD Format Setup
7	SECMEN	R/W	Alarm B Seconds Mask Enable 0: If the "second" matches, set Alarm B 1: Mask the effect of the "second" value on Alarm B
11:8	MINU	R/W	Minute Ones Unit in BCD Format Setup
14:12	MINT	R/W	Minute Ten's Place Unit in BCD Format Setup
15	MINMEN	R/W	Alarm B Minutes Mask Enable 0: If the "minute" matches, set Alarm B 1: Mask the effect of the "minute" value on Alarm B
19:16	HRU	R/W	Hour Ones Unit in BCD Format Setup
21:20	HRT	R/W	Hour Ten's Place Unit in BCD Format Setup
22	TIMEFCFG	R/W	Time Format Configure 0: AM or 24-hour system 1: PM
23	HRMEN	R/W	Alarm B Hours Mask Enable 0: If the "hour" matches, set Alarm B 1: Mask the effect of the "hour" value on Alarm B
27:24	DAYU	R/W	Day Ones Unit in BCD Format Setup
29:28	DAYT	R/W	Day Ten's Place Unit in BCD Format Setup
30	WEEKSEL	R/W	Week Day Select 0: DAYU means date 1: DAYU means the number of weeks. DAYT has no effect.
31	DATEMEN	R/W	Alarm B Date Mask Enable 0: If the date/week matches, set Alarm B 1: Mask the effect of the date/week value on Alarm B

19.7.10 RTC write protection register (RTC_WRPROT)

Offset address: 0x24
Reset value: 0x0000 0000

Field	Name	R/W	Description			
7:0	KEY	W	Write Protection Key Value Setup This byte is written by softwre; read this byte and it is always 0x00.			
31:8	Reserved					

19.7.11 RTC subsecond register (RTC_SUBSEC)

Offset address: 0x28

Reset value of backup domain: 0x0000 0000

System reset: 0xXXXX XXXX

Field	Name	R/W	Description	
15:0	SUBSEC	R	Sub Second Value Setup SUBSEC is the value of synchronous prescaler counter. It is determined by the following formula: Subsecond value=(SPSC-SUBSEC)/(SPSC+1) After one shift operation is performed, SUBSEC may be greater than SPSC. The correct time/date is one second less than RTC_TIME/RTC_DATE.	
31:16	Reserved			

19.7.12 RTC shift register (RTC_SHIFT)

This register is in write protection state.

Offset address: 0x2C

Reset value of backup domain: 0x0000 0000

System reset: 0xXXXX XXXX

	System reset. 0xxxxx xxxx					
Field	Name	R/W	Description			
14:0	SFSEC	W	Subtract a Fraction of a Second Setup This bit field can only be written; read this byte and it is always 0. Writing to this bit is invalid while an operation is being executed. The set SFSEC value will be added to the synchronous prescaler counter. If the counter counts down, the clock will be delayed, and the delay time is determined by the following formula: Delay (seconds)=SFSEC/(SPSC+1) When it takes effect at the same time with ADD1SECEN, the advance clock will be added by a fraction of a second; the specific added value is determined by the following formula: Advance(seconds)=(1-(SFSEC/(SPSC+1))) Conduct write operation to this bit and RSFLG bit can be cleared. The software keeps running until RSFLG is set to 1 to ensure that the value of the shadow register is synchronized with the shift time.			
30:15			Reserved			
31	ADD1SECEN	W	Add One Second Enable 0: Not added 1: The clock/date increases by one second This bit can only be written; read this byte and it is always 0. Writing to this bit is invalid while an operation is being executed. When it takes effect at the same time with SFSEC, it can increase the value of the clock by several tenths of a second.			

19.7.13 RTC timestamp time register (RTC_TSTIME)

This register is valid only when TSFLG of RTC_STS is set to 1. When TSFLG bit is reset, the content of this register will be cleared.

Offset address: 0x30

Reset value of backup domain: 0x0000 0000

System reset: 0xXXXX XXXX

Field	Name	R/W	Description
3:0	SECU	R	Second Ones Unit in BCD Format Setup

Field	Name	R/W	Description	
6:4	SECT	R	Second Ten's Place Unit in BCD Format Setup	
7			Reserved	
11:8	MINU	R	Minute Ones Unit in BCD Format Setup	
14:12	MINT	R	Minute Ten's Place Unit in BCD Format Setup	
15	Reserved			
19:16	HRU	R	Hour Ones Unit in BCD Format Setup	
21:20	HRT	R	Hour Ten's Place Unit in BCD Format Setup	
22	TIMEFCFG R 0: AM or 24-hour system 1: PM			
31:23	Reserved			

19.7.14 RTC timestamp date register (RTC_TSDATE)

This register is valid only when TSFLG bit of RTC_STS is set to 1. When

TSFLG bit is reset, this register will be cleared.

Offset address: 0x34

Reset value of backup domain: 0x0000 0000

System reset: 0xXXXX XXXX

Field	Name	R/W	Description	
3:0	DAYU	R	Day Ones Unit in BCD Format Setup	
5:4	DAYT	R	Day Ten's Place Unit in BCD Format Setup	
7:6		Reserved		
11:8	MONU	R Month Ones Unit in BCD Format Setup		
12	MONT	R	Month Ten's Place Unit in BCD Format Setup	
15:13	WEEKSEL	R	Week Day Units Select 000: Disable 001: Monday 111: Sunday	
31:16	Reserved			

19.7.15 RTC timestamp subsecond register (RTC_TSSUBSEC)

This register is valid only when TSFLG bit of RTC_STS register is set to 1.

When TSFLG bit is reset, the content of this register will be cleared.

Offset address: 0x38

Reset value of backup domain: 0x0000 0000

System reset: 0xXXXX XXXX

Field	Name	R/W	Description
15:0	SUBSEC	R	Sub Second Value Setup When a timestamp event occurs, SUBSEC [15:0] is the value in synchronous prescaler counter.
31:16	Reserved		

19.7.16 RTC precision calibration register (RTC_CAL)

This register is in write protection state.

Offset address: 0x3C

Reset value of backup domain: 0x0000 0000

System reset: 0xXXXX XXXX

Field	Name	R/W	Description		
8:0	RECALF	R/W	Reduced Calibration Frequency Reduced date frequency: Mask RECALF pulses within 2 ²⁰ RTCCLK pulses (32sec if the output frequency is 32768 Hz) and the date frequency will be reduced (the resolution is 0.9537 ppm). Increased date frequency: It takes effect at the same time with ICALFEN		
12:9			Reserved		
13	CAL16CFG	R/W	16 Second Calibration Cycle Period Configure When CAL16CFG is set to 1, 16-second calibration cycle is used, and it cannot be set to 1 at the same time with CAL8CFG bit. When CAL16CFG=1, RECALF [0] is always 0.		
14	CAL8CFG	R/W	8 Second Calibration Cycle Period Configure When CAL8CFG is set to 1, 8-second calibration cycle is used, and it cannot be set to 1 at the same time with CAL16CFG bit. When CAL8CFG=1, RECALF [1:0] is always 00.		
15	ICALFEN	R/W	Increase Calibration Frequency Enable 0: RTCCLK pulse is not increased 1: One RTCCLK pulse is increased (the frequency increases by 488.5 ppm) every 2 ¹¹ pulses It takes effect at the same time with RECALF, and when the resolution is high, the date frequency will be reduced. If the input frequency is 32768Hz, the number of RTCCLK pulses added in the 32-second window is determined by the following formula: (512*ICALFEN)–RECALF。		
31:16	Reserved				

19.7.17 RTC tamper and multiplexing configuration register (RTC_TACFG)

Offset address: 0x40

Reset value of backup domain: 0x0000 0000

System reset: 0xXXXX XXXX

Field	Name	R/W	Description
0	TP1EN	R/W	RTC_TAMP1 Input Detection Enable 0: Disable

Field	Name	R/W	Description
			1: Enable
1	TP1ALCFG	R/W	RTC_TAMP1 Input Active Level Configure When TPFCSEL!=00, this bit determines that RTC_TAMP1 will trigger an tamper detection event when the input maintains high/low level. 0: Low level 1: High level When TPFCSEL=00, this bit determines that RTC_TAMP1 triggers an tamper detection event when the input is on rising/falling edge. 0: Rising edge 1: Falling edge
2	TPIEN	R/W	Tamper Interrupt Enable 0: Disable 1: Enable
3	TP2EN	R/W	RTC_TAMP2 Input Detection Enable 0: Disable 1: Enable
4	TP2ALCFG	R/W	RTC_TAMP2 Input Active Level Configure When TPFCSEL!=00, this bit determines that RTC_TAMP2 will trigger a tamper detection event when the input maintains high/low level. 0: Low level 1: High level When TPFCSEL=00, this bit determines that RTC_TAMP2 triggers a tamper detection event on rising/falling edge 0: Rising edge 1: Falling edge
6:5		•	Reserved
7	TPTSEN	R/W	Tamper Detection Event Timestamp Enable This bit determines whether the timestamp generated by the tamper detection event is saved 0: Not saved 1: Saved This bit is still valid when TSEN=0 for RTC_CTRL register.
10:8	TPSFSEL	R/W	Tamper Sampling Frequency Select These bits determine the sampling frequency of each input of RTC_TAMPx. 0x0: RTCCLK/32768 0x1: RTCCLK/16384 0x2: RTCCLK/8192 0x3: RTCCLK/4096 0x4: RTCCLK/2048 0x5: RTCCLK/1024 0x6: RTCCLK/512 0x7: RTCCLK/256
12:11	TPFCSEL	R/W	RTC_TAMPx Filter Count Select

Field	Name	R/W	Description
			These bits detemine the number of sampling times after which the tamper event is activated on specific level (TAMP*TRG).
			TPFCSEL is valid for each input of RTC_TAMPx.
			0x0: Activate the tamper event on the edge where RTC_TAMPx input is converted into valid level
			0x1: Continuous sampling twice
			0x2: Continuous sampling for four times
			0x3: Continuous sampling for eight times
			RTC_TAMPx Precharge Duration Select
			These bits determine the number of RTCCLK cycles which are enabled by pull-up resistor before sampling; which is valid in each input of RTC_TAMPx.
14:13	TPPRDUSEL	R/W	0x0: 1
			0x1: 2
			0x2: 4
			0x3: 8
			RTC_TAMPx Pull-up Function Disable
15	TPPUDIS	R/W	This bit determines whether all RTC_TAMPx pins are precharged before sampling.
			0: Enable (internal pull-up is enabled)
			1: Disable
			RTC_TAMP1 Mapping Select
			0: RTC_AF1 is used as RTC_TAMP1
16	TP1MSEL	R/W	1: RTC_AF2 is used as RTC_TAMP1
			Note: When this bit is changed, TP1EN must be reset, so as to avoid unnecessary setting of TP1FLG.
			Timestamp Mapping Select
17	TSMSEL	R/W	0: RTC_AF1 is used as timestamp
			1: RTC_AF2 is used as timestamp
	ALRMOT		RTC_ALARM Output Type Configure
18		R/W	0: Open-drain output
			1: Push-pull output
31:19			Reserved

19.7.18 RTC alarm A subsecond register (RTC_ALRMASS)

This register can be written only when ALRAEN bit of RTC_CTRL is reset or in initialization mode, and it will be in write protection state.

This register is in write protection state.

Offset address: 0x44

Reset value of backup domain: 0x0000 0000

System reset: 0xXXXX XXXX

Field	Name	R/W	Description
14:0	SUBSEC	R/W	Sub Second Value Setup The subsecond value is compared with the value in the synchronous prescaler counter to determine whether to activate the alarm A, and only the bits from 0 to MASKSEL-1 are compared.

Field	Name	R/W	Description
23:15			Reserved
27:24	MASKSEL	R/W	Mask the Most-significant Bits Starting at This Bit Select 0x0: Alarm A is not compared. The alarm is set when the second unit increases by 1 0x1: When comparing with alarm A, SUBSEC[14:1] is not involved, and only SUBSEC[0] is involved 0x2: When comparing with alarm A, SUBSEC[14:2] is not involved, and only SUBSEC[1:0] is involved 0x3: When comparing with alarm A, SUBSEC[14:3] is not involved, and only SUBSEC[2:0] is involved 0xC: When comparing with alarm A, SUBSEC[14:12] is not involved, and only SUBSEC[11:0] is involved 0xD: When comparing with alarm A, SUBSEC[14:13] is not involved, and only SUBSEC[12:0] is involved 0xE: When comparing with alarm A, SUBSEC[14] is not involved, and only SUBSEC[13:0] is involved 0xE: When comparing the alarm A, 15 SUBSEC bits all take part in, and the alarm can be activated only when all of them match. The synchronous counter overrun bit (Bit 15) is never compared. This bit is not 0 only after shift operation.
31:28	Reserved		

19.7.19 RTC alarm B subsecond register (RTC_ALRMBSS)

This register can be written only when ALRBEN bit of RTC_CTRL is reset or in initialization mode, and it will be in write protection state.

Offset address: 0x48

Reset value of backup domain: 0x0000 0000

System reset: 0xXXXX XXXX

Field	Name	R/W	Description
14:0	SUBSEC	R/W	Sub Second Value Setup The subsecond value is compared with the value in the synchronous prescaler counter to determine whether to activate the alarm B, and only the bits from 0 to MASKSEL-1 are compared.
23:15			Reserved
27:24	MASKSEL	R/W	Mask the Most-significant Bits Starting at This Bit Select 0x0: Alarm B is not compared. The alarm is set when the second unit increases by 1 0x1: When comparing with alarm B, SUBSEC[14:1] is not involved, and only SUBSEC[0] is involved 0x2: When comparing with alarm B, SUBSEC[14:2] is not involved, and only SUBSEC[1:0] is involved 3: When comparing with alarm B, SUBSEC[14:3] is not involved, and only SUBSEC[2:0] is involved 0xC: When comparing with alarm B, SUBSEC[14:12] is not involved, and only SUBSEC[11:0] is involved

Field	Name	R/W	Description
			0xD: When comparing with alarm B, SUBSEC[14:13] is not involved, and only SUBSEC[12:0] is involved
			0xE: When comparing with alarm B, SUBSEC[14] is not involved, and only SUBSEC[13:0] is involved
			0xE: When comparing the alarm B, 15 SUBSEC bits all take part in, and the alarm can be activated only when all of them match.
			The synchronous counter overrun bit (Bit 15) is never compared. This bit is not 0 only after shift operation.
31:28	Reserved		

19.7.20 RTC backup register (RTC_BAKPx) (x=0-19)

Offset address: 0x50-0x9C

Reset value of backup domain: 0x0000 0000

Reset value: 0xXXXX XXXX

Field	Name	R/W	Description
31:0	BAKP	R/W	Backup Value Setup V _{BAT} will supply power after V _{DD} power supply is cut off, so this bit field is unaffected by system reset; when a tamper detection event occurs or the flash memory read protection is disabled, this register will be reset, and it will remain reset as long as TP1FLG=1. The contents of this bit field are valid even if the device is running in low-power mode.

20 HASH processor (HASH)

20.1 Introduction

The hash processor complies with the secure hash algorithm, MD5 hash algorithm and HMAC hash algorithm. HMAC hash algorithm verifies the message through hash function. In addition, other algorithms are used to calculate 2⁶⁴-1-bit message digest. HMAC algorithm includes calling SHA-1 or MD5 hash function twice.

Note: Only APM32F415xG/APM32F417xExG series products have such module.

20.2 Main characteristics

- (1) AHB slave peripheral
- (2) Rapid calculation of SHA-1 and MD5
- (3) It is suitable for data verification application and complies with FIPS PUB 180-2 standard, secure hash standard and IETF RFC 1321 specification
- (4) The input data is 32-bit data, and can support word, half word, byte and bit string representation methods
- (5) The output summary uses 5×32-bit words, and overload can continue the interrupted message digest calculation
- (6) Automatic control of data stream that can be directly accessed by the memory
- (7) It can switch automatically, and conform to the big-end SHA-1 calculation standard
- (8) It can be automatically stuffed to complete inputting bit string, so that it can adapt to the message digest calculation with a modulus number of 512
- (9) The 32-bit words abstracted in continuous message block are added to each other to form the whole message digest

20.3 Functional description

When the length of the input message is less than 264 bits, SHA-1 and MD5 will generate a 160-bit and a 128-bit output bit string respectively, called message digest. It can be processed by a digital signature algorithm to generate or verify the signature of the message. Because the message digest is generally much smaller than messages, the signing message digest generally can improve the

efficiency of the process. The generating program and verification program of digital signature need to use the same hash algorithm.

SHA-1 and MD5 are secure because of failing to find the corresponding message of a certain specified message digest or two different messages that generate the same message digest. Modifying a message being transmitted may result in a different message digest so that the signature cannot be verified.

The message or data file processed by the hash processor is called bit string. The length of a message is the number of its bit. 32 bits of this bit string can be regarded as one word. An important point for stuffing is that the bit string grows from left to right, and the bits can be divided into bytes or words.

20.4 Register address mapping

Table 81 HASH Register Address Mapping

		11 0
Register name	Description	Offset address
HASH_CTRL	HASH control register	0x00
HASH_INDATA	HASH input data register	0x04
HASH_START	HASH start register	0x08
HASH_DIGx	HASH digest register x	0x0C+ (x*0x04), x=04
HASH_INT	HASH interrupt register	0x20
HASH_STS	HASH state register	0x24
HASH_CTSWAPx	HASH exchange context register x	0xF8+ (x*0x04), x=050

20.5 Register functional description

20.5.1 HASH control register (HASH_CTRL)

Offset address: 0x00
Reset value: 0x0000 0000

Field	Name	R/W	Description		
1:0		Reserved			
2	INITCAL	R/W	Initialize Message Digest Calculation Writing 1 to this bit will reset the hash processor core so that the hash can calculate a new message digest. Writing 0 to this bit has no effect. Reading this bit will always return 0.		
3	DMAEN	R/W	DMA Enable 0: Disable 1: Enable. When the hash core can receive data, a DMA request will be sent. Note:		

Field	Name	R/W	Description
			(1) This bit will be cleared to zero by the hardware when the DMA transmits the last data of the transmission message. This bit cannot be cleared to zero when INITCAL=1.
			(2) If this bit is not set, but DMA transmission has been requested at this time, this bit will be cleared to zero but the current transmission cannot be suspended. Unless the transmission ends or INITCAL=1, the DMA interface will continue to be enabled internally.
5:4	DTYPE	R/W	Data Type Select 00: 32-bit data. The data written to HASH_INDATA can be used by hash processing without reordering. 01: 16-bit data or half word. The data written to HASH_INDATA is regarded as 2 half words, and needs to be exchanged before it is used by hash processing. 10: 8-bit data or byte. The data written to HASH_INDATA is regarded as 4 bytes, and needs to be exchanged before it is used by hash processing. 11: Bit data or bit string. The data written to HASH_INDATA is regarded as 32 bits, and needs to be exchanged before it is used by hash processing.
6	MODESEL	R/W	Mode Select 0: Hash mode 1: HMAC mode. If the length of the key used at this time is greater than 64 bytes, set the LKEYSEL bit. This bit is valid only when INITCAL bit is set to 1. This bit cannot be set during calculation.
7	ALGSEL	R/W	Algorithm Select 0: SHA-1 algorithm 1: MD5 algorithm This bit is valid only when INITCAL bit is set to 1. This bit cannot be set during calculation.
11:8	WNUM	R	Number of Words Already Pushed in This bit indicates the number of words in the message that have been pushed in the input FIFO. If the HASH_INDATA register is write-accessed and the DINNEMPT bit is set, this bit will increase one by one. Write 1 to the INITCAL bit or DIGCAL bit, and this bit will be cleared to 0. When DMA is unused: 0000: When DINNEMPT=0, there is no word pushed in DIN buffer 0000: When DINNEMPT=1, 1 word has been pushed in DIN buffer 0001: 2 words have been pushed in DIN buffer 1111: 16 words have been pushed in DIN buffer When DMA is used, it indicates the number of words that have been pushed in input FIFO.
12	DINNEMPT	R	DIN Not Empty This bit will be set to 1 when there are effective data in HASH_INDATA register. Write 1 to the INITCAL bit or DIGCAL bit, and this bit will be cleared to 0. 0: There is no valid data

Field	Name	R/W	Description
			1: Data at least including one word
15:13	Reserved		
16	LKEYSEL	R/W	Key Select In HMAC mode: 0: Short key (≤64 bytes) 1: Long key (>64 bytes) This bit is valid only when INITCAL bit and MODESEL bit are set to 1 at the same time. This bit cannot be set during calculation.
31:17	Reserved		

20.5.2 HASH input data register (HASH_INDATA)

Offset address: 0x04 Reset value: 0x0000 0000

Field	Name	R/W	Description
31:0	INDATA	R/W	Input Data Read: Current content returned to the register Write: The current contents of the register are pushed in the input FIFO, and the register obtains the new value on AHB bus

20.5.3 HASH start register (HASH_START)

Offset address: 0x08 Reset value: 0x0000 0000

Field	Name	R/W	Description	
4:0	LWNUM	R/W	The Significant Number of the Last Word Written to the HASH Processor's Bitstring Structure When DIGCAL=0, write to this bit and the value on AHB bus can be obtained: 0x00: All 32 bits are valid 0x01: Bit [31] is valid 0x02: Bit [31:30] is valid 0x03: Bit [31:29] is valid 0x1F: Bit [0] is valid When DIGCAL=1, write this bit and this bit field will be unchanged. Read these bits and the last value written to this bit will be returned.	
7:5		Reserved		
8	DIGCAL	W	Digest Calculation When DIGCAL=1, the message will be filled with the value in LWNUM, and since the INITCAL bit =1, all data words written to the input FIFO will begin to calculate the digest. Read this bit and 0 will be returned.	
31:9	Reserved			

20.5.4 HASH digest register x (HASH_DIGx)

Offset address: 0x0C+ (x*0x04), x=0...4

Reset value: 0x0000 0000

x is 0...4, that is, there are 5 registers, each of which is used to store digest

esults.

[31:0] bit of HASH_DIG0 register is DIG0, [31:0] bit of HASH_DIG1 register is DIG1, and so on.

Field	Name	R/W	Description
31:0	DIGx	R	HASH Digest

20.5.5 **HASH interrupt register (HASH_INT)**

Offset address: 0x20 Reset value: 0x0000 0000

Field	Name	R/W	R/W Description			
0	INDATA	R/W	Data Input Interrupt Enable 0: Disable			
Ů,	IIVB/(I/(10,00	1: Enable			
1	DCALC	R/W	Digest Calculation Completion Interrupt Enable 0: Disable 1: Enable			
31:2			Reserved			

20.5.6 HASH state register (HASH_STS)

Offset address: 0x24
Reset value: 0x0000 0001

Field	Name	R/W	Description
0	INDATAINT	RC_W0	Data Input Interrupt Status When 16 bits of the input buffer are idle, this bit will be set by the hardware. Write 0 to this bit or write to HASH_INDATA register and this bit can be cleared.
			O: There are no 16 idle bits in input buffer 1: A new block can be input into the input buffer. If HASH_INT [DCALC]=1, an interrupt will be generated.
1	DCALCINT	RC_W0	Digest Calculation Completion Interrupt Status This bit will be set by hardware when the digest is ready. Write 0 to this bit or write 1 to HASH_CTRL [INITCAL] and this bit can be cleared. 0: There is no digest in HASH_DIGx register 1: The finished digest calculation is stored in HASH_DIGx register. If HASH_INT [DCALC]=1, an interrupt will be generated.
2	DMA	R	DMA Status This bit is set at the same with DMAEN, and when DMAEN=0 and DMA transmission is not conducted, this bit will be cleared to 0. This bit is not associated with interrupt. 0: DMAEN=0 and transmission is not conducted 1: DMAEN=1 or transmission is ongoing

Field	Name	R/W	Description		
3	BUSY	R	Busy Bit Whether the bush core is busy: 0: Idle 1: Busy		
31:4	Reserved				

20.5.7 HASH exchange context register x (HASH_CTSWAPx)

Offset address: 0xF8+(x*0x04), x=0...50

Reset value of HASH_CTSWAP0 register: 0x0000 0002 Reset value of HASH_CTSWAP1-50 register: 0x0000 0000

x is 0...50, that is, there are 51 registers.

[31:0] bit of HASH_CTSWAP0 register is CTSWAP0, [31:0] bit of HASH_CTSWAP1 register is CTSWAP1, and so on.

Field	Name	R/W	Description
31:0	CTSWAPx	R/W	Context Swap

21 Digital camera interface (DCI)

Note: Only APM32F407/417xExG series products have such module.

21.1 Full name and abbreviation description of terms

Table 82 Full name and abbreviation description of terms

Full name in English	English abbreviation
Digital Camera Interface	DCI
Joint Photo Experts Group	JPEG
Horizontal Synchronization	HSYNC
Vertical Synchronization	VSYNC

21.2 Introduction

DCI is used to receive high-speed data streams from CMOS camera. It supports different data formats and is applicable to black-and-white cameras, X24 cameras and so on.

21.3 Main characteristics

- (1) Synchronous parallel interface
- (2) Can receive 8/10/12/14-bit data
- (3) Supported data format:
 - YCbCr4:2:2 line-by-line video
 - RGB565 line-by-line video
 - Compressed image (JPEG)
 - 8/10/12/14-bit line-by-line video
- (4) The edge polarity of the pixel clock can be selected to capture data
- (5) The data is transferred through DMA and the buffer is managed by DMA
- (6) There are two synchronization methods
 - Hardware synchronization: HSYNC signal and VSYNC signal
 - Software synchronization (only support 8-bit parallel data): Embedded code in data stream

21.4 Structure block diagram

DCI_PIXCLK
DCI_D
DCI_HSYNC
DCI_VSYNC

Control/State register

HCLK

HCLK

HCLK

HCLK

Figure 69 DCI Structure Block Diagram

21.5 Functional description

21.5.1 Signal description

The physical interface input signal of DCI (in slave mode) consists of 8/10/12/14-bit data DCI_ D, pixel clock PIXCLK, horizontal synchronization/data valid HSYNC and vertical synchronization VSYNC. The signal description is shown in the table below.

Name	Description
DCI_D	8/10/12/14-bit data captured by DCI,
PIXCLK	The data is synchronized with it and changes on the rising/falling edge of PIXCLK according to the polarity
HSYNC	Indicate start or end of line
VSYNC	Indicate start or end of frame

Table 83 DC signal Description

21.5.2 Pixel clock cycle

The data captured by DCI can be 8 bits, 10 bits, 12 bits and 14 bits. To generate a 32-bit data word, the number of pixel clock cycles needs to be different.

The 32-bit data word is divided into four 8-bit bytes, so DCI_D[7:0] can be stored as 8-bit data, and DCI_D[9:0], DCI_D[11:0] and DCI_D[13:0] can be stored as 10, 12 and 14 least significant bits of 16-bit words respectively, and the remaining most significant bits will be cleared to 0. Therefore, 32-bit data word can store four 8-bit data or two 10/12/14-bit data.

As shown in the following table, the captured data of four widths are different in the storage position of 32-bit data word, and the number of pixel clock cycles for generating 32-bit data words is also different.

Table 84 Position Arrangement of Four Widths and Number of PIXCLK Required

	8-bit data	10-bit data	12-bit data	14-bit data
LSB position of 32-bit data word	First byte	First byte	First byte	First byte
MSB position of 32-bit data word	Fourth byte	Second byte	Second byte	Second byte
Required pixel clock cycle	4	2	2	2

21.5.3 Synchronous mode

DCI supports hardware synchronization and embedded code synchronization. It should be noted that:

- (1) Only 8-bit parallel interface supports embedded code synchronization.
- (2) For compressed data (JPEG), DCI can only use hardware synchronization.

21.5.3.1 Hardware synchronization

Hardware synchronization means that the system receives data when HSYNC or VSYNC signals are at invalid level.

For compressed data, DCI uses VSYNC to indicate the start and end, and data are transmitted when HSYNC is at low level.

If you want to transmit images to DMA/RAM buffer, DCI will use VSYNC synchronization. By activating the vertical synchronization interrupt flag at the end of each frame, DMA can be enabled to manage continuous frames. If DMA transmits consecutive frames to multiple continuous buffers or buffers that can be cycled, the transmission can be conducted continuously.

21.5.3.2 Embedded code synchronization

Embedded code synchronization means that the system synchronizes the data with 32-bit value in the data stream that will no longer be used.

There are two modes. Different modes have different embedded codes.

Mode 1

In valid lines or during the inter-frame blanking interval:

SAV: Start of lineEAV: End of line

Mode 2

The synchronization code has 4 event types:

- Frame start (FS)
- Frame end (FE)
- Line start (LS)
- Line end (LE)

It consists of 4 bytes, all of which are in the format of 0xFF 00 00 XX (synchronization code). The value of synchronization code is programmed by DCI_ESYNCC register.

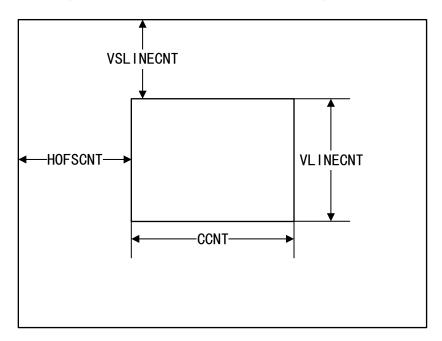
21.5.4 Capture mode

21.5.4.1 Snapshot mode

In snapshot mode, the module only captures single frame. After the system detects the "frame start", it will start to sample the data, and after the capture ends, the CEN bit of DCI_CTRL register will be cleared to 0; at this time, if frame overflow occurs, the frame will be lost.

21.5.4.2 Continuous acquisition mode

In continuous acquisition mode, the module can capture frames continuously and the frame capture frequency is configured by setting the FCRCFG bit of DCI_STS register. According to the selected synchronization mode, the system will collect data when the next VSYNC or frame start synchronization code is detected. When CEN bit of DCI_CTRL register is set to 1, the collection will occur continuously and when this bit is cleared to 0 and the current frame ends, the collection will stop.


21.5.5 Crop

DCI can use the cropping function to select a window of specified size in the image. The window size is determined by DCI_CROPWSTAT register and DCI_CROPWSIZE register.

The parameter definitions are shown in the following figure (the middle smaller rectangle is the selected window).

Figure 70 Parameter Definitions in Cropping Window

It should be noted that only when the value of CCNT is a multiple of 4, can data be transmitted through DMA.

21.5.6 JPEG format

Since JPEG is stored as data rather than frame or line, only when VSYNC is used as the start signal and HSYNC is used as the data enable signal, can the module receive JPEG images.

Only when the module captures a complete 32-bit word, can a DMA request be generated. Therefore, when the end of the frame is detected, the received data is less than 32 bits, and the remaining bits need to be stuffed with "0".

In addition, cropping function and embedded code synchronization mode cannot be used by JPEG format.

21.5.7 **FIFO**

The module is provided with a FIFO controller, which realizes FIFO with 4-word depth so as to manage the data transmission on AHB. If the transmission rate is greater than the maximum rate that AHB can bear, the FIFO data will be overwritten because there is no overflow protection.

When the synchronization signal is wrong or FIFO overflows, FIFO will be reset and DCI will wait for the new data frame.

21.5.8 Data format

The module supports three kinds of data formats:

- Monochrome format
- YCbCr format

RGB565

The frame buffers of the above three kinds of data are stored in raster mode, with 32-bit words and they support little-endian alignment format.

Raster mode refers to start to scan from word 0 of pixel line 0 in the order of increasing address.

The width of these three data formats is different, so the storage methods in 32-bit words are also different, as shown in the table below.

Table 85 Storage Method of Different Data Formats

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Monochrome		n+1								n						
YCbCr		Y n Cb n														
RGB565	Red n						Green n					Blue n				
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Monochrome		n+3					n+3 n+2									
YCbCr	Y n+1					Cr n										
RGB565		R	ed n+	·1	Green n+1 Blue n+1			-1								

21.5.9 DCI interrupt

DCI has five interrupt sources:

• IT_LINE: End of line

IT_FRAME: End of frame capture
 IT_OVR: Receive data overflow
 IT_VSYNC: Synchronization frame

 IT_ERR: An error is detected during embedded code synchronization frame detection

IT_DCI is a global interrupt. When any of the above interrupts occurs and is not masked, a global interrupt will be generated.

21.6 Register address mapping

Table 86 DCI Register Address Mapping

Register name	Description	Offset address
DCI_CTRL	DCI control regisster	0x00
DCI_STS	DCI state register	0x04
DCI_RINTSTS	DCI original interrupt state register	0x08
DCI_INTEN	DCI enable interrupt register	0x0C
DCI_MINTSTS	DCI mask interrupt state register	0x10

Register name	Description	Offset address
DCI_INTCLR	DCI clear interrupt register	0x14
DCI_ESYNCC	DCI embedded synchronization code register	0x18
DCI_ESYNCUM	DCI embedded synchronization unmask register	0x1C
DCI_CROPWSTAT	DCI cropping window start register	0x20
DCI_CROPWSIZE	DCI cropping window size register	0x24
DCI_DATA	DCI data register	0x28

21.7 Register functional description

21.7.1 DCI control register (DCI_CTRL)

Offset address: 0x00

Reset value: 0x0000 0000

Field	Name	R/W	Description
rieiu	Name	IX/ VV	<u> </u>
			Capture Enable
0	CEN	R/W	0: Disable
			1: Enable
			Capture Mode
1	CMODE	R/W	0: Continuous acquisition mode
			1: Snapshot mode
			Crop Feature
			0: When the number of bytes contained in the image frame is a multiple
2	CROPF	R/W	of 4, the module can obtain a complete image
2	CROPF	IX/VV	1: When the window size is larger than the image size, the module captures the whole image; otherwise it only captures the image data
			of the specified area in the cropping window register
			(DCI_CROPWSTAT and DCI_CROPWSIZE)
			JPEG Format
3	JPGFM	R/W	0: Uncompressed video format
			1: JPEG format
			Embedded Synchronization Select
4	ESYNCSEL	R/W	0: Select hardware synchronization
			1: Select embedded code synchronization
			Pixel Clock Polarity
5	PXCLKPOL	R/W	0: Falling edge capture
			1: Rising edge capture
			Horizontal Synchronization Polarity
6	HSYNCPOL	R/W	0: Data is valid when HSYNC is at low level
			1: Data is valid when HSYNC is at high level
			Vertical Synchronization Polarity
7	VSYNCPOL	R/W	0: Data is valid when VSYNC is at low level
			1: Data is valid when VSYNC is at high level

Field	Name	R/W	Description				
9:8	FCRCFG	R/W	Frame Capture Rate Configure In continuous acquisition mode, this bit configures the frame capture frequency. 00: Capture all frames 01: Capture every other frame 10: Capture every three frames 11: Reserved				
11:10	EXDMOD	R/W	R/W Extended Data Mode Select the width of data to be captured by each PIXCLK. 00: 8 bits 01: 10 bits 10: 12 bits 11: 14 bits				
13:12			Reserved				
14	DCIEN	R/W DCI Enable 0: Disable 1: Enable					
31:15	Reserved						

21.7.2 DCI state register (DCI_STS)

Offset address: 0x04 Reset value: 0x0000 0000

Field	Name	R/W	Description		
			Status of HSYNC Pin		
0	HSYNCSTS	R	When embedded code synchronization is selected, this bit indicates the status of HSYNC pin.		
			0: Effective frame		
			1: Inter-line synchronization		
			Status of VSYNC Pin		
1	VSYNCSTS	R	When embedded code synchronization is selected, this bit indicates the status of VSYNC pin.		
			0: Effective frame		
			1: Inter-frame synchronization		
			FIFO Not Empty		
2	FIFONEMP	R	0: FIFO is empty		
			1: FIFO is not empty (including data)		
31:3	Reserved				

21.7.3 DCI original interrupt state register (DCI_RINTSTS)

Offset address: 0x08
Reset value: 0x0000 0000

Field	Name	R/W	Description
0	CC_RINT	R	Capture Complete Raw Interrupt Status 0: No new data is captured 1: One new frame has been captured

Field	Name	R/W	Description		
1	OVR_RINT	R	Overrun Raw Interrupt Status 0: No overrun 1: Data underflow		
2	SYNCERR_RINT	R	Synchronization Error Raw Interrupt Status In the embedded code synchronization mode, if the module does not receive the embedded code in the correct order, a synchronization error interrupt will be generated. 0: No synchronization error 1: Synchronization error is detected		
3	VSYNC_RINT	R	VSYNC Signal Raw Interrupt Status This interrupt is generated when VSYNC signal changes from invalid to valid.		
4	LINE_RINT	R	Line Raw Interrupt Status This interrupt is generated when HSYNC signal changes from invalid to valid.		
31:5	Reserved				

21.7.4 DCI enable interrupt register (DCI_INTEN)

Offset address: 0x0C Reset value: 0x0000 0000

Field	Name	R/W	Description			
0	CCINTEN	R/W	Capture Complete Interrupt Enable 0: Disable 1: Enable			
1	OVRINTEN	R/W	Overrun Interrupt Enable 0: Disable 1: Enable			
2	SYNCERRINTEN	R/W	Synchronization Error Interrupt Enable 0: Disable 1: Enable			
3	VSYNCINTEN	R/W	VSYNC Signal Interrupt Enable 0: Disable 1: Enable			
4	LINEINTEN	R/W	Line Interrupt Enable 0: Disable 1: Enable			
31:5		Reserved				

21.7.5 DCI mask interrupt state register (DCI_MINTSTS)

Offset address: 0x10 Reset value: 0x0000 0000

Field	Name	R/W	Description
0	CC_MINT	R	Capture Complete Masked Interrupt Status 0: Mask 1: Not mask

Field	Name	R/W	Description		
			Overrun Masked Interrupt Status		
1	OVR_MINT	R	0: Mask		
			1: Not mask		
			Synchronization Error Masked Interrupt Status		
2	SYNCERR_MINT	R	0: Mask		
			1: Not mask		
			VSYNC Signal Masked Interrupt Status		
3	VSYNC_MINT	R	0: Mask		
			1: Not mask		
			Line Masked Interrupt Status		
4	LINE_MINT	R	0: Mask		
			1: Not mask		
31:5	Reserved				

21.7.6 DCI clear interrupt register (DCI_INTCLR)

Offset address: 0x14
Reset value: 0x0000 0000

Field	Name	R/W	Description		
0	CC_INTCLR	W	Capture Complete Interrupt Status Clear Write 1 to this bit to clear DCI_RINTSTS[0].		
1	OVR_INTCLR	W	Overrun Interrupt Status Clear Write 1 to this bit to clear DCI_RINTSTS[1].		
2	SYNCERR_INTCLR	W	Synchronization Error Interrupt Status Clear Write 1 to this bit to clear DCI_RINTSTS[2].		
3	VSYNC_INTCLR	W	VSYNC Signal Interrupt Status Clear Write 1 to this bit to clear DCI_RINTSTS[3].		
4	LINE_INTCLR	W	Line Interrupt Status Clear Write 1 to this bit to clear DCI_RINTSTS[4].		
31:5	Reserved				

21.7.7 DCI embedded synchronization code register (DCI_ESYNCC)

Offset address: 0x18
Reset value: 0x0000 0000

The separation code consists of 4 bytes, all of which are in the format of 0xFF 00 00 XX (separation code). For the definition of separation code, see the text. This register is used to program the value of separation code.

Field	Name	R/W	Description
7:0	FSDC	R/W	Frame Start Delimiter Code
15:8	LSDC	R/W	Line Start Delimiter Code
23:16	LEDC	R/W	Line End Delimiter Code
31:24	FEDC	R/W	Frame End Delimiter Code

21.7.8 DCI embedded synchronization unmask register (DCI_ESYNCUM)

Offset address: 0x1C Reset value: 0x0000 0000

This register is used to determine whether to mask the embedded code separator. When masked, the received data will not be compared with the separator. When the separator is unmasked, the module will compare the value in DCI_ESYNCC with the value of the corresponding bit of the data.

Field	Name	R/W	Description
			Frame Start Delimiter Unmask
7:0	FSDUM	R/W	0: Mask
			1: Unmask
			Line Start Delimiter Unmask
15:8	LSDUM	R/W	0: Mask
			1: Unmask
			Line End Delimiter Unmask
23:16	LEDUM	R/W	0: Mask
			1: Unmask
			Frame End Delimiter Unmask
31:24	FEDUM	R/W	0: Mask
			1: Unmask

21.7.9 DCI cropping window start register (DCI_CROPWSTAT)

Offset address: 0x20 Reset value: 0x0000 0000

Field	Name	R/W	Description		
13:0	HOFSCNT	R/W	Horizontal Offset Count This value is the number of PIXCLK that should be vacated in the window line before capturing data.		
15:14	Reserved				
28:16	VSLINECNT	R/W	Vertical Start Line Count This bit decides to start capturing data from which line. 0x0000: Line 1 0x0001: Line 2		
31:29	Reserved				

21.7.10 DCI cropping window size register (DCI_CROPWSIZE)

Offset address: 0x24
Reset value: 0x0000 0000

Field	Name	R/W	Description				
13:0	CCNT	R/W	Capture Count The value of this bit is the number of PIXCLK to be captured in the window. 0x0000: 1 0x0001: 2				
15:14		Reserved					
29:16	VLINECNT	Vertical Line Count Tis value is the number of lines included in the window. ECNT R/W 0x0000: 1 line 0x0001: 2 lines					
31:30	Reserved						

21.7.11 DCI data register (DCI_DATA)

Offset address: 0x28 Reset value: 0x0000 0000

Every time DCI receives a 32-bit data, it will trigger a DMA request.

This register is used to store received data.

Field	Name	R/W	Description
7:0	DATA0	R	Data Byte 0
15:8	DATA1	R	Data Byte 1
23:16	DATA2	R	Data Byte 2
31:24	DATA3	R	Data Byte 3

22 Universal synchronous/asynchronous transceiver (USART)

22.1 Full name and abbreviation description of terms

Table 87 Full name and abbreviation description of terms

Full name in English	English abbreviation
Clear to Send	CTS
Request to Send	RTS
Most Significant Bit	MSB
Least Significant Bit	LSB
Guard	GRD
Overrun	OVR

22.2 Introduction

USART (universal synchronous/asynchronous transceiver) is a serial communication device that can flexibly exchange full-duplex and half-duplex data with external devices, and meets the requirements of external devices for industry standard NRZ asynchronous serial data format. USART also provides a wide range of baud rate for selection and supports multiprocessor communication.

USART not only supports standard asynchronous transceiver mode, but also supports some other serial data exchange modes, such as LIN protocol, smart card protocol, IrDA SIR ENDEC specification and hardware flow control mode.

USART also supports DMA function to realize high-speed data communication.

22.3 Main characteristics

- (1) Full duplex asynchronous communication
- (2) Single-line half-duplex communication
- (3) NRZ standard format
- (4) Characteristics of programmable serial port:
 - Data bit: 8 or 9 bits
 - Check bits: Even parity check, odd parity check, no check
 - Support 0.5, 1, 1.5 and 2 stop bits
- (5) Check control

- Transmit the check bit
- Check the received data
- (6) Select speed and clock tolerance with programmable 8 or 16-time oversampling rate
- (7) Independent transmitter and receiver enable bit
- (8) Programmable baud rate generator
- (9) Multiprocessor communication:
 - If the address does not match, it will enter the mute mode
 - Wake up from mute mode through idle bus detection or address flag detection
- (10) Synchronous transmission mode
- (11) Generation and detection of LIN break frame
- (12) Support the smart card interface of ISO7816-3 standard
- (13) Support IrDA protocol
- (14) Support hardware flow control
- (15) DMA can be used for continuous communication
- (16) State flag bit:
 - Transmission detection flag: The transmit register is empty, the receive register is not empty, and transmission is completed
 - Error detection flag: Overrun error, noise error, parity error, frame error
- (17) Multiple interrupt sources:
 - The transmit register is empty
 - Transmission is completed
 - CTS changed
 - The receive register cannot be empty
 - Overload error
 - Bus idle
 - Parity error
 - LIN disconnection detection
 - Noise error
 - Overrun error
 - Frame error

22.4 Functional description

Table 88 USAR Pin Description

Pin	Туре	Description
USART_RX	Input	Data receiving
USART_TX	Output I/O (single-line mode/smart card mode)	Data transmission It is high level by default when the transmitter is enabled and does not transmit data
USART_CK	Output	Clock output
USART_nRTS	Input	Request to send in hardware flow control mode
USART_nCTS	Output	Clear to send in hardware flow control mode
IrDA_RDI	Input	Data input in IrDA mode
IrDA_TDO	Output	Data output in IrDA mode

22.4.1 Single-line half-duplex communication

HDEN bit of USART_CTRL3 register determines whether to enter the single-line half-duplex mode.

When USART enters single-line half-duplex mode:

- The CLKEN and LINMEN bit of USART_CTRL2 register, and IREN and SCEN bits of USART_CTRL3 register must be cleared.
- RX pin is disabled.
- TX pin should be configured as open-drain output and connected with RX pin inside the chip.
- Transmitting data and receiving data can not be carried out at the same time. The data cannot be received before they are sent. If needing to receive data, enabling receiving can be turned on only after TXCFLG bit of USART_STS register is set to 1.
- If there is data collision on the bus, software management is needed to allocate the communication process.

22.4.2 Frame format

The frame format of data frame is controlled by USART CTRL1 register

- DBLCFG bit controls the character length, which can be set to 8 or 9 bits.
- PCEN bit controls to enable the check bit or not.
- PCFG bit controls the parity bit to be odd or even.

Table 89 Frame Format

DBLCFG bit	PCEN bit	USART data frame
0	0	Start bit+8-bit data+stop bit
0	1	Start bit+7-bit data+odd-even parity check bit+stop bit
1	0	Start bit+9-bit data+stop bit
1	1	Start bit+8-bit data+odd-even parity check bit+stop bit

Configurable stop bit

Four different stop bits can be configured through STOPCFG bit of USART CTRL2 register.

- 1 stop bits: Default stop bit.
- 0.5 stop bits: Used when receiving data in smart card mode.
- 2 stop bits: Used in normal mode, single-line mode and hardware flow control mode.
- 1.5 stop bits: Used when transmitting and receiving data in smart card mode.

Check bit

PCFG bit of USART_CTRL1 determines the parity check bit; when PCFG=0, it is even parity check, on the contrary, it is odd parity check.

- Even check: When the number of frame data and check bit 1 is even, the even check bit is 0; otherwise it is 1.
- Odd check: When the number of frame data and check bit 1 is even, the odd check bit is 1; otherwise it is 0.

22.4.3 Transmitter

When TXEN bit of the register USART_CTRL1 is set, the transmit shift register will output data through TX pin and the corresponding clock pulses will be output through CK pin.

22.4.3.1 Character transmitting

During transmitting period of USART, the least significant bit of the data will be moved out by TX pin first. In this mode, USART_ DATA register has a buffer between the internal bus and the transmitter shift register.

A data frame is composed of the start bit, character and stop bit, so there is a low-level start bit in front of each character; then there is a high-level stop bits the number of which is configurable.

Transmission configuration steps

• Set UEN bit of USART CTRL1 register to enable USART.

- Decide the word length by setting DBLCFG bit of USART_CTRL1 register.
- Decide the number of stop bits by setting STOPCFG bit of USART CTRL2 register.
- If multi-buffer communication is selected, DMA should be enabled in USART CTRL3 register.
- Set the baud rate of communication in USART BR register.
- Enable TXEN bit in USART_CTRL1 register, and transmit an idle frame.
- Wait for TXBEFLG bit of USART STS register to be set to 1.
- Write data to USART_DATA register (if DMA is not enabled, repeat steps 7-8 for each byte to be sent).
- Wait for TXCFLG bit of USART_STS register to be set to 1, indicating transmission completion.

Note: TXEN bit cannot be reset during data transmission; otherwise, the data on TX pin will be destroyed, which is because if the baud rate generator stops counting, the data being transmitted will be lost.

22.4.3.2 Single-byte communication

TXBEFLG bit can be cleared by writing USART_DATA register. When the TXBEFLG bit is set by hardware, the shift register will receive the data transferred from the data transmit register, then the data will be transmitted, and the data transmit register will be cleared. The next data can be written in the data register without covering the previous data.

- (1) If TXBEIEN in USART_CTRL1 register is set to 1, an interrupt will be generated.
- (2) If USART is in the state of transmitting data, write to the data register to save the data to the DATA register, and transfer the data to the shift register at the end of the current data transmission.
- (3) If USART is in idle state, write to the data register, put the data into the shift register, start transmitting data, and set TXBEFLG bit to 1.
- (4) When a data transmission is completed and TXBEFLG bit is set, TXCFLG bit will be set to 1; at this time if TXCIEN bit in USART_CTRL1 register is set to 1, an interrupt will be generated.
- (5) After the last data is written in the USART_DATA register, before entering the low-power mode or before closing the USART module, wait to set TXCFLG to 1.

22.4.3.3 **Break frame**

The break frames are considered to receive 0 in a frame period. Setting TXBF bit of USART_CTRL1 register can transmit a break frame, and the length of the break frame is determined by DBLCFG bit of USART_CTRL1 register. If the

TXBF bit is set, after completion of transmission of current data, the TX line will transmit a break frame, and after completion of transmission of break frame, the TXBF bit will be reset. At the end of the break frame, the transmitter inserts one or two stop bits to respond to the start bit.

Note: If the TXBF bit is reset before transmission of the break frame starts, the break frame will not be transmitted. To transmit two consecutive break frames, the TXBF bit should be set after the stop bit of the previous disconnection symbol.

22.4.3.4 Idle frame

The idle frame is regarded as a complete data frame composed entirely of 1, followed by the start bit of the next frame containing the data. Set TXEN bit of USART_CTRL1 register to 1 and one idle frame can be set before the first data frame.

22.4.4 Receiver

22.4.4.1 Character receiving

During receiving period of USART, RX pin will first introduce the least significant bit of the data. In this mode, USART_ DATA register has a buffer between the internal bus and the receive shift register. The data is transmitted to the buffer bit by bit. When fully receiving the data, the corresponding receive register is not empty, then the user can read USART_DATA.

Receiving configuration steps

- Set UEN bit of USART_CTRL1 register to enable USART.
- Decide the word length by setting DBLCFG bit of USART_CTRL1 register.
- Decide the number of stop bits by setting STOPCFG bit of USART CTRL2 register.
- If multi-buffer communication is selected, DMA should be enabled in USART CTRL3 register.
- Set the baud rate of communication in USART BR register.
- Set RXEN bit of USART CTRL1 to enable receiving.

Note:

- (1) RXEN bit cannot be reset during data receiving period; otherwise, the bytes being received will be lost.
- (2) In the process when the receiver is receiving a data frame, if overrun error, noise error or frame error is detected, the error flag will be set to 1.
- (3) When data is transferred from the shift register to USART_DATA register, the RXBNEFLG bit of USART_STS will be set by hardware.
- (4) An interrupt will be generated if RXBNEIEN bit is set.

- (5) In single buffer mode, the RXBNEFLG bit can be cleared by reading USART_DATA register by software or by writing 0.
- (6) In multi-buffer mode, after each byte is received, RXBNEFLG bit of USART_STS register will be set to 1, and DMA will read the data register to clear it.

22.4.4.2 Break frame

When the receiver receives a break frame, USART will handle it as receiving a frame error.

22.4.4.3 Idle frame

When the receiver receives an idle frame, USART will handle it as receiving an ordinary data frame; if IDLEIEN bit of USART_CTRL1 is set, an interrupt will be generated.

22.4.4.4 Oversampling rate

OSMCFG bit of USART CTRL1 register determines the oversampling rate.

If the oversampling rate is 8 times of the baud rate, the speed is higher, but the clock tolerance is smaller. If it is 16 times, the speed is lower, but the clock tolerance is bigger.

22.4.4.5 Overrun error

When RXBNEFLG bit of USART_STS register is set to 1 and a new character is received at the same time, an overrun error will be caused. Only after RXEN is reset, can the data be transferred from the shift register to DATA register. RXBNEFLG bit will be set to 1 after receiving the byte. This bit needs to be reset before receiving the next data or serving the previous DMA request; otherwise, an overrun error will be caused.

When an overrun error occurs

- USART STS OVREFLG bit set to 1.
- The data in DATA register will not be lost.
- The data in the shift register received before will be overwritten, but the data received later will not be saved.
- If RXBNEIEN bit of USART_CTRL1 is set to 1, an interrupt will be generated.
- When OVREFLG bit is set to 1, it means that the data has been lost.
 There are two possibilities:
 - When RXBNEFLG=1, the previous valid data is still on DATA register, and can be read.
 - When RXBNEFLG=0, there is no valid data in DATA register.
- The OVREFLG bit can be reset through read operation for USART STS and USART DATA registers.

22.4.4.6 Noise error

When noise is detected in receiving process of the receiver:

- Set NE flag on the rising edge of RXBNEFLG bit of USART_STS register.
- Invalid data is transmitted from the shift register to USART_DATA register.

Note: 8-time oversampling ratio cannot be used in LIN, smart card and IrDA modes.

22.4.4.7 Frame error

If the stop bit is not received and recognized at the expected receiving time due to excessive noise or lack of synchronization, a frame error will be detected.

When a frame error is detected in receiving process of the receiver:

- (1) Set the FEFLG bit of USART_STS register.
- (2) Invalid data is transmitted from the shift register to USART_DATA register.
- (3) In single byte communication, there is no interrupt, but in multi-buffer communication, an interrupt will be generated by setting the ERRIEN bit of USART_CTRL3 register.

22.4.5 Baud rate generator

The baud rate division factor (USARTDIV) is a 16-digit number consisting of 12-digit integer part and 4-digit decimal part. Its relationship with the system clock:

Baud rate=PCLK/16×(USARTDIV)

The system clock of USART2/3 is PCLK1, and that of USART1 is PCLK2. USART can be enabled only after the clock control unit enables the system clock.

22.4.6 Multi-processor communication

In multi-processor communication, multiple USARTs are connected to form a network. In this network, two devices communicate with each other, and the mute mode can be enabled for other devices not participating in the communication in order to reduce the burden of USART. In mute mode, no receive state bit will be set and all receive interrupts are disabled.

When mute mode is enabled, there are two ways to exit the mute mode:

- WUPMCFG bit is cleared and the bus is idle to exit the mute mode.
- WUPMCFG bit is set and after receiving the address flag, it can exit the mute mode.

Idle bus detection (WUPMCFG=0)

When RXMUTEEN is set to 1, USART enters the mute mode, and it can be

waken up from the mute mode when an idle frame is detected, meanwhile, the RXMUTEEN bit will be cleared by the hardware. RXMUTEEN can also be cleared by software.

RX Data 1 Data 2 Data 3 Idle frame Data 4

RXMUTEEN Mute mode Normal mode

RXMUTEEN Idle frame is detected

Figure 71 Idle Bus Exit Mute Mode

Address flag detection (WUPMCFG=1)

If the address flag bit is 1, this byte is regarded as the address. The storage address of lower four bits of the address bytes will first be compared with its own address when the receiver receives the address byte. If the addresses do not match, the receiver will enter the mute mode. If the addresses match, the receiver will wake up from the mute mode and be ready to receive the next byte. If the address byte is received again after exiting the mute mode, but the address does not match its own address, the receiver will enter the mute mode again.

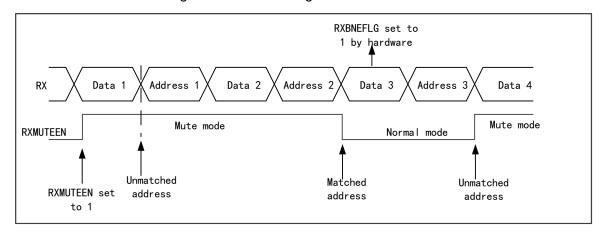


Figure 72 Address Flag Exit Mute Mode

22.4.7 Synchronous mode

The synchronous mode supports full duplex synchronous serial communication in master mode, and has one more signal line USART_CK which can output synchronous clock than the asynchronous mode.

CLKEN bit of USART_CTRL2 register decides whether to enter the synchronous mode.

When USART enters the synchronous mode:

- The LINMEN bit of USART_CTRL2 register, and IREN, HDEN and SCEN bits of USART_CTRL3 register must be cleared.
- The start bit and stop bit of data frame have no clock output.
- Whether the last data bit of data frame generates USART_CK clock is decided by the LBCPOEN bit of USART_CTRL2 register.
- The clock polarity of USART_CK is decided by CPOL bit of USART_CTRL2 register.
- The phase of USART_CK is decided by the CPHA bit of USART_CTRL2.
- The external CK clock cannot be activated when the bus is idle or the frame is disconnected.

USART

CK

Clock input

Data input

Data output

Figure 73 USART Synchronous Transmission Example

Figure 74 USART Synchronous Transmission Timing Diagram (DBLCFG=0)

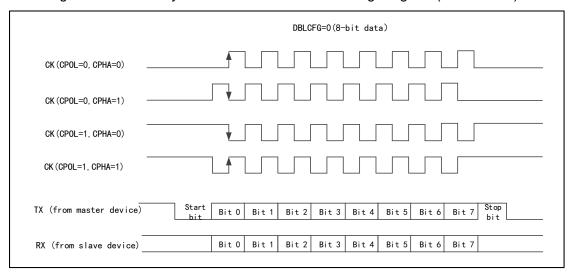
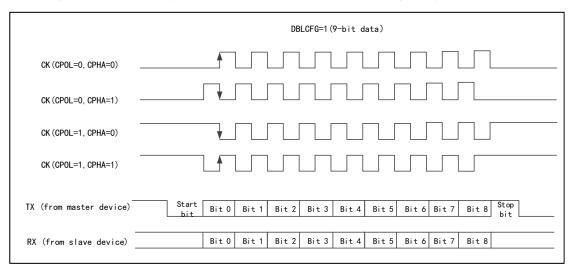



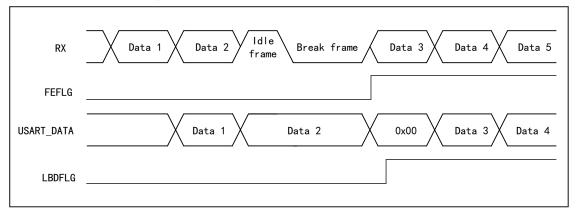
Figure 75 USART Synchronous Transmission Timing Diagram (DBLCFG=1)

22.4.8 LIN mode

LINMEN bit of USART CTRL2 register decides whether to enter LIN mode.

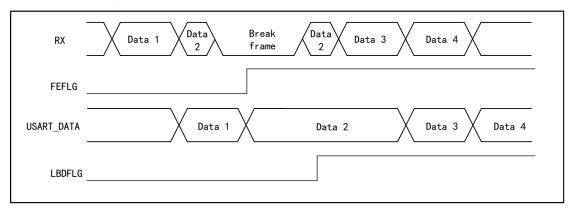
When entering LIN mode:

- All data frames are 8 data bits and 1 stop bit.
- The CLKEN bit and STOPCF bit of USART_CTRL2 register and IREN bit, HDEN bit and SCEN bit of USART_CTRL3 register need to be cleared.


In LIN master mode, USART can generate break frame, and the detection length of break frame can be set to 10 bits and 11 bits through LBDLCFG bit of USART_CTRL2. The break frame detection circuit is independent of USART receiver, and no matter in idle state or in data transmission state, RX pin can detect the break frame, and LBDFLG bit of USART_STS register is set to 1; at this time, if LBDIEN bit of USART_CTRL2 is enabled, an interrupt will be generated.

Detection of break frame in idle state

In idle state, if a break frame is detected on RX pin, the receiver will receive a data frame of 0 and generate FEFLG.


Figure 76 Break Frame Detection in Idle State

Break frame detection in data transmission state

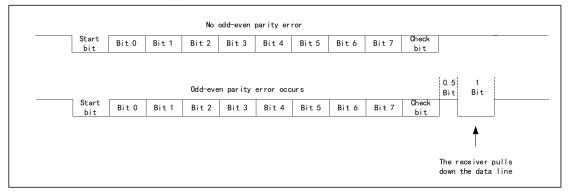
In the process of data transmission, if the RX pin detects the break frame, the currently transmitted data frame will generate FEFLG.

Figure 77 Break Frame Detection in Data Transmission State

22.4.9 Smart card mode

Smart card mode is a single-line half-duplex communication mode. The interface supports ISO7816-3 standard protocol and can control the reading and writing of smart cards that meet the standard protocol.

SCEN bit of USART_CTRL3 register decides whether to enter the smart card mode.


When USART enters the smart card mode:

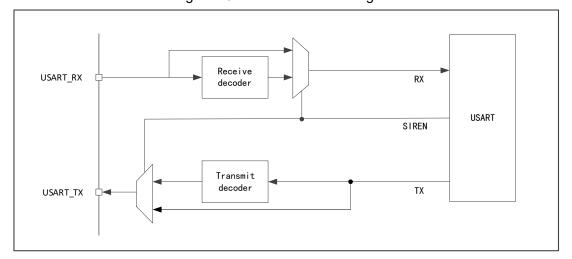
- The LINMEN bit of USART_CTRL2 register, and IREN and HDEN bits of USART_CTRL3 register must be cleared.
- The data frame format is 8 data bits and 1 check bit, and 0.5 or 1.5 stop bits are used. (To avoid switching between two configurations, it is recommended to use 1.5 stop bits when transmitting and receiving data)
- CLKEN bit of USART_CTRL2 can be set to provide clocks for smart card.

- During the communication, when the receiver detects a parity error, in order to inform the transmitter that the data has not been received successfully, the data line will be pulled down after half a baud rate clock, and keep pulling down for one baud rate clock.
- The break frame has no meaning in smart card mode. A 00h data with frame error will be regarded as a data instead of disconnection symbol.

Figure 78 ISO7816-3 Standard Protocol

22.4.10 Infrared (IrDA SIR) function mode

IrDA mode is a half-duplex protocol, transmitting and receiving data can not be carried out at the same time, and the delay between data transmitting and receiving should be more than 10ms.


IREN bit of USART_CTRL3 register decides whether to enter the IrDA mode.

When USART enters the IrDA mode:

- The CLKEN bit, STOPCF bit and LINMEN bit of USART_CTRL2 register and HDEN bit and SCEN bit of USART_CTRL3 register must be cleared.
- The data frame uses 1 stop bit and the baud rate is less than 115200Hz.
- Using infrared pulse (RZI) indicates logic 0, so in normal mode, its pulse width is 3/16 baud rate cycles. When IrDA is in low mode, it is recommended that the pulse width be greater than three DIV frequency division clocks so as to ensure that this pulse can be detected by IrDA normally.

Figure 79 IrDA Mode Block Diagram

22.4.11 Hardware flow control

The function of hardware flow control is to control the serial data stream between two devices through nCTS pin and nRTS pin.

Transmit circuit

nCTS

nRTS

Receive circuit

RX

Transmit circuit

NRTS

NCTS

Transmit circuit

USART1

USART2

Figure 80 Hardware Flow Control between Two USART

CTS flow control

CTSEN bit of USART_CTRL3 register determines whether CTS flow control is enabled. If CTS flow control is enabled, the transmitter will detect whether the data frame of nCTS pin can be sent. If TXBEFLG bit=0 for USART_STS register and nCTS is pulled to low level, the data frame can be sent. If nCTS becomes high during transmission, the transmitter will stop transmitting after the current data frame is transmitted.

RTS flow control

RTSEN bit of USART CTRL3 register determines whether RTS flow control is

enabled. If RTS flow control is enabled, when the receiver receives data, nRTS will be pulled to low level. When a data frame is received, nRTS will becomes high to inform the transmitter to stop transmitting data frame.

22.4.12 DMA multi-processor communication

USART can access the data buffer in DMA mode in order to reduce the burden of processors.

Transmission in DMA mode

DMATXEN bit of USART_CTRL3 register determines whether to transmit in DMA mode. When transmitting by DMA, the data in the designated SRAM will be transmitted to the buffer by DMA.

Configuration steps of transmission by DMA:

- Clear the TXCFLG bit of USART STS register.
- Set the address of SRAM memory storing data as DMA source address.
- Set the address of USART_DATA register as DMA destination address.
- Set the number of data bytes to be transmitted.
- Set channel priority.
- Set interrupt enable.
- Enable DMA channel.
- Wait for TXCFLG bit of USART_STS register to be set to 1, indicating transmission completion.

Receive in DMA mode

DMARXEN bit of USART_CTRL3 register determines whether to use DMA mode to receive; when DMA is used to receive, every time one byte is received, the received buffer data will be transmitted to the specified SRAM area by DMA.

Configuration steps of receiving by DMA:

- Set the address of USART DATA register as DMA source address.
- Set the address of SRAM memory storing data as DMA destination address.
- Set the number of data bytes to be transmitted.
- Set channel priority.
- Set interrupt enable.
- DMA channel enable.

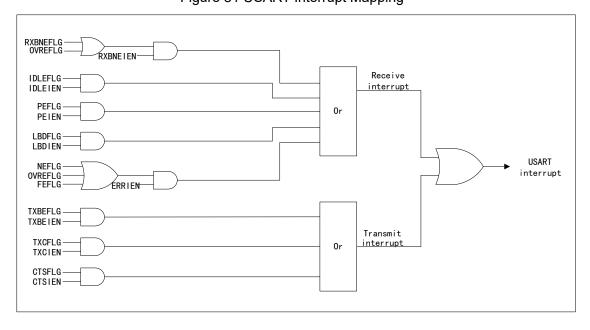

22.4.13 Interrupt request

Table 90 USART Interrupt Request

Interrupt ev	Event flag bit	Enable bit	
The receive register ca	RXBNEFLG RXBNEIEN		
Overload er	ror	OVREFLG	KADINEIEN
Line idle is det	ected	IDLEFLG	IDLEIEN
Odd-even parit	y error	PEFLG	PEIEN
LIN break fram	ne flag	LBDFLG	LBDIEN
	Noise error	NEFLG	
Receiving error in DMA mode	Overrun error	OVREFLG	ERRIEN
	Frame error	FEFLG	
Data transmit regist	TXBEFLG	TXBEIEN	
Transmission is co	TXCFLG	TXCIEN	
CTS flag		CTSFLG	CTSIEN

All interrupt requests of USART are connected to the same interrupt controller, and the interrupt requests have logical or relational before they are sent to the interrupt controller.

Figure 81 USART Interrupt Mapping

22.4.14 Comparison of USART supporting functions

Table 91 Comparison of USART Supporting Functions

USART mode	USART1	USART2	USART3	UART4	UART5
Asynchronous mode	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$

USART mode	USART1	USART2	USART3	UART4	UART5
Hardware flow control	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	_	_
Multi-buffer communication (DMA)	V	V	V	V	_
Multi-processor communication	V	√	V	V	√
Synchronous	V	$\sqrt{}$	V	_	_
Smart card	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	_	_
Half duplex (single-line mode)	V	V	V	V	√
IrDA	√	V	V	√	√
LIN	V	√	V	√	√

Note: " $\sqrt{}$ " means this function is supported, while "—" means that this function is not supported.

22.5 Register address mapping

Table 92 USART Register Address Mapping

Register name	Description	Offset address		
USART_STS	State register	0x00		
USART_DATA	Data register	0x04		
USART_BR	Baud rate register	0x08		
USART_CTRL1	Control register 1	0x0C		
USART_CTRL2	Control register 2	0x10		
USART_CTRL3	Control register 3	0x14		
USART_GTPSC	Protection time and prescaler register	0x18		

22.6 Register functional description

22.6.1 State register (USART_STS)

Offset address: 0x00 Reset value: 0x00C0

Field	Name	R/W	Description
0	PEFLG	R	Parity Error Occur Flag 0: No error 1: Parity error occurs In the receiving mode, when a parity error occurs, set to 1 by hardware; This bit can be cleared by software; after setting of RXBNEFLG, first read USART_STS register, and then read USART_DATA register to complete clearing.

Field	Name	R/W	Description
1	FEFLG	R	Frame Error Occur Flag 0: No frame error 1: A frame error or disconnection symbol appeared When there is synchronous dislocation, too much noise or disconnection symbol, set to 1 by hardware; This bit can be cleared by software; first read USART_STS register, and then read USART_DATA register to complete clearing.
2	NEFLG	R	Noise Error Occur Flag 0: No noise 1: There is noise error When there is noise error, set to 1 by hardware; This bit can be cleared by software; first read USART_STS register, and then read USART_DATA register to complete clearing.
3	OVREFLG	R	Overrun Error Occur Flag 0: Overrun error 1: Overrun error occurred When the RXBNEFLG bit is set and the data in the shift register is to be transmitted to the receive register, set to 1 by hardware; This bit can be cleared by software; first read USART_STS register, and then read USART_DATA register to complete clearing.
4	IDLEFLG	R	IDLE Line Detected Flag 0: Idle bus is not detected 1: Idle bus is detected When idle bus is detected, set to 1 by hardware; This bit can be cleared by software; first read USART_STS register, and then read USART_DATA register to complete clearing.
5	RXBNEFLG	RC_W0	Receive Data Buffer Not Empty Flag 0: The receive data buffer is empty 1: The receive data buffer is not empty When the data register receives the data transmitted by the receive shift register, it will be set to 1 by hardware; This bit can be cleared by software; read USART_DATA to clear, or write 0 to this bit to clear it.
6	TXCFLG	RC_W0	Transmit Data Complete Flag 0: Transmitting data is not completed 1: Transmitting data is completed After the last frame of data is sent and the TXBEFLG is set, set to 1 by hardware; This bit can be cleared by software; first read USART_STS register, and then write USART_DATA register to complete clearing; or this bit can be cleared by writing 0 to it.
7	TXBEFLG	R	Transmit Data Buffer Empty Flag 0: The transmit data buffer is not empty 1: The transmit data buffer is empty When the shift register receives the data transmitted by the transmit data register, it will be set to 1 by hardware; This bit can be cleared by software; write USART_DATA register to complete clearing.

Field	Name	R/W	Description		
8	LBDFLG	RC_W0	LIN Break Detected Flag 0: LIN disconnection not detected 1: LIN disconnection detected When LIN disconnection is detected, set to 1 by hardware; This bit can be cleared by software; or cleared by writing 0 to this bit.		
9	CTSFLG	RC_W0	CTS Change Flag 0: No change on nCTS state line 1: There is change on nCTS state line If the CTSEN bit is set, when switching to the nCTS input, set to 1 by hardware; This bit can be cleared by software; or cleared by writing 0 to this bit.		
31:10	Reserved				

22.6.2 Data register (USART_DATA)

Offset address: 0x04

Reset value: 0xXXXX XXXX, X=undefined bit

Field	Name	R/W	Description	
8:0	DATA	R/W	Data Value Transmit or receive the data value; read data when receiving data, and write data to the register when transmitting data. When the parity bit is enabled, for 9 data bits, the 8th bit of DATA is parity bit; for 8 data bits, the 7th bit of DATA is parity bit.	
31:9	Reserved			

22.6.3 Baud rate register (USART_BR)

Offset address: 0x08 Reset value: 0x0000

Field	Name	e R/W	Description	
3:0	FBR[3:0]	:0] R/W	Fraction of USART Baud Rate Divider factor The decimal part of USART baud rate division factor is determined by these four bits.	
15:4	IBR[15:4]	i:4] R/W	Integer of USART Baud Rate Divider factor The integral part of USART baud rate division factor is determined by these 12 bits.	
31:16	Reserved			

22.6.4 Control register 1 (USART_CTRL1)

Offset address: 0x0C Reset value: 0x0000

Field	Name	R/W	Description
0	TXBF	R/W	Transmit Break Frame 0: Not transmit 1: Will transmit This bit can be set by software and cleared by hardware when the stop bit of the break frame is sent.
1	RXMUTEEN	R/W	Receive Mute Mode Enable 0: Normal working mode 1: Mute mode This bit is set or cleared by software, or cleared by hardware when wake-up sequence is detected. USART must receive a data before it is put in the mute mode, so that it can be detected and awakened by idle bus. In the wake-up of address flag detection, if the RXBNEFLG bit is set, the RXMUTEEN bit cannot be modified by software.
2	RXEN	R/W	Receive Enable 0: Disable 1: Enable, and start to detect the start bit on RX pin
3	TXEN	R/W	Transmit Enable 0: Disable 1: Enable Except in smart card mode, if there is a 0 pulse on this bit at any time of transmitting data, an idle bus will be transmitted after the current data is transmitted. After this bit is set, the data will be transmitted after one-bit time.
4	IDLEIEN	R/W	IDLE Interrupt Enable 0: Disable 1: Generate an interrupt when IDLEFLG is set
5	RXBNEIEN	R/W	Receive Buffer Not Empty Interrupt Enable 0: Disable 1: Generate an interrupt when OVREFLG or RXBNEFLG is set
6	TXCIEN	R/W	Transmit Complete Interrupt Enable 0: Disable 1: Generate an interrupt when TXCFLG is set
7	TXBEIEN	R/W	Transmit Buffer Empty Interrupt Enable 0: Interrupt generation is disabled 1: Generate an interrupt when TXBEFLG is set
8	PEIEN	R/W	Parity Error interrupt Enable 0: Interrupt generation is disabled 1: Generate an interrupt when PEFLG is set
9	PCFG	R/W	Odd/Even Parity Configure 0: Even parity check 1: Odd parity check The selection will not take effect until the current transmission of bytes is completed.

Field	Name	R/W	Description			
			Parity Control Enable 0: Disable 1: Enable			
10	PCEN	R/W	If this bit is set, a check bit will be inserted in the most significant bit when transmitting data; when receiving data, check whether the check bit of the received data is correct.			
			The check control will not take effect until the current transmission of bytes is completed.			
			Wakeup Method Configure			
11	11 WUPMCFG	R/W	0: Idle bus wakeup			
			1: Address tag wakeup			
			Data Bits Length Configure 0: 1 start bit, 8 data bits, n stop bits			
12	DBLCFG	R/W	1: 1 start bit, 9 data bits, n stop bits			
			This bit cannot be modified during transmission of data.			
			USART Enable			
13	UEN	R/W	0: USART frequency divider and output are disabled			
			1: USART module is enabled			
14		Reserved				
			Oversampling Mode Configure			
15	OSMCFG	R/W	0: 16-time oversampling 1: 8-time oversampling			
			This bit can be set only when USART is not enabled.			
31:16	Reserved					

22.6.5 Control register 2 (USART_CTRL2)

Offset address: 0x10 Reset value: 0x0000 0000

Field	Name	R/W	Description		
3:0	ADDR[3:0]	R/W	USART Device Node Address Setup This bit is valid only in the mute mode of multiprocessor communication, and decides to enter the mute mode or wake up		
			according to whether the detected address tags are consistent.		
4			Reserved		
5	LBDLCFG	R/W	LIN Break Detection Length Configure 0: 10 bits 1: 11 bits		
6	LBDIEN	R/W	LIN Break Detection Interrupt Enable 0: Disable 1: Generate an interrupt when LBDFLG bit is set		
7	Reserved				
8	LBCPOEN	R/W	Last Bit Clock Pulse Output Enable 0: Not output from CK 1: Output from CK		

Field	Name	Name R/W Description		
			This bit is valid only in synchronous mode; this bit does not exist on UART4 and UART5.	
9	СРНА	R/W	Clock Phase Configure This bit indicates on the edge of which clock sampling is conducted 0: The first 1: The second This bit is valid only in synchronous mode; this bit does not exist on UART4 and UART5.	
10	CPOL	R/W	Clock Polarity Configure The state of CK pin when USART is in idle state 0: Low level 1: High level This bit is valid only in synchronous mode; this bit does not exist on UART4 and UART5.	
11	CLKEN	R/W	Clock Enable (CK pin) 0: Disable 1: Enable This bit does not exist on UART4 and UART5.	
13:12	STOPCFG	STOP Bit Configure 00: 1 stop bit 01: 0.5 stop bit		
14	LINMEN	R/W	LIN Mode Enable 0: Disable 1: Enable	
31:15	Reserved			

Note: These three bits (CPOL, CPHA and LBCPOEN) cannot be changed after transmission is enabled.

22.6.6 Control register 3 (USART_CTRL3)

Offset address: 0x14 Reset value: 0x0000

Field	Name	R/W	Description	
0	ERRIEN	R/W	Error interrupt Enable 0: Disable 1: Enable; when DMARXEN is set and one among FEFLG, OVREFLG or NEFLG is set, an interrupt will be generated.	
1	IREN	R/W	IrDA Function Enable 0: Disable 1: Enable	
2	IRLPEN	R/W	IrDA Low-power Mode Enable 0: Normal mode 1: Low-power mode	

Field	Name	R/W	Description	
3	HDEN	R/W	Half-duplex Mode Enable 0: Disable 1: Enable	
4	SCNACKEN	R/W	NACK Transmit Enable During Parity Error in Smartcard Function 0: NACK is not sent 1: Transmit NACK This bit does not exist on UART4 and UART5.	
5	SCEN	R/W	Smartcard Function Enable 0: Disable 1: Enable This bit does not exist on UART4 and UART5.	
6	DMARXEN	R/W	DMA Receive Enable 0: Disable 1: Enable This bit does not exist on UART4 and UART5.	
7	DMATXEN	R/W	DMA Transmit Enable 0: Disable 1: Enable This bit does not exist on UART4 and UART5.	
8	RTSEN	R/W	RTS Hardware Flow Control Function Enable 0: Disable 1: Enable RTS interrupt RTS: Require To Send, which is output signal, indicating it has been ready to receive. Request is made to receive data only when there is space in the receive buffer; when data can be received, RTS output is pulled to low level. This bit does not exist on UART4 and UART5.	
9	CTSEN	R/W	CTS Hardware Flow Control Function Enable 0: Disable 1: Enable CTS: Clear To Send, which is input signal When CTS input signal is at low level, the data can be transmitted;	
10	CTSIEN	R/W	CTS Interrupt Enable 0: Disable 1: Generate an interrupt when CTSFLG is set This bit does not exist on UART4 and UART5.	
11	SAMCFG	R/W	Sample Method Configure 0: Sampling for three times 1: Single sample; flag of noise detection disabled This bit can be set only when USART is not enabled.	

Field	Name	R/W	Description
31:12			Reserved

22.6.7 Protection time and prescaler register (USART_GTPSC)

Offset address: 0x18 Reset value: 0x0000

Field	Name	R/W	Description	
7:0	PSC	R/W	Prescaler Factor Setup Divide the frequency and provide clock for the system clock respectively; in different working modes, the valid bits of PSC have difference, specifically as follows: In infrared low-power mode: PSC[7:0] is valid. 00000000: Reserved 00000001: 1 divided frequency 00000010: 2 divided frequency In infrared normal mode: PSC can only be set to 00000001 In smart card mode: PSC[7:5] invalid, PSC[4:0] valid 00000: Reserved 00001: 2 divided frequency 00010: 4 divided frequency 00011: 6 divided frequency 11111: 62 divided frequency This bit does not exist on UART4 and UART5.	
15:8	GRDT	R/W	Guard Time Value Setup After transmitting data, TXCFLG can be set after the protection time; the time unit is baud clock; it can be applied to smart card mode; this bit does not exist on UART4 and UART5.	
31:16	Reserved			

23 Internal integrated circuit interface (I2C)

23.1 Full name and abbreviation description of terms

Table 93 Full name and abbreviation description of terms

Full name in English	English abbreviation
Serial Data	SDA
Serial Clock	SCL
System Management Bus	SMBus
Clock	CLK
Serial Clock High	SCLH
Serial Clock Low	SCLL
Address Resolution Protocol	ARP
Negative Acknowledgement	NACK
Packet Error Checking	PEC
Address Resolution Protocol	ARP

23.2 Introduction

I2C is a short-distance bus communication protocol. In physical implementation, I2C bus is composed of two signal lines (SDA and SCL) and a ground wire. These two signal lines can be used for bidirectional transmission.

- Two signal lines, SCL clock line and SDA data line. SCL provides timing for SDA, and SDA transmits/receives data in series
- Both SCL and SDA signal lines are bidirectional
- The ground is common when the two systems use I2C bus for communication

23.3 Main characteristics

- (1) Multi-master function
- (2) The master can generate the clock, start bit and stop bit
- (3) Slave function
 - Programmable I2C address detection
 - Double-address mode
 - Detection stop bit
- (4) 7-bit and 10-bit addressing mode
- (5) Response to broadcast

Page 339

- (6) Two communication speeds
 - Standard mode
 - Fast mode
- (7) Programmable clock extension
- (8) State flag
 - Transmitter/Receiver mode flag
 - Flag for end of byte transmission
 - Flag of busy bus
- (9) Error flag
 - Arbitration loss
 - Acknowledgment error
 - Wrong start bit or stop bit detected
- (10) Interrupt source
 - Address/Data communication succeeded
 - Error interrupt
- (11) Support DMA function
- (12) Programmable PEC
 - Final transmission in transmission mode
 - PEC error check after the last byte is received
- (13) SMBus specific function
 - Hardware PEC
 - Address resolution protocol

www.geehy.com

23.4 Structure block diagram

PEC register Data SDA controller GP10 Shift CRC register calculation snq APB SCL Control Clock **GPIO** register controller ALTE GP10 Control logic circuit Interrupt DMA

Figure 82 I2C Functional Structure Diagram

The interface can be configured to the following modes:

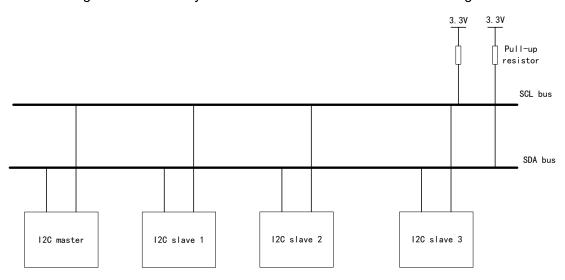
- Slave transmitting
- Slave receiving
- Master transmitting
- Master receiving

In the initial state of I2C interface, the working mode is slave mode. After I2C interface transmits the start signal, it will automatically switch from slave mode to master mode.

23.5 Functional description

Table 94 Description of Special Terms of I2C Bus

Special terms	Description
Transmitter	Device transmitting data to the bus
Receiver	Device receiving data from the bus
Master	Device that initiates data transmission, generates clock signals and ends data transmission
Slave	Device addressed by master



Special terms	Description
Multiple	Multiple masters that control the bus at the same time without destroying
masters	information
Synchronous The process of synchronizing the clock signals between two or more	
	If more than one master tries to control the bus at the same time, only one master
Arbitration	can control the bus, and the information of the controlled master will not be
	destroyed

23.5.1 I2C physical layer

The commonly used connection modes between I2C communication devices are shown in the figure below:

Figure 83 Commonly Used I2C Communication Connection Diagram

Characteristics of physical layer:

- (1) Bus supporting multiple devices (signal line shared by multiple devices), which, in I2C communication bus, can connect multiple communication masters and communication slaves.
- (2) An I2C bus only uses two bus lines, namely, a bidirectional serial data line (SDA) and a serial clock line (SCL). The data line is used for data transmission, and the clock line is used for synchronous receiving and transmission of data.
- (3) Each device connected to the bus has an independent address (seven or ten bits), and the master addresses and accesses the slave device according to the address of the device.
- (4) The bus needs to connect the pull-up resistor to the power supply. When I2C bus is idle, the output is in high-impedance state. When all devices are idle, the output is in high-impedance state, and the pull-up resistor pulls the bus to high level.

- (5) Three communication modes: Standard mode (up to 100KHz), fast mode (up to 400KHz), and fast mode plus (up to 1MHz).
- (6) When multiple masters use the bus at the same time, to prevent the data collision, the bus arbitration mode is adopted to determine which device occupies the bus.
- (7) Can program setup and hold time, and program the high-level time and low-level time of SCL in I2C.

23.5.2 I2C protocol layer

Characteristics of protocol layer

- (1) Data is transmitted in the form of frame, and each frame is composed of 1 byte (8 bits).
- (2) In the rising edge phase of SCL, SDA needs to keep stable and SDA changes during the period when SCL is low.
- (3) In addition to data frame, I2C bus also has start signal, stop signal and acknowledge signal.
 - Start bit: During the stable high level period of SCL, a falling edge of SDA starts transmission.
 - Stop bit: During the stable high level period of SCL, a rising edge of SDA stops transmission.
 - Acknowledge bit: Used to indicate successful transmission of one byte. After the bus transmitter (regardless of the master or slave) transmits 8-bit data, SDA will release (from output to input). During the ninth clock pulse, the receiver will pull down SDA to respond to the received data.

I2C communication reading and writing process

Figure 84 Master Writes Data to Slave

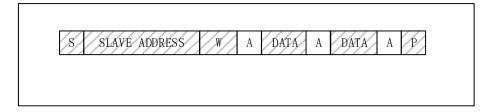
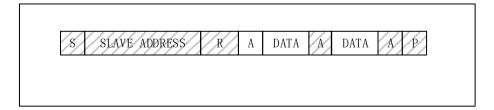



Figure 85 Master Reads Data from Slave

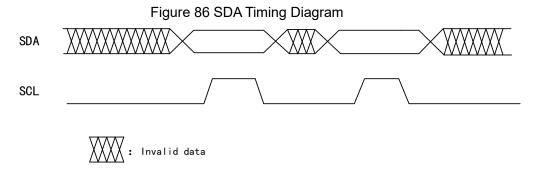
Remarks:

- (1) : This data is transmitted from master to slave
- (2) S: Start signal
- (3) SLAVE ADDRESS: Slave address
- (4) : This data is transmitted from slave to master
- (5) R/W: Selection bit of transmission direction
- (6) 1 means read
- (7) 0 means write
- (8) P: Stop signal

After the start signal is generated, all slaves will wait for the slave address signal sent by the master. In I2C bus, the address of each device is unique. When the address signal matches the device address, the slave will be selected, and the unselected slave will ignore the future data signal.

When the master direction is writing data

After broadcasting the address and receiving the acknowledge signal, the master will transmit data to the slave, the data length is one byte, and every time the master transmits one byte of data, it needs to wait for the answer signal transmitted by the slave. After all the bytes have been transmitted, the master will transmit a stop signal (STOP) to the slave, indicating that the transmission is completed.


When the master direction is reading data

After broadcasting the address and receiving the acknowledge signal, the slave will transmit the data to the master. The size of the data package is 8 bits. Every time the slave transmits one byte of data, it needs to wait for the acknowledge signal of the master. When the master wants to stop receiving data, it needs to return a non-acknowledge signal to the slave, then the slave will stop transmitting the data automatically.

23.5.3 Data validity

In the process of data transmission, the data on SDA line must be stable when the clock signal SCL is at high level. Only when the SCL is at the low level, can the level state of SDA be changed, and the bit transmission of each data needs a clock pulse.

23.5.4 Start and stop signals

All data transmission must have start signal (START) and stop signal (STOP).

Figure 87 START signal is defined as: when SCL is at high level, SDA will convert from high level to low level

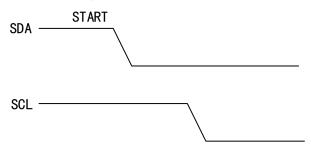
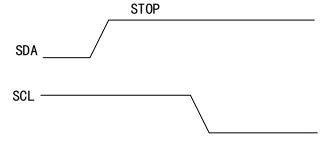



Figure 88 STOP signal is defined as: when SCL is at high level, SDA will convert from low level to high level

23.5.5 Arbitration

Arbitration is also used to solve the bus control conflict in case of multiple masters. The arbitration process takes place on the master and has nothing to do with the slave.

The master can start transmission only when the bus is idle. Two masters may generate an effective START signal on the bus within the shortest hold time of the START signal. In this situation, it is required that arbitration should decide

which master completes the transmission.

Arbitration is conducted by bit. During each arbitration, when SCL is high, each master will check whether the SDA level is the same as that sent by itself. The arbitration process needs to last for many bits. Theoretically, if two masters transmit exactly the same content, they can successfully transmit without arbitration failure. If one master transmits high level, but it is detected that SDA is at low level, an arbitration failure error will occur, the SDA output of the master will be disabled, and the other master will complete its own transmission.

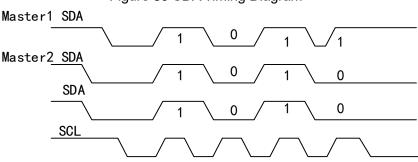


Figure 89 SDA Timing Diagram

Master1 arbitration failure

23.5.6 SMBus specific function

System management bus (SMBus) is a simple single-end double-wire bus, which can meet the requirements of lightweight communication.

SMBus is commonly used in computer motherboard, mainly for power transmission ON/OFF instructions. SMBus is the derivative bus of I2C. It is mainly used for communication of low-bandwidth devices on computer motherboard, and power-related chip.

Address resolution protocol

SMBus specification includes an address resolution protocol, which can realize dynamic address assignment. Dynamic recognition hardware and software enable the bus to support hot plugging, and the bus devices will be automatically identified and assigned with a unique address.

SMBus alarm

SMBus alarm is an optional signal with an interrupt line for pins that are sacrificed to extend their control ability.

23.5.7 Error flag bit

Table 95 The following several error flag bits exist in I2C communication

Error flag bit	Description of error flag bit
Answer error flag bit (AEFLG)	No answer received
Bus error flag bit (BERRFLG)	An external stop or start condition is detected
Arbitration loss flag bit (ALFLG)	Arbitration loss is detected by the interface
Overrun/Underrun error flag bit (OVRURFLG)	In slave mode, the received data is not read out, the next data has arrived, and an overrun error occurs. The transmitting data clock has arrived, but the data has not been written into the DATA register, and an underrun error occurs.
Timeout or Tow error flag bit (TTEFLG)	SCL is pulled down for more than a certain time
PEC comparison error flag bit (PECEFLG)	CRC values are not equal

23.5.8 Message error check (PEC)

I2C module has a PEC module, which checks the message of I2C data by CRC-8 calculator. The CRC-8 polynomial used by the calculator is: C(x)= X^8+X^2+X+1 .

When PECEN bit is set to 1 and PEC function is enabled, PEC module will calculate all data sent by I2C bus, including address data.

23.5.9 **DMA mode**

According to the software process of I2C, when the transmit register is empty or the receive register is full, MCU needs to write or read bytes, then we can complete the operation more quickly through the DMA function of I2C.

DMA transmission

Set the DMAEN bit in I2C_CTRL2 register to enable the DMA mode. When the transmit register is empty (TXBEFLG is set to 1), the data will be directly loaded from the memory area to the DATA register through DMA.

DMA receiving

Set DMAEN in I2C_CTRL2 register to enable DMA mode. When the receiving register is full (RXBNEFLG is set to 1), DMA will transmit DATA register data to the set storage area.

23.5.10 **I2C** interrupt

Table 96 I2C Interrupt Request

Interrupt event	Event flag bit	Interrupt control bit
Transmitting start bit completed	STARTFLG	
Transmission completed/Address matching address signal	ADDRFLG	
10-bit address head segment transmission completed	ADDR10FLG	EVIEN
Received stop signal	STOPFLG	
Data byte transmission completed	BTCFLG	
Receive buffer not empty	RXBNEFLG	EVIEN and BUFIEN
Transmit buffer empty	TXBEFLG	EVIEN AND BOFIEN
Bus error	BERRFLG	
Arbitration loss	ALFLG	
Answer failed	AEFLG	
Overrun/Underrun	OVRURFLG	ERRIEN
PEC error	PECEFLG	
Timeout or Tlow error	TTEFLG	
SMBus reminder	ALERTEN	

23.6 Register address mapping

Table 97 I2C Register Address Mapping

Register name	Description	Offset address
I2C_CTRL1	Control register 1	0x00
I2C_CTRL2	Control register 2	0x04
I2C_SADDR1	Slave address register 1	0x08
I2C_SADDR2	Slave address register 2	0x0C
I2C_DATA	Data register	0x10
I2C_STS1	State register 1	0x14
I2C_STS2	State register 2	0x18
I2C_CLKCTRL	Master clock control register	0x1C
I2C_RISETMAX	Maximum rising time register	0x20

23.7 Register functional description

23.7.1 Control register 1 (I2C_CTRL1)

Offset address: 0x00

Reset value: 0x0000

Field	Name	R/W	Description
			I2C Enable
0	I2CEN	R/W	0: Disable
	120214	1000	1: Enable
			SMBus Mode Enable
1	SMBEN	R/W	0: I2C mode
			1: SMBus mode
2			Reserved
			SMBus Type Configure
3	SMBTCFG	R/W	0: SMBus device
			1: SMBus master
			ARP Enable
			0: Disable
4	ARPEN	R/W	1: Enable
			If SMBTCFG=0, use the default address of SMBus device
			If SMBTCFG=1, use the primary address of SMBus
	PECEN		PEC Enable
5		R/W	0: Disable
			1: Enable
	SRBEN	R/W	Slave Responds Broadcast Enable
6			0: Disable
			1: Enable
			Note: The broadcast address is 0x00
	CLKSTRETCHD	R/W	Slave Mode Clock Stretching Disable
7			0: Enable
/			1: Disable
			In slave mode, enabling extending the low-level time of the clock can avoid overrun and underrun errors.
			Start Bit Transfer
		R/W	This bit can be set to 1 and cleared by software; when
8	START		transmitting the start bit or I2CEN=0, it is cleared by hardware.
			0: Not transmit
			1: Transmit
			Stop Bit Transfer
			This bit can be set to 1 or cleared by software; when transmitting
9	STOP	R/W	the stop bit, it is cleared by hardware; when timeout error is
	0101		detected, it is set to 1 by hardware. 0: Not transmit
			0: Not transmit 1: Transmit
		R/W	Acknowledge Transfer Enable This bit can be set to 1 or cleared by software; when I2CEN=0, it
10	ACKEN		is cleared by hardware.
			0: Not transmit
			1: Transmit
			i. iiaiiSiliil

Field	Name	R/W	Description		
	101700		Acknowledge /PEC Position Configure This bit can be set to 1 or cleared by software; when I2CEN=0, it is cleared by hardware.		
11	ACKPOS	R/W	When receiving current byte, whether transmitting NACK/ACK, whether PEC is in shift register		
			When receiving next byte, whether transmitting NACK/ACK and whether PEC is in the next byte of shift register		
			Packet Error Check Transfer Enable		
12	PEC	R/W	This bit can be set to 1 or 0 by software; after PEC, start bit or stop bit is transmitted, or when I2CEN=0, it is set to 0 by hardware.		
			0: Disable		
			1: Enable		
	ALERTEN	R/W	SMBus Alert Enable		
			This bit can be set to 1 or cleared by software; when I2CEN=0, it is cleared by software.		
13			Release the SMBAlert pin to make it higher, and remind to transmit the response address header immediately after transmitting the NACK signal		
			Drive SMBAlert pin to make it lower, and remind to transmit the response address header immediately after transmitting the ACKEN signal		
14	Reserved				
			Software Configure I2C under Reset State		
15	SWRST	R/W	0: Not reset		
13			1: Reset; before I2C reset, ensure that I2C pin is released and the bus is in idle state.		

23.7.2 Control register 2 (I2C_CTRL2)

Offset address: 0x04 Reset value: 0x0000

Field	Name	R/W	Description		
5:0	CLKFCFG	R/W	I2C Clock Frequency Configure The clock frequency is the clock of I2C module, namely, the clock input from APB bus. 0: Disable 1: Disable 2: 2MHz 50: 50MHz Greater than 100100: Disable. Minimum clock frequency of I2C bus: the standard mode is 1MHz, and the fast mode is 4MHz.		
7:6	Reserved				

Field	Name	R/W	Description		
8	ERRIEN	R/W	Error Interrupt Enable 0: Disable 1: When the position 1 of any of the following state register is enabled, the interrupt will be generated: SMBALTFLG, TTEFLG, PECEFLG, OVRURFLG, AEFLG, ALFLG, and STS1_BERRFLG		
9	EVIEN	R/W	Event Interrupt Enable 0: Disable 1: When the position 1 of any of the following state registers is enabled, the interrupt will be generated: STARTFLG, ADDRFLG, ADDR10FLG, STOPFLG, BTCFLG, TXBEFLG is set to 1 and BUFIEN is set to 1, RXBNEFLG is set to 1 and BUFIEN is set to 1.		
10	BUFIEN	R/W	Buffer Interrupt Enable 0: Disable 1: Enable; when the bit of any of the following state register is set to 1, the interrupt will be generated: TXBEFLG and RXBNEFLG		
11	DMAEN	R/W	DMA Requests Enable 0: Disable 1: When TXBEFLG=1 or RXBNEFLG=1, enable DMA request		
12	LTCFG	R/W	DMA Last Transfer Configure Configure whether the EOT of the next DMA is the last transmission received, and only used for the master receiving mode. 0: No 1: Yes		
15:13	Reserved				

23.7.3 Slave mode address register 1 (I2C_SADDR1)

Offset address: 0x08 Reset value: 0x0000

Field	Name	R/W	Description			
			Slave Address Setup			
0	ADDR[0]	R/W	When the address mode is 7 bits, the bit is invalid; when the address mode is 10 bits, this bit is the 0 bit of the address.			
7:1	ADDD[7.4]	R/W	Slave Address Setup			
7.1	ADDR[7:1]	FK/VV	Slave address [7:1] bit			
	ADDR[9:8]	R/W	Slave Address Setup			
9:8			When the address mode is 7 bits, the bit is invalid; when the address mode is 10 bits, this bit is the [9:8] bit of the address.			
14:10		Reserved				
			Slave Address Length Configure			
15	ADDRLEN	R/W	0: 7-bit address mode			
			1: 10-bit address mode			

23.7.4 Slave address register 2 (I2C_SADDR2)

Offset address: 0x0C Reset value: 0x0000

Field	Name	R/W Description			
0	ADDRNUM	R/W	Slave Address Number Configure In the slave 7-bit address mode, it can be configured to identify the single-address mode and double-address mode; only ADDR1 is identified in single-address mode; both ADDR1 and ADDR2 can be identified in double-address mode Single or double address registers can be identified in 7-bit address mode, specifically as follows: 0: Identify one address (ADDR1) 1: Identify two addresses (ADDR1 and ADDR2)		
7:1	ADDR2[7:1]	R/W	Slave Dual Address Mode Address Setup [7:1] bit of the address in double-address mode		
15:8	Reserved				

23.7.5 Data register (I2C_DATA)

Offset address: 0x10 Reset value: 0x0000

Field	Name	R/W	Description		
7:0	DATA	R/W	Data Register In I2C transmission mode, write the data to be sent to this register; in I2C receiving mode, read the received data from this register.		
15:8		Reserved			

23.7.6 State register 1 (I2C_STS1)

Offset address: 0x14 Reset value: 0x0000

Field	Name	R/W	Description
0	STARTFLG	R	Start Bit Sent Finished Flag 0: Not transmit 1: Transmit When the start bit is sent, this bit can be set to 1 by hardware; this bit can be cleared after the software first reads STS1 register and then writes the DATA register; when I2CEN=0, it can be cleared by hardware.
1	ADDRFLG	R	Address Transfer Complete /Receive Match Flag Whether the matching address is received in slave mode: 0: Not receive 1: Receive Whether finishing transmitting the address in master mode: 0: Not completed 1: Completed The bit is set to 1 by hardware; this bit can be cleared after the software first reads STS1 register and then reads STS2 register; when I2CEN=0, it can be cleared by hardware.
2	BTCFLG	R	Byte Transfer Complete Flag 0: Not completed 1: Completed

Field	Name	R/W	Description
			When receiving data, if failing to read the data received in DATA register, and a new data is received then, set to 1 by hardwre; When transmitting data, if the DATA register is empty, to transmit the data in the shift register, set to 1 by hardware. This bit can be cleared after the software first reads STS1 register, and then reads or writes the DATA register; this bit can be set to 0 by hardware by transmitting a start bit or stop bit during the transmission, or when I2CEN=0.
			10-Bit Address Header Transmit Flag
3	ADDR10FLG	R	O: Not transmit 1: Transmit The bit is set to 1 by hardware; this bit can be cleared after the software first reads STS1 register and then writes the DATA register; when I2CEN=0, it can be cleared by hardware.
4	STOPFLG	R	Stop Bit Detection Flag 0: Not detected 1: Detected If ACKEN=1, after one answer, when the slave detects the stop bit on the bus, it will be set to 1 by hardwre; This bit can be cleared after the software first reads STS1 register and then writes CTRL1 register; when I2CEN=0, it can be cleared by hardware.
5			Reserved
6	RXBNEFLG	R	Receive Buffer Not Empty Flag 0: The receive buffer is empty 1: The receive buffer is not empty This bit can be set to 1 by hardware when there is data in DATA register; When BTCFLG is set to 1, since the data register is still full, the RXBNEFLG bit cannot be cleared by reading DATA register; This bit can be cleared after the software reads and writes DATA register; when I2CEN=0, it can be cleared by hardware.
7	TXBEFLG	R	Transmit Buffer Empty Flag 0: The transmit buffer is not empty 1: The transmit buffer is empty This bit can be set to 1 by hardware when the content of DATA register is empty; When the software writes the first data to the DATA register, it will immediately move the data to the shift register, then the data in the DATA register is empty and this bit cannot be cleared; This bit can be cleared after the software writes data to DATA register; after transmitting the start bit or stop bit, or when I2CEN=0, it can be cleared by hardware.
8	BERRFLG	RC_W0	Bus Error Flag 0: No bus error 1: Bus error occurred Bus error means exception of start bit or stop bit; when an error is detected, this bit can be set to 1 by hardware; this bit can be

Field	Name	R/W	Description
			cleared after the software writes 0; when I2CEN=0, it can be cleared by hardware.
9	ALFLG	RC_W0	Master Mode Arbitration Lost Flag 0: No arbitration loss 1: In case of arbitration loss, I2C interface will automatically switch back to slave mode "Arbitration loss in master mode" means the master loses the control of buses; this bit is set to 1 by hardware; this bit can be cleared after the software writes 0; when I2CEN=0, it is cleared by hardware.
10	AEFLG	RC_W0	Acknowledge Error Flag 0: No acknowledgment error 1: Acknowledgment error occurred This bit can be set to 1 by hardware; this bit can be cleared after the software writes 0; when I2CEN=0, it can be cleared by hardware.
11	OVRURFLG	RC_W0	Overrun/Underrun Flag 0: Not occur 1: Occurred This bit can be set to 1 by hardware when CLKSTRETCHD=1 and one of the following conditions is met: (1) In the slave receiving mode, when the data in the DATA register is not read out, but a new data is received (this data will be lost), overrun occurs; (2) In the slave transmission mode, no data is written in the data register but it still needs to transmit data (the same data is sent twice), and then underrun occurs. This bit can be cleared by writing 0 by software; or be cleared by hardware when I2CEN=0.
12	PECEFLG	RC_W0	PEC Error in Reception Flag 0: No PEC error: when ACKEN=1, after receiving PEC, the receiver will return ACKEN 1: There is PEC error; regardless of the value of ACKEN, as long as PEC is received, the receiver will return NACK This bit can be cleared by writing 0 by software; or be cleared by hardware when I2CEN=0.
13			Reserved
14	TTEFLG	RC_W0	Timeout or Tlow Error Flag 0: No timeout error 1: When a timeout error occurs, in slave mode, the slave is reset and the bus is released; in master mode, the hardware transmits the stop bit. This bit can be set to 1 by hardware when timeout error occurs in any of the following situations: (1) SCL maintains low level for more than 25ms; (2) SCL low-level extension time of the main device is more than 10ms; (3) SCL low-level extension time of the slave device is more than 25ms.

Field	Name	R/W	Description
			This bit can be cleared by writing 0 by software; or be cleared by hardware when I2CEN=0.
15	SMBALTFLG	RC_W0	SMBus Alert Occur Flag 0: SMBus master mode, without alarm; SMBus slave mode, without alarm, SMBAlert pin level unchanged 1: SMBus master mode, with an alarm generated on the pin; SMBus slave mode, receiving an alarm, causing SMBAlert pin level to become low This bit can be set to 1 by hardware; this bit can be cleared after the software writes 0; when I2CEN=0, it can be cleared by hardware.

23.7.7 State register 2 (I2C_STS2)

Offset address: 0x18
Reset value: 0x0000

	Reset value: 0x0000				
Field	Name	R/W	Description		
0	MSFLG	R	Master Slave Mode Flag 0: Slave mode 1: Master mode This bit can be set to 1 by hardware when I2C is configured as master mode; This bit can be cleared by hardware when one of the following conditions is met: (1) Stop bit is generated (2) Bus arbitration is lost (3) I2CEN=0		
1	BUSBSYFLG	R	Bus Busy Flag 0: The bus is idle (no communication) 1: The bus is busy (in the progress of communication) This bit can be set to 1 by hardware when SDA or SCL is at low level; cleared by hardware after the stop bit is generated.		
2	TRFLG	R	Transmitter / Receiver Mode Flag 0: The device is in receiver mode (read) 1: The device is in transmitter mode (write) Decide the bit value according to R/W bit; This bit can be cleared by hardware when one of the following conditions is met: (1) Stop bit is generated (2) Repeated start bit is generated (3) Bus arbitration loss (3) I2CEN=0		
3	Reserved				
4	GENCALLFLG	R	Slave Mode Received General Call Address Flag 0: Failed to receive the broadcast address 1: Received broadcast address This bit can be set to 1 by hardware; and be cleared by hardware when one of the following conditions is met:		

Field	Name	R/W	Description
			(1) Stop bit is generated (2) Repeated start bit is generated
			(3) I2CEN=0
5	SMBDADDRFLG	R	SMBus Device Received Default Address Flag in Slave Mode 0: Failed to receive the default address 1: Received the default address when ARPEN=1 This bit can be set to 1 by hardware; and be cleared by hardware when one of the following conditions is met: (1) Stop bit is generated (2) Repeated start bit is generated
6	SMMHADDR	R	(3) I2CEN=0 SMBus Device Received Master Header Flag in Slave Mode 0: Failed to receive the master head address 1: Received the master head address when SMBTSEL=1 and ARPEN=1 This bit can be set to 1 by hardware; and be cleared by hardware when one of the following conditions is met: (1) Stop bit is generated (2) Repeated start bit is generated (3) I2CEN=0
7	DUALADDRFLG	R	Flag of receiving the double-address matching in slave mode (Slave Mode Received Dual Address Match Flag) 0: The received address matches the content of ADDR1 register 1: The received address matches the content of ADDR2 register This bit can be set to 1 by hardware; and be cleared by hardware when one of the following conditions is met: (1) Stop bit is generated (2) Repeated start bit is generated (3) I2CEN=0
15:8	PECVALUE	R	Save PEC value (Save Packet Error Checking Value) When PECEN=1, the internal PEC value is saved in PECVALUE.

23.7.8 Master clock control register (I2C_CLKCTRL)

Offset address: 0x1C Reset value: 0x0000

Field	Name	R/W	Description
11:0	CLKS [11:0]	R/W	Clock Setup in Fast/Standard Master Mode In I2C standard mode or SMBus mode: Thigh=CLKS × T _{PCLK1} Tlow=CLKS × T _{PCLK1} In I2C fast mode: When FDUTYCFG=0: Thigh=CLKS×T _{PCLK1} Tlow=2×CLKS× T _{PCLK1} When FDUTYCFG=1: Thigh=9 × CLKS × T _{PCLK1}

Field	Name	R/W	Description	
			Tlow=16 × CLKS × T _{PCLK1}	
13:12	Reserved			
14	FDUTYCFG R/W		Fast Mode Duty Cycle Configure Here it is defined that the duty cycle=tlow/thigh 0: SCLK duty cycle is 2 1: SCLK duty cycle is 16/9	
15	SPEEDCFG	PEEDCFG R/W Master Mode Speed Configure 0: Standard mode 1: Fast mode		

23.7.9 Maximum rising time register (I2C_RISETMAX)

Offset address: 0x20 Reset value: 0x0002

Field	Name	R/W	Description	
5:0	RISETMAX	R/W	Master Mode Maximum Rise Time in Fast/Standard Mode The time unit is TPCLK1, and RISETMAX is the maximum rising time of SCL plus 1.	
15:6	Reserved			

24 Serial peripheral interface/On-chip audio interface (SPI/I2S)

24.1 Full name and abbreviation description of terms

Table 98 Full name and abbreviation description of terms

Full name in English	English abbreviation
Most Significant Bit	MSB
Least Significant Bit	LSB
Master Out Slave In	MOSI
Master In Slave Out	MISO
Serial Clock	SCK
Serial Data	SD
Master Clock	MCK
Word Select	WS
Pulse-code Modulation	PCM
Inter-IC Sound	128
Transmit	TX
Receive	RX
Busy	BSY

24.2 Introduction

SPI interface can be configured to support SPI protocol and I2S audio protocol. It works in SPI mode by default, and the functions can be switched in I2S mode through software.

Serial peripheral interface (SPI) provides data transmitting and receiving functions based on SPI protocol, which allows chips to communicate with external devices in half duplex, full duplex, synchronous and serial modes, and can work in master or slave mode.

The on-chip audio interface (I2S) supports four audio standards: Philips I2S standard, MSB alignment standard, LSB alignment standard and PCM standard. It can work in master/slave mode of half-duplex communication.

24.3 Main characteristics

24.3.1 Main characteristics of SPI

- (1) Master and slave operation with 3-wire full duplex synchronous transmission and receiving
- (2) Simplex synchronous transmission can be realized by two wires (the third bidirectional data line can be included/not included)
- (3) Select 8-bitt or 16-bit transmission frame format
- (4) Support multiple master device mode
- (5) Support special transmission and receiving mark and can trigger interrupt
- (6) Have SPI bus busy state flag
- (7) The SPI communication rate is up to 42mbit /s
- (8) Clock polarity and phase are programmable
- (9) Data sequence is programmable; select MSB or LSB first
- (10) Interrupt can be triggered by master mode fault, overrun and CRC error flag
- (11) Have DMA transmit and receive buffers
- (12) SPI TI mode
- (13) Calculation, transmission and verification can be conducted through hardware CRC

24.3.2 Main characteristics of I2S

- (1) Have master/slave mode of simplex communication (only transmit/receive)
- (2) Four audio standards
 - I2S Philips standard
 - MSB alignment standard
 - LSB alignment standard
 - PCM standard
- (3) 16/24/32-bit data length can be selected
- (4) 16-bit or 32-bit channel length
- (5) Clock polarity is programmable
- (6) 16-bit data register is used for transmitting and receiving

- (7) MSB is always the first in the data direction
- (8) Transmitting and receiving supports DMA function

24.4 SPI functional description

24.4.1 Description of SPI signal line

Table 99 SPI Signal Line Description

Pin name	Description		
SCK	Master device: SPI clock outputs		
SCK	Slave device: SPI clock inputs		
	Master device: Input the pin and receive data		
MISO	Slave device: Output the pin and transmit data		
	Data direction: From slave device to master device		
	Master device: Output the pin and transmit data		
MOSI	Slave device: Input the pin and receive data		
	Data direction: From master device to slave device		
	Software NSS mode: NSS pin can be used for other purposes.		
	NSS mode of master device hardware: NSS output, single master mode.		
NSS	NSS closed output: Operation of multiple master environments is allowed.		
	NSS mode of slave device hardware: NSS signal is set to low level as chip selection signal of slave.		

24.4.2 Phase and polarity of clock signal

The clock polarity and clock phase are CPOL and CPHA bits of SPI_CTRL1 register.

Clock polarity CPOL means the level signal of SCK signal line when SPI is in idle state.

- When CPOL=0, SCK signal line is in idle state and at low level
- When CPOL=1, SCK signal line is in idle state and at high level

Clock phase CPHA means the sampling moment of data

- When CPHA=0, the signal on MOSI or MISO data line will be sampled by the "odd edge" on SCK clock line.
- When CPHA=1, the signal on MOSI or MISO data line will be sampled by the "even edge" on SCK clock line.

SPI can be divided into four modes according to the states of clock phase CPHA and clock polarity CPOL.

Table 100 Four Modes of SPI

SPI mode	СРНА	CPOL	Sampling moment	Idle SCK clock
0	0	0	Odd edge	Low level
1	0	1	Odd edge	High level

SPI mode	СРНА	CPOL	Sampling moment	Idle SCK clock
2	1	0	Even edge	Low level
3	1	1	Even edge	High level

24.4.3 Data frame format

Set MSB or LSB to be first by configuring LSBSEL bit in SPI_CTRL1 register. Select to transmit/receive in 8/16-bit data frame format by configuring DFLSEL bit in SPI_CTRL1 register.

24.4.4 **NSS mode**

Software NSS mode: Select to enable or disable this mode by configuring SSEN bit of SPI_CTRL1 register, and the internal NSS signal level is driven by ISSEL bit of SPI_CTRL1 register.

Hardware NSS mode:

- Turn on NSS output: When SPI is in master mode, enable SSOEN bit, NSS pin will be pulled to low level and SPI will automatically enter the slave mode.
- Turn off NSS output: Operation is allowed in multiple master environments.

24.4.5 **SPI mode**

24.4.5.1 SPI master mode

In master mode, generate serial clock on SCK pin

Master mode configuration

- Configure MSMSEL=1 in SPI CTRL1 register
- Select the polarity and phase by configuring CPOL and CPHA bits in SPI CTRL1 register.
- Select 8/16-bit data frame format by configuring DFLSEL bit in SPI_CTRL1 register
- Select LSB or MSB first by configuring LSBSEL in SPI_CTRL1 register
- NSS configuration:
 - NSS pin works in input mode: in hardware mode, it is required to connect NSS pin to high level during the entire data frame transmission; in software mode, it is required to set SSEN bit and ISSEL bit in SPI_CTRL1 register
 - NSS works in output mode and it is required to configure SSOEN bit of SPI_CTRL2 register
- Configure FRFCFG bit of SPI_CTRL2 register to select TI mode protocole for serial communication
- Enable SPI by configuring SPIEN bit in SPI CTRL1 register

In master mode: MOSI pin is data output, which MISO is data input

TI protocol

In slave mode, SPI interface supports TI protocol. It is controlled by FRFCFG bit of SPI_CTRL2 register. Both clock polarity and phase position conform to TI protocol. NSS management is specific to TI protocol, not needing to configure SPI_CTRL1 and SPI_CTRL2 registers.

24.4.5.2 SPI slave mode

In slave mode, SCK pin receives the serial clock transmitted from the master device

Configuration of slave mode

- Configure MSMSEL=0 in SPI_CTRL1 register
- Select the polarity and phase by configuring CPOL and CPHA bits in SPI CTRL1 register.
- Select 8/16-bit data frame format by configuring DFLSEL bit in SPI CTRL1 register
- Select LSB or MSB first by configuring LSBSEL in SPI_CTRL1 register
- NSS configuration:
 - In hardware mode: NSS pin must be at low level in the whole data frame transmission process
 - In software mode: Set SSEN bit in SPI_CTRL1 register and clear ISSEL bit (this step is not required for TI mode)
- Configure FRFCFG bit of SPI_CTRL2 register to select TI mode protocole for serial communication
- Enable SPI by configuring SPIEN bit in SPI CTRL1 register

In slave mode: MOSI pin is data input, which MISO is data output

TI protocol

In slave mode, SPI interface supports TI protocol. It is controlled by FRFCFG bit of SPI_CTRL2 register. Both clock polarity and phase position conform to TI protocol. NSS management is specific to TI protocol, not needing to configure SPI_CTRL1 and SPI_CTRL2 registers.

In slave mode, SPI baud rate prescaler can use any baud rate to control the moment of switching MISO pin state to high-impedance state, so it can determine this moment very flexibly. The baud rate is generally the baud rate of external master clock. The baud rate value set by BRSEL[2:0] of SPI_CTRL1 register and the internal circuit of the chip synchronously determine the time when the MISO pin state changes to high-impedance state.

24.4.5.3 Half-duplex communication of SPI

One clock line and one bidirectional data line

- Enable this mode by setting BMEN of SPI_CTRL1 register
- Control the data line to be input or output by setting BMOEN bit of SPI_CTRL1 register
- SCK pin is used as clock, MOSI pin is used in master device to transmit data, and MISO pin is used in slave device to transmit data

24.4.6 Data transmitting and receiving process in different SPI modes

Table 101 Run Mode of SPI

Mode	Configure	Data pin
Full duplex mode of master device	BMEN=0, RXOMEN=0	MOSI transmits; MISO receives
Unidirectional receiving mode of	BMEN=0,RXOMEN=1	MOSI is not used; MISO
master device	DIVIEN-U, RACIVIEN-I	receives
Bidirectional transmitting mode of	BMEN=1, BMOEN=1	MOSI transmits; MISO is not
master device	DIVICIN-1, DIVIOCIN-1	used
Bidirectional receiving mode of	BMEN=1, BMOEN=0	MOSI is not used; MISO
master device	DIVIEIN-1, DIVIOEIN-U	receives
Full duplex mode of slave device	BMEN=0, RXOMEN=0	MOSI receives, and MISO
ruii dupiex mode oi siave device	DIVIEN-U, RACIVIEN-U	transmits
Unidirectional receiving mode of	BMEN=0,RXOMEN=1	MOSI receives, while MISO is
slave device	DIVIEN-U, RACIVIEN-I	not used
Bidirectional transmitting mode of	BMEN=1, BMOEN=1	MOSI is not used, and MISO
slave device	DIVICIN-1, DIVIOEIN-1	transmits
Bidirectional receiving mode of	BMEN=1, BMOEN=0	MOSI receives, while MISO is
slave device	DIVICIN-1, DIVIOEIN-U	not used

Figure 90 Connection in Full Duplex Mode

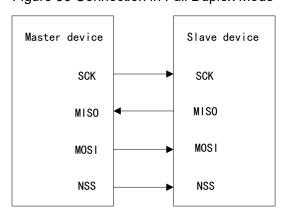


Figure 91Connection in Half-duplex Mode (the master is used for receiving, while the slave is used for transmitting)

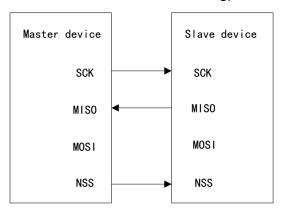


Figure 92 Connection in Half-duplex Mode (the master only transmits, while the slave receives)

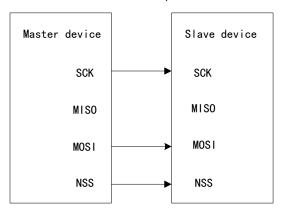
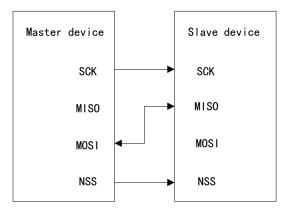



Figure 93 Bidirectional Line Connection

24.4.6.1 Transmitting and receiving of processed data

Data transmission

After the mode configuration is completed, the SPI module is enabled to remain idle.

Master mode: The software writes a data frame to the transmit buffer, and the transmission process starts

Slave mode: The SCK signal on the SCK pin starts to jump, while the NSS pin level is low, and the transmission process starts (before starting data transmission, make sure that the data has been written to the transmit buffer in advance).

When SPI is transmitting a data frame, it will load the data frame from the data buffer to the shift register, and then start to transmit data. After one bit of data frame is sent, TXBEFLG is set to 1. If you need to continue to transmit data, the software needs to wait until TXBEFLG=1 writes data to the SPI_DATA register. (TXBEFLG flag is set to 1 by hardware and cleared by software).

Data receiving

BSYFLG flag is always set to 1 in the data transmission process.

At the last edge of the sampling clock, the received data is transferred from the shift register to the receive buffer; set the RXBNEFLG flag, and the software reads the data in data register (SPI_DATA) to obtain the content of the receive buffer; if RXBNEIEN bit of SPI_CTRL2 register is set, an interrupt will be generated, and after data is read, the BSYFLG flag will be automatically cleared.

24.4.6.2 Full duplex transmitting and receiving mode in master/slave device

Full duplex mode in master device

- After writing data to SPI_ DATA register (transmit buffer), data transmission starts.
- When SPI transmits the first bit of data, the data is transferred from the transmit buffer to the shift register and then transferred to the MOSI pin serially according to the sequence.
- The data received on MISO pin is serially transferred to SPI_DATA register (receive buffer) according to the sequence.

Transmitting and receiving are synchronous.

Full duplex mode under slave device

- When the slave device receives the clock signal and the first data bit appears on the MOSI pin, data transmission starts, and the subsequent data bits will be transferred to the shift register in turn.
- When SPI transmits the first bit of data, the data is transferred from the transmit buffer to the shift register, and then transferred to the MISO pin serially according to the sequence.
- The software must ensure that the data to be sent is written before the SPI master device starts to transmit data.

Transmitting and receiving are synchronous.

Full duplex transmitting and receiving process under master/slave device

- (1) Enable SPI module: Configure SPIEN=1 of SPI_CTRL1 register.
- (2) Write the first data to be sent to SPI_DATA register, and the TXBEFLG flag will be cleared.
- (3) Wait until TXBEFLG flag bit is set to 1 (control by hardware), and write the second data bit to be sent.
- (4) Wait until RXBNEFLG flag bit is set to 1 (control by hardware), read the first received data in the SPI_DATA register, at the same time, clear the RXBNEFLG flag (cleared by software). Repeat the operation, and transmit and receive data at the same time.
- (5) Wait until RXBNEFLG=1 and receive the last data.
- (6) Wait until TXBEFLG=1 and close SPI module after BSYFLG=0.

24.4.6.3 Bidirectional transmitting mode of master/slave device

Bidirectional transmission of master device

- Write data to SPI DATA register, and the transmission starts
- The data in the transmit buffer is transferred to the shift register in parallel, and then transferred to the MOSI pin serially according to the sequence.

Bidirectional transmission of slave device

- When the slave device receives the clock signal and the first data bit appears on the MISO pin, data transmission starts.
- At the same time, the data to be sent by the transmit buffer is transferred to the shift register in parallel, and then sent to the MISO pin in serial (before data transmission, make sure that the data has been written to the transmit buffer in advance).

Bidirectional transmission process of master/slave device

- (1) Enable SPI module: Configure SPIEN=1 of SPI_CTRL1 register.
- (2) Write the first data to be sent to SPI_DATA register, and the TXBEFLG flag will be cleared.
- (3) Wait until TXBEFLG=1, write the second data, repeat the operation and transmit the subsequent data
- (4) After writing the last data, wait for TXBEFLG=1 and BSYFLG=0 and transmission is completed

24.4.6.4 One-way/Two-way receiving mode under master/slave device

(1) Enable SPI module: Configure SPIEN=1 of SPI_CTRL1 register.

- (2) In the master device: Generate SCK clock immediately, and continuously receive data before SPI is disabled.
- (3) Slave device: When SPI master device pulls down NSS and generates clock, receive data.
- (4) Wait until the RXBNEFLG flag is set to 1, read data through SPI_DATA, and repeat the operation to receive data.

24.4.7 CRC functions

SPI module contains two CRC computing units, which are used for data receiving and data transmission respectively.

CRC computing unit is used to define polynomials in SPI_CRCPOLY register.

Enable CRC computing by configuring CRCEN bit in SPI_CTRL1 register; at the same time, reset the CRC register (SPI_RXCRC and SPI_TXCRC).

To obtain the CRC value of transmission calculation, after the last data is written to the transmit buffer, it is required to set CRCNXT bit of SPI_CTRL1; indicate that the hardware transmits the CRC value after the last data is sent, and the CRCNXT bit will be cleared; at the same time, compare the values of CRC and SPI_RXCRC, and if they do not match, it is required to set CRCEFLG bit of SPI_STS register, and after ERRIEN bit of SPI_CTRL2 regiser is set, an interrupt will occur.

Note:

- (1) If SPI is under slave device and CRC function is used, CRC computing will continue when NSS pin is at high level. For example, when the master device communicates with multiple slave devices alternately, the above situation will occur, so it is necessary to avoid faulty operation of CRC.
- (2) In the process of a slave device from being unselected (NSS is at high level) to being selected (NSS is at low level 0), it is required to clear the CRC value at both ends of the master and slave devices to keep the next CRC computing results of the master and slave devices synchronized.
- (3) When SPI is in slave mode, CRC computing can be enabled after the clock is stable.
- (4) When the SPI clock frequency is too high, the CPU operation will affect the SPI bandwidth. It is recommended to use DMA mode to avoid the reduction of SPI speed.
- (5) When the SPI clock frequency is too high, during the CRC transmission period, the CPU utilization frequency is reduced, and the function call is disabled in the CRC transmission process to avoid errors when receiving the last data and CRC.
- (6) When NSS hardware mode is used in slave mode, NSS pin should be kept low during data transmission and CRC transmission period.

Sequence of clearing CRC values

- (1) Disable SPI (SPIEN=0)
- (2) Clear CRCEN bit
- (3) Set CRCEN bit to 1
- (4) Enable SPI (SPIEN=1)

24.4.8 DMA function

For high-speed data transmission, the request/response DMA mechanism in SPI improves the system efficiency and can transfer data to SPI transmit buffer promptly, and the receive buffer can read the data in time to prevent overflow.

When SPI only transmits data, it is only needed to enable DMA transmission channel; when SPI only receives data, it is only needed to enable DMA receiving channel.

DMA function of SPI mode can be enabled by configuring TXDEN and RXDEN bits of SPI CTRL2 register.

- When transmitting: When TXBEFLG flag bit is set to 1, issue the DMA request, DMA controller writes data to SPI_DATA register, and then the TXBEFLG flag bit will be cleared.
- When receiving: When setting RXBNEFLG flag bit to 1, issue the DMA request, DMA controller reads data from SPI_DATA register, and then RXBNEFLG flag bit is cleared.

By monitoring BSYFLG flag bit, confirm whether SPI communication is over after DMA has transferred all data to be sent in transmitting mode, which can avoid damaging the transmission of last data.

DMA function with CRC

By the end of communication, if SPI enables both CRC operation and DMA function, transmitting and receiving of CRC bytes will be completed automatically.

At the end of data and CRC transmission, if CRCEFLG flag bit of SPI_STS register is set to 1, it indicates that an error occurred during transmission.

24.4.9 Disable SPI

After data transmission is over, end the communication by closing SPI module. In some configurations, if SPI is disabled before data transmission is completed, data transmission error may be caused. Different methods are required in different operation modes to close SPI

Maser mode/full-duplex slave mode

(1) Wait until RXBNEFLG flag bit is set to 1, and receive the last data

- (2) Wait until TXBEFLG flag bit is set to 1
- (3) Wait for clearing BSYFLG flag bit
- (4) Close SPI (set SPIEN=0 of SPI_CTRL1 register)

One-way transmit-only/bidirectional transmitting mode of master mode/slave mode

After the last data is written into SPI_DATA register:

- (1) Wait until TXBEFLG flag bit is set to 1
- (2) Wait for clearing BSYFLG flag bit
- (3) Close SPI (set SPIEN=0 of SPI_CTRL1 register)

One-way receive-only/bidirectional receiving mode of master mode/slave mode

- (1) Wait No. n-1 RXBNEFLG flag bit is set to 1
- (2) Wait for one SPI clock cycle before SPI is disabled (set SPIEN=0 of SPI_CTRL1 register)
- (3) Before entering the stop mode, wait until the last RXBNEFLG flag bit is set to 1

Receive-only/bidirectional receiving mode in slave mode

SPI can be disabled at any time (set SPIEN=0 of SPI_CTRL1 register) and it will be disabled when the transmission is over. If you want to enter the stop mode, wait until BSYFLG flag bit is cleared.

24.4.10 SPI interrupt

24.4.10.1 State flag bit

Transmit buffer empty flag TXBEFLG

TXBEFLG=1 indicates that the transmit buffer bit is empty, and the next data to be sent can be written. When the data is written to SPI_DATA register, clear the TXBEFLG flag bit.

Receive buffer non-empty flag RXBNEFLG

RXBNEFLG=1 indicates that the receive buffer contains valid data and the data can be read through SPI_DATA register; and the RXBNEFLG flag can be cleared.

Busy flag BSYFLG

BSYFLG flag is set and cleared by hardware, which can indicate the state of

SPI communication layer. When BSYFLG=1, it indicates SPI is communicating, but in the two-line receiving mode under the master device, BSYFLG=0 during the period of receiving of data.

BSYFLG flag can be used to detect whether transmission is over to avoid damaging the last transmitted data.

BSYFLG flag bit can be used to avoid conflict when writing data in multi-master mode.

BSYFLG flag will be cleared when the transmission ends (except for continuous communication in master mode), SPI is disabled and the master mode fails.

BSYFLG=0 between data item and data item when communication is discontinuous.

When communication is continuous:

- In master mode: BSYFLG=1 in the whole transmission process
- In save mode: BSYFLG is kept low within one SCK clock cycle between transmission of each data

Note: It is best to use TXBEFLG and RXBNEFLG flags to process the transmitting and receiving of each data item.

24.4.10.2 Error flag bit

Master mode error MEFLG

MEFLG is an error flag bit. The master mode error occurs when: in hardware NSS mode, the NSS pin of the master device is pulled down; in software NSS mode, ISSEL bit is cleared; MEFLG bit is set automatically.

Influence of master mode failure: MEFLG is set to 1, and SPI interrupt is generated when ERRIEN is set; SPIEN is cleared (output stops, SPI interface is disabled); MSMSEL is cleared and the device is forced into the slave mode.

Operation of clearing the MEFLG flag bit: When MEFLG bit is set to 1, it is required to read or write SPI_STS register, and then write to SPI_CTRL1 register.

When MEFLG flag bit is 1, it is not allowed to set SPIEN and MSMSEL bits.

Overrun error OVRFLG

Overrun error: After the master device transmits the data, the RXBNEFLG flag bit is still 1, which indicates that the overrun error occurred. Then OVRFLG bit is set to 1, and if the ERRIEN bit is also set, an interrupt will be generated.

After an overrun error occurs, the data in the receive buffer is not the data sent by the master device, and then the read data in SPI_DATA register is the data not read before, while the data sent later will not be read.

OVRFLG flag can be cleared by reading SPI_DATA register and SPI_STS register according to the sequence.

CRC error flag CRCEFLG

By setting CRCEN bit of SPI_CTRL1 register, start CRC computing, CRC error flag, and check whether the received data is valid.

When the value sent by SPI_TXCRC register does not match the value in SPI_RXCRC register, a CRC error will be generated, and CRCEFLG flag bit in SPI_STS register will be set to 1.

CRCEFLG can be cleared by writing 0 to CRCEFLG bit of SPI STS register.

TI frame format error flag FREFLG

If SPI supports TI protocol in slave mode, TI frame format error will be detected when NSS pulse occurs during communication. When this error appears, SPI_STS[FREFLG]=1, SPI will not be disabled, but NSS pulse will be ignored, and SPI will start new transmission when next NSS pulse arrives. As the error detection may cause the loss of two data bytes, the data may have been damaged.

FREFLG flag will be cleared when reading SPI_STS register. If ERRIEN=1, and a frame format error is detected, an interrupt will be generated. The continuity of data cannot be guaranteed at this time, the SPI shall be disabled and after the slave SPI is enabled again, the master will restart the communication.

Interrupt flag	Interrupt event	Enable control	Clearing method
TXBEFLG	Transmit buffer empty flag	TXBEIEN	Write SPI_DATA register
RXBNEFLG	Receive buffer non-empty flag	RXBNEIEN	Read SPI_DATA register
MEFLG	Master mode failure event		Read/Write SPI_STS register, and then write SPI_CTRL1 register
OVRFLG	Overrun error	ERRIEN	Read SPI_DATA register, and then read SPI_STS register
CRCEFLG	CRC error flag		Write 0 to CRCEFLG bit
FREFLG	TI frame format error		Read SPI_STS register

Table 102 SPI Interrupt Request

24.5 I2S functional description

Enable I2S function by setting I2SMOD bit of SPI I2SCFG.

I2S and SPI share four pins:

- SD: Serial data, transmitting and receiving the data of 2-way time division multiplexing channel
- WS: Chip selection, switching the data of left and right channels
- CK: Serial clock; the clock signal is output in master mode, and is input in slave mode
- MCK: Master clock; in master mode, when MCOEN bit of SPI_I2SPSC register is set to 1, it can be used as the pin for outputting the extra clock signal.

24.5.1 **I2S** full duplex

In addition to I2S2 and I2S3, two extended I2S can be also be used to support I2S full-duplex mode. Therefore, the first I2S full-duplex interface is based on I2S2 and I2S2 ext, and the second is based on I2S3 and I2S3 ext.

I2Sx can work in master mode:

- (1) Output SCK and WS in half-duplex mode
- (2) Provide SCK and WS for I2S2_ext and I2S3_ext in full-duplex mode

Extened I2S is only used for full-duplex mode and always works in slave mode. Both I2Sx and I2Sx_ext are used for transmitting and receiving.

24.5.2 I2S audio standard

I2S audio standard is selected by setting I2SSSEL bit and PFSSEL bit of SPI_I2SCFG register, and four audio standards can be selected: I2S Philips standard, MSB alignment standard, LSB alignment standard and PCM standard. Except PCM standard, other audio standards have two channels: left and right channels.

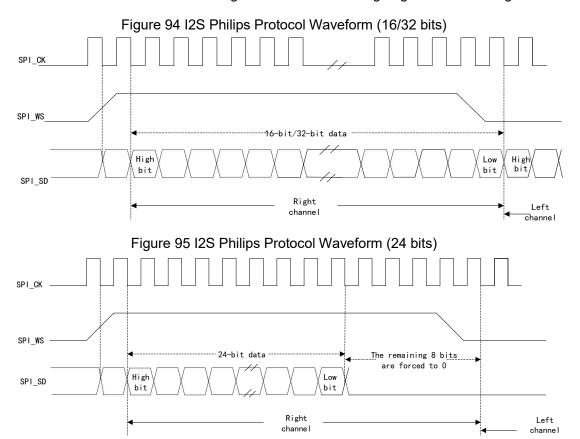
The data length and channel length can be configured by DATALEN and CHLEN bits in SPI_I2SCFG register. The channel length must be greater than or equal to the data length. There are four data formats to transmit data: 16-bit data packed into 16-bit frame, 16-bit data packed into 32-bit frame, 24-bit data packed into 32-bit frame, and 32-bit data packed into 32-bit frame.

When the 16-bit data is extended to 32 bits, the first 16 bits are valid data, and the last 16 bits are forced to be 0. No external intervention is needed in this process.

Since the data buffers used for transmitting and receiving are all 16 bits, SPI_DATA needs to read/write twice when 24-bit and 32-bit data are transmitted. If DMA is used, it needs to be transmitted twice.

For all communication standards and data formats, the most significant bit of data is always sent first.

For time division multiplexing, the left channel is always sent first, and then the


right channel is sent.

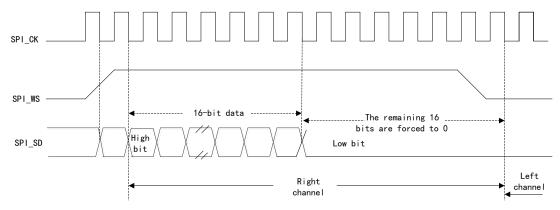
24.5.2.1 I2S Philips standard

In I2S Philips standard, the pin WS can indicate the data being sent comes from the left channel or the right channel.

In I2S Philips standard, both WS and SD change on the falling edge of CK clock signal.

The transmitter will change the data on the falling edge of the clock signal CK, while the receiver will change the data on the rising edge of the clock signal CK.

In I2S Philips standard, if you want to transmit/receive 24-bit and 32-bit data, the SPI DATA register needs to read/write twice; for example:


- If you need to transmit 0x9FBB88 (24-bit data), write 0x9FBB to SPI_DATA register for the first time, and write 0x88XX to the register for the second time.
- If you need to receive 0x9FBB88 (24-bit data), read out 0x9FBB from SPI_DATA register for the first time and read out 0x8800 from the register for the second time.

In I2S configuration, when selecting the frame format of extending from 16-bit data to 32-bit data frame, it is required to access SPI_DATA register, and the remaining 16-bit data will be set to 0x0000 by hardware by forece; for example:

 The data to be received or sent is 0x62d8, which becomes 0x62D80000 after it is expanded to 32 bits, and it is necessary to write 0x62D8 to SPI_DATA register or read out from SPI_DATA register.

Figure 96 I2S Philips Protocol Waveform (extending from 16 bits to 32 bits)

In the transmission process, the MSB should be written to the register SPI_DATA, and when TXBEFLG flag bit is set to 1, new data can be written; if there is corresponding interrupt, an interrupt can be generated.

In the receiving process, every time the MSB is received, the RXBNEFLG flag bit will be set to 1; if there is corresponding interrupt, an interrupt can be generated.

24.5.2.2 MSB alignment standard

In MSB standard, WS signal and the first data bit are generated at the same time

In the transmission process, the data is changed on the falling edge of the clock signal; in the receiving process, the data is read on the rising edge of the clock signal.

Figure 97 MSB Alignment Standard Waveform (16/32-bit data)

SPI_CK

SPI_WS

16-bit/32-bit data

SPI_SD

High
bit

Right channel

Figure 98 MSB Alignment Standard Waveform (24-bit data)

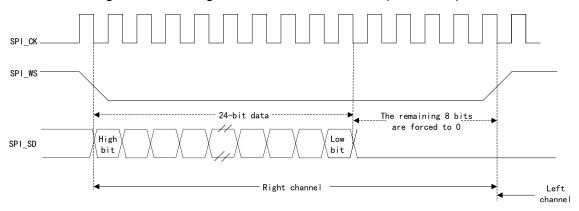
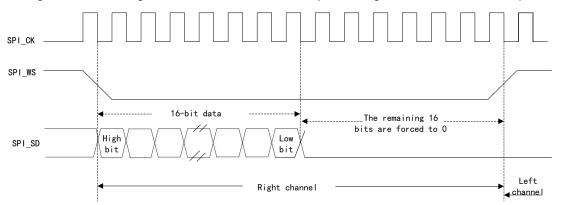



Figure 99 MSB Alignment Standard Waveform (extending from 16 bits to 32 bits)

24.5.2.3 LSB alignment standard

In the transmission process of LSB alignment standard, the data is changed on the falling edge of the clock signal; in the receiving process, the data is read on the rising edge of the clock signal. When the channel length is the same as the data length, the LSB alignment standard is the same as the MSB alignment standard. If the channel length is larger than the data length, the valid data of the LSB alignment standard is aligned with the lowest bit.

Figure 100 LSB Alignment Standard Waveform (16/32-bit data)

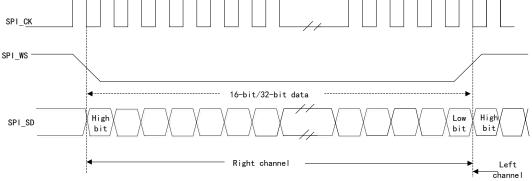
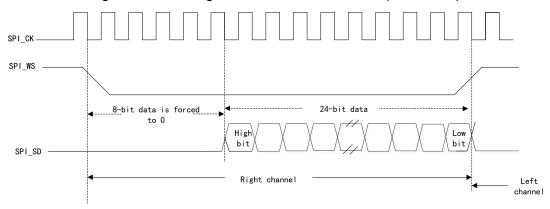
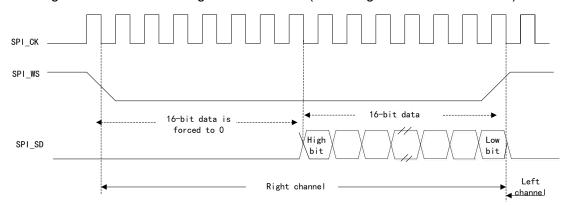



Figure 101 LSB Alignment Standard Waveform (24-bit data)


In the transmission process, if you want to transmit/receive 24-bit data, it is required to read/write the SPI DATA register twice; for example:

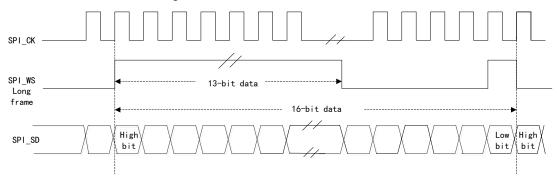
- When you need to transmit 0x56EA98, write 0xXX56 to SPI_DATA register for the first time, and write 0xEA98 to SPI_DATA for the second time.
- When you need to receive 0x56EA98, read out 0x0056 from SPI_DATA registr for the first time, ad read out 0xEA98 from SPI_DATA register for the second time.

In I2S configuration, when selecting the frame format of extending from 16-bit data to 32-bit data frame, it is required to access SPI_DATA register, and the high 16-bit data will be set to 0x0000 by hardware by forece; for example:

 The data to be received or sent is 0x98A5, which becomes 0x000098A5 after it is expanded to 32 bits, and it is necessary to write 0x98A5 to SPI_DATA register or read out from SPI_DATA register.

Figure 102 Under LSB Alignment Standard (extending from 16 bits to 32 bits)

24.5.2.4 PCM standard


There is no sound channel selection in PCM standard. Short frame and long frame of PCM standard are selected by configuring PFSSEL bit in SPI_I2SCFG register.

In the master mode, the valid time of synchronous WS signal of the long frame

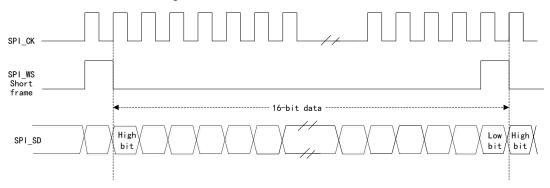

structure is 13 bits.

Figure 103 PCM Standard Waveform

In the master mode, the length of the synchronous WS signal of the short frame structure is 1 bit.

Figure 104 PCM Standard Waveform

24.5.3 **I2S clock**

The clock source of I2SxCLK is system clock (HSICLK, HSECLK or PLL of AHB clock)

The bit rate of I2S determines the data stream on I2S data line and the clock signal frequency of I2S.

- I2S bit rate = the number of bits per channel × the number of sound channels × audio sampling frequency
- There are two channels of 16 bit audio signal: I2S bit rate=16×2×Fs

The relationship between audio sampling frequency (Fs) and I2S bit rate (I2S) is defined by the following formula:

Table 103 Audio Sampling Frequency (Fs) Formula

MCOEN	CHLEN	Audio sampling frequency (Fs)
1	0	I2SxCLK/[(16*2) * ((2*I2SPSC) +ODDPSC) *8]
1	1	

MCOEN	CHLEN	Audio sampling frequency (Fs)
0	0	
0	1	

24.5.4 I2S mode

I2S can be configured as follows:

- (1) Transmit master or receive master of I2Sx is used in half-duplex mode
- (2) Master that receives and transmits concurrently in full-duplex mode

Table 101 IZE I tall Mede					
Run mode	SD	ws	ск	мск	
Master transmitting	Output	Output	Output	Output/Not used	
Master receiving	Input	Output	Output	Output/Not used	
Slave transmitting	Output	Input	Input	Output/Not used	
Slave receiving	Input	Input	Input	Output/Not used	

Table 104 I2S Run Mode

24.5.4.1 **I2S** master mode

When I2S works in master mode, the serial clock is output by pin CK, and the word select signal is generated by pin WS. It is controlled by SPI I2SPSC[MCOEN] whether to output master clock.

Configuration process:

- (1) Configure I2SPSC bit and ODDPSC bit of SPI_I2SPSC register to define the baud rate of serial clock and the actual frequency division factor corresponding to the audio sampling frequency.
- (2) Configure CPOL bit of SPI_I2SCFG register to define the clock polarity of SPI in idle state.
- (3) Configure I2SMOD bit of SPI_I2SCFG register to activate I2S function and configure I2SMOD and PFSSEL bits of SPI_I2SCFG register to select I2S standard; configure DATALEN bit of SPI_I2SCFG register to select the data bits of the sound channel, and configure I2SMOD bit to select I2S master mode as transmitting terminal/receiving terminal.
- (4) Configure SPI_CTRL2 register to select to enable the interrupt and DMA function or not (select required or not).
- (5) Configure WS pin and CK pin to output mode; when MCOEN bit of SPI_I2SPSC is set to 1, the MCK pin should also be configured to output mode.
- (6) Set the running mode of I2S by configuring the I2SMOD bit of SPI I2SCFG.
- (7) Set I2SEN bit of SPI I2SCFG register to 1.

I2S master mode transmission process

When the data is written to the transmit buffer, the transmission will start, and the data will be transferred from the transmit buffer to the shift register, the TXBEFLG flag position is set to 1, and the SCHDIR flag bit indicates the corresponding sound channel of the currently transmitted data. And the value of SCHDIR flag bit will be updated when TXBEFLG flag bit is 1.

When transmitting the first bit of data, 16-bit data will be transferred to the 16-bit shift register in parallel, and then sent out from the pin MISO/SD in serial. The next data needs to be written to SPI_DATA register when TXBEFLG flag bit is 1. If TXBEIEN bit of SPI_CTRL2 is 1, an interrupt will be generated.

Before the completion of the current data transmission, write the next data to be transmitted to ensure continuous transmission of audio data.

When I2S is disabled, I2SEN can be cleared only when the flag bit TXBEFLG is 1 and BSYFLG is 0.

I2S master mode receiving process

RXBNEFLG flag is used to control the receiving sequence. RXBNEFLG flag indicates whether the receive buffer is empty; when the receive buffer is full, the RXBNEFLG flag bit will be set to 1. If RXBNEIEN bit ofSPI_CTRL2 is configured, an interrupt will occur and after the user reads out the data from SPI_DATA register, the RXBNEFLG flag bit will be cleared. Make sure to receive new data after reading operation; otherwise, overrun will occur and the OVRFLG flag bit will be set to 1.

The value of SCHDIR should be updated immediately after receiving data, and it depends on the WS signal generated by I2S.

Regardless of the data type and the channel length, the audio data is always received in the form of 16 bits. According to the configured data and the length of the channel, the data needs to be transmitted to the receive buffer once or twice.

Turn off the I2S function, and for different audio protocols, the data length and channel length operation steps are as follows:

The data length is 16 bits, and 32-bit channel length (DATALEN=00, CHLEN=1, I2SSSEL=10) in LSB alignment mode

- Wait until the penultimate RXBNEFLG is set to 1
- Wail for 17 I2S clock cycles (software delay)
- I2SEN=0

The data length is 16 bits, and 32-bit channel length (DATALEN=00, CHLEN=1, I2SSSEL=10) in MSB alignment mode

Wait until the last RXBNEFLG is set to 1

- Wail for one I2S clock cycle (software delay)
- I2SEN=0

All the other situations

- Wait until the penultimate RXBNEFLG is set to 1
- Wail for one I2S clock cycle (software delay)
- I2SEN=0

BSYFLG flag clock is low during data transmission.

24.5.4.2 **I2S** slave mode

The configuration method of slave mode is basically the same as that of master mode. In slave mode, the clock signal and WS signal are provided by external I2S device instead of I2S.

Configuration process:

- (1) Configure I2SMOD bit of SPI I2SCFG register to activate I2S function.
- (2) Configure I2SSSEL bit of SPI_I2SCFG register to select the I2S standard; configure DATALEN[1:0] bit of SPI_I2SCFG register to select the bits of data; configure CHLEN bit of SPI_I2SCFG register to select the data bits per channel; configure I2SMOD bit of SPI_I2SCFG register to select I2S slave mode as transmitting terminal/receiving terminal.
- (3) Configure SPI_CTRL2 register to select to enable the interrupt and DMA function or not (select required or not).
- (4) Set I2SEN bit of SPI I2SCFG register to 1.

I2S slave mode transmission process

Enable the slave device, write the data to the I2S data register, the external master device will start to communicate, and the external master device will transmit the clock signal, and when the data transmission starts, the transmitting process will begin.

When the first bit data is sent, the 16-bit data will be transferred to the 16-bit shift register in parallel, and then sent out from the pin MOSI/SD in series. When the data is transferred from the data register to the shift register, the TXBEFLG flag bit is set to 1; at this time if TXBEIEN bit of SPI_CTRL2 register is set, an interrupt will be generated. In order to ensure the continuity of data transmission, the next data should be written to SPI_DATA register before the data transmission is completed; otherwise, "underrun" will occur, and the UDRFLG flag bit will be set to 1.

SCHDIR bit of SPI_STS register indicates the channel corresponding to the transmitted data. In the slave mode, the SCHDIR bit is determined by the WS signal of the external master device.

In MSB and LSB alignment mode of I2S, the first data written to the data register corresponds to the data of the left channel.

I2S can be disabled only when TXBEFLG flag bit is set to 1 and BSYFLG flag bit is cleared to 0.

I2S slave mode receiving process

RXBNEFLG bit is used to control the receiving sequence. The RXBNEFLG bit indicates whether the receive buffer is empty; after the receive buffer is full, the RXBNEFLG bit will be set to 1; if RXBNEIEN bit of SPI_CTRL2 register is set, an interrupt will occur, and after the data are read out from SPI_DATA register, RXBNEFLG bit will be cleared to 0; make sure to receive new data after read operation; otherwise, "overrun" will occur, and the OVRFLG flag bit will be set to 1.

The value of SCHDIR should be updated immediately after receiving data, and it depends on the WS signal generated by I2S.

Regardless of the data type and the channel length, the audio data is always received in the form of 16 bits. According to the configured data and the length of the channel, the data needs to be transmitted to the receive buffer once or twice.

To disable I2S, I2SEN flag bit shall be cleared to 0 when receiving the last RXBNEFLG set to 1.

24.5.5 **I2S** interrupt

24.5.5.1 State flag bit

There are three state flag bits in I2S to monitor the state of I2S bus.

Transmit buffer empty flag bit TXBEFLG

When the TXBEFLG bit is 1, it indicates that the transmit buffer is empty, and the data to be transmitted can be written to the transmit buffer; after data is written, the TXBEFLG bit will be cleared to 0. (When I2S is disabled, the TXBEFLG bit is 0).

Receive buffer non-empty flag bit RXBNEFLG

When the RXBNEFLG flag bit is 1, it indicates that the receive buffer has data to be received; after read operation is performed on the SPI_DATA register, RXBNEFLG flag bit will be cleared to 0.

Busy flag bit BSYFLG

When the BSYFLG bit is 1, it indicates that I2S is in communication state (set and cleared to 0 by hardware), but in the master receiving mode, the BSYFLG flag bit is always 0 during the receiving period.

When I2S is disabled and data transmission is over, the BSYFLG flag bit will be

cleared.

During continuous communication:

- In the master transmitting mode, the BSYFLG flag bit is always high during the transmission period
- In the slave mode, during transmission of each data item, the BSYFLG flag bit is set to 0 within one I2S clock cycle

Channel flag bit SCHDIR

In the transmitting mode, the SCHDIR flag bit indicates the data sent on the SD pin is in the left channel or the right channel. This flag bit is refreshed when TXBEFLG=1.

In the transmitting process of slave mode, if there is an underrun error, the value of SCHDIR flag bit will be invalid. If needing to restart the communication, the I2S function should be turned off and then turned on.

In the receiving mode, the SCHDIR flag bit indicates the received data is from the left channel or the right channel. This flag bit is refreshed when SPI_DATA register receives data.

If there is an underrun error in the receiving mode, the value of SCHDIR flag bit will be invalid. If needing to restart the communication, the I2S function should be turned off and then turned on.

As there is no channel selection in PCM standard, the SCHDIR flg bit is meaningless.

When OVRFLG and UDRFLG flag bits of SPI_STS register is 1 and ERRIEN=1 for SPI_CTRL2, interrupt will be generated. The interrupt flag can be cleared by reading the value of SPI_STS register.

24.5.5.2 **Error flag bit**

Underrun flag bit UDRFLG

In the transmitting mode, if new data to be transmitted is written to SPI_DATA register before the data is transmitted, UDRFLG bit will be set to 1; at this time if ERRIEN bit of SPI_CTRL2 register is set to 1, an interrupt will be generated.

This flag bit will take effect only after I2SMOD bit of SPI_I2SCFG is set to 1. Clear the UDRFLG bit by reading SPI_STS register.

Overrun flag bit OVRFLG

In the receiving mode, if a new data is received before the data is read, OVRFLG flag bit will be set to 1. At this time if ERRIEN bit of SPI_CTRL2 register is set to 1, an interrupt will be generated, indicating the occurrence of the error.

Read SPI_DATA register to return the last correctly received data, and all the other newly received data will be lost. OVRFLG bit can be cleared by first reading SPI_STS register and then reading SPI_DATA register.

Frame error flag FREFLG

When I2S is configured as slave mode, this flag will be set to 1 by hardware. If the external maser arbitrarily changes the WS signal, this flag will be set to 1. When synchronization is lost, to recover from this state and resynchronize the external master with the I2S slave, first disable the I2S, and then re-enable it when the correct level is detected on the WS line.

The loss of synchronization between the master and the slave may be caused by noise interference on the SCK communication clock or WS frame synchronization signal line. If ERRIEN bit is set, an error interrupt may be generated. When reading SPI_STS register, this flag will be cleared to 0 by software.

Interrupt flag Interrupt event **Enable control bit** Clearing method **TXBEFLG TXBEIEN** Write SPI DATA register Transmit buffer empty flag **RXBNEFLG RXBNEIEN** Read SPI_DATA register Receive buffer non-empty flag **OVRFLG** Underrun flag bit Read SPI_STS register Read SPI_STS register **UDRFLG** Overrun flag bit **ERRIEN** Read SPI_DATA register again **FREFLG** Frame error flag Read SPI STS register

Table 105 I2S Interrupt Request

24.5.5.3 DMA function

In I2S mode, the work mode of DMA is the same as that of SPI, except that it does not support CRC function.

24.6 Register address mapping

Table 106 SPI and I2S Register Address Mapping

Register name	Description	Offset address
SPI_CTRL1	SPI control register 1	0x00
SPI_CTRL2	SPI control register 2	0x04
SPI_STS	SPI state register	0x08
SPI_DATA	SPI data register	0x0C
SPI_CRCPOLY	SPI CRC polynomial register	0x10
SPI_RXCRC	SPI receive CRC register	0x14

Register name	Description	Offset address
SPI_TXCRC	SPI transmit CRC register	0x18
SPI_I2SCFG	SPI I2S configuration register	0x1C
SPI_I2SPSC	SPI I2S prescaler register	0x20

24.7 Register functional description

These peripheral registers can be operated by half word (16 bits) or word (32 bits).

24.7.1 SPI control register 1 (SPI_CTRL1) (not used in I2S mode)

Offset address: 0x00 Reset value: 0x0000

Neset value. 0x0000			
Field	Name	R/W	Description
0	СРНА	R/W	Clock Phase Configure This bit indicates on the edge of which clock to start sampling 0: On the edge of No. 1 clock 1: On the edge of No. 2 clock Note: This bit cannot be modified during communication.
1	CPOL	R/W	Clock Polarity Configure Level state maintained by SCK when SPI is in idle state. 0: Low level 1: High level Note: This bit cannot be modified during communication
2	MSMCFG	R/W	Master/Salve Mode Configure 0: Configure as slave mode 1: Configure as master mode Note: This bit cannot be modified during communication
5:3	BRSEL	R/W	Baud Rate Divider Factor Select 000: DIV=2 001: DIV=4 010: DIV=8 011: DIV=16 100: DIV=32 101: DIV=64 110: DIV=128 111: DIV=256 Baud rate=FPCLK/DIV Note: This bit cannot be modified during communication
6	SPIEN	R/W	SPI Device Enable 0: Disable 1: Enable Note: When SPI device is disabled, please operate according to the process of closing SPI.

Field	Name	R/W	Description
7	LSBSEL	R/W	LSB First Transfer Select 0: First transmit the most significant bit (MSB) 1: First transmit the least significant bit (LSB)
8	ISSEL	R/W	Internal Slave Device Select When CTRL1_SSEN=1 (software NSS mode), select internal NSS level by configuring the bit 0: Internal NSS is low 1: Internal NSS is high
9	SSEN	R/W	Software Slave Device Enable 0: Software NSS mode is disabled, and the internal NSS level is determined by external NSS pin 1: Software NSS mode is enabled, and the internal NSS level is determined by external NSS pin
10	RXOMEN	R/W	Receive Only Mode Enable 0: Transmit and receive at the same time 1: Receive-only mode RXOMEN bit and BMEN bit together determine the transmission direction in the two-line and two-way mode. In the configuration of multiple slave devices, in order to avoid data transmission collision, it is necessary to set RXOMEN bit to 1 on the slave devices that are not accessed.
11	DFLSEL	R/W	Data Frame Length Format Select 0: 8-bit data frame format 1: 16-bit data frame format Only when SPIEN=0, can this bit be written to change the data frame length.
12	CRCNXT	R/W	CRC Transfer Next Enable 0: The next transmitted data is from transmit buffer 1: The next transmitted data is from CRC register Note: After the last data is written to SPI_DATA register, set CRCNXT bit immediately.
13	CRCEN	R/W	CRC Calculate Enable 0: Disable 1: Enable CRC check function only applies to full duplex mode; only when SPIEN=0, can this bit be changed.
14	BMOEN	R/W	Bidirectional Mode Output Enable 0: Disable, namely, receive-only mode 1: Enable, namely, transmit-only mode When BMEN=1, namely, in single-line/double-line mode, this bit decides the transmission direction of transmission line.
15	BMEN	R/W	Bidirectional Mode Enable 0: Double-line unidirectional mode 1: Single-line bidirectional mode Single-line two-way transmission means: the transmission between MOSI pin of data master and MISO pin of slave

24.7.2 SPI control register 2 (SPI_CTRL2)

Offset address: 0x04 Reset value: 0x0000

Eigld	Nome	R/W	Description	
Field	Name	R/W	Description	
0	RXDEN	R/W	Receive Buffer DMA Enable When RXDEN=1, once RXBNEFLG flag is set, DMA request will be issued. 0: Disable 1: Enable	
1	TXDEN	R/W	Transmit Buffer DMA Enable When this bit is set, once TXBEFLG flag is set, DMA request will be issued. 0: Disable 1: Enable	
2	SSOEN	R/W	SS Output Enable SS output in master mode 0: SS output is disabled, and it can work in multi-master mode. 1: SS output is enabled, and it cannot work in multi-master mode. Note: Not used in I2S mode.	
3	Reserved			
4	FRFCFG	R/W	Frame Format Configure 0: SPI Motorola mode 1: SPI TI mode Note: Not available in I2S mode.	
5	ERRIEN	R/W	Error interrupt Enable 0: Disable 1: Enable When an error occurs, ERRIEN bit controls whether to generate the interrupt.	
6	RXBNEIEN	R/W	Receive Buffer Not Empty Interrupt Enable 0: Disable 1: Allowed When RXBNEFLG flag bit is set to 1, an interrupt request will be generated	
7	TXBEIEN	R/W	Transmit Buffer Empty Interrupt Enable 0: Disable 1: Enable When TXBEFLG fag bit is set to 1, an interrupt request will be generated	
15:8			Reserved	

24.7.3 SPI state register (SPI_STS)

Offset address: 0x08 Reset value: 0x0002

Field	Name	R/W	Description	
0	RXBNEFLG	R	Receive Buffer Not Empty Flag 0: Empty 1: Not empty	
1	TXBEFLG	R	Transmit Buffer Empty Flag 0: Not empty 1: Empty	
2	SCHDIR	R	Sound Channel Direction Flag 0: Indicate that the left channel is transmitting or receiving the required data 1: Indicate that the right channel is transmitting or receiving the required data Note: Not used in SPI mode, without left and right channels in PCM mode.	
3	UDRFLG	R	Underrun Occur Flag 0: Not occur 1: Occurred This flag bit is set by hardware, and it can be cleared by writing 0 to this bit by software. Not used in SPI mode	
4	CRCEFLG	RC_W0	CRC Error Occur Flag This bit indicates whether the received CRC value matches the value of RXCRC register 0: Match 1: Not match This bit is set by hardware, can be cleared by writing 0 to this bit by software, and is not used in I2S mode.	
5	MEFLG	R	Mode Error Occur Flag 0: Not occur 1: Occurred This bit is set by hardware, can be cleared by writing 0 to this bit by software, and is not used in I2S mode.	
6	OVRFLG	R	Overrun Occur Flag 0: Not occur 1: Occurred This bit is set by hardware, and it can be cleared by writing 0 to this bit by software.	
7	BSYFLG	R	SPI Busy Flag 0: SPI is idle 1: SPI is communicating It is set or cleared by hardware.	
8	FREFLG	R	Frame Format Error Flag 0: Not occur 1: Occurred Note: This flag is used when working in TI slave mode or I2S slave mode. This bit is set to 1 by hardware and cleared to 0 when reading SPI_STS register.	
15:9	Reserved			

24.7.4 SPI data register (SPI_DATA) (not used in I2S mode)

Offset address: 0x0C Reset value: 0x0000

Field	Name	R/W	Description	
15:0	DATA	R/W	Transmit Receive Data register When writing this register, the data will be written to the transmit buffer; when reading this register, the data in receive buffer will be read. The size of the buffer is consistent with the length of the data frame, that is, for 8-bit data, only DATA[7:0] is used when transmitting and receiving data, and DATA[15:8] is invalid; for 16-bit data, DATA[15:0] will be used when transmitting and receiving data.	

24.7.5 SPI CRC polynomial register (SPI_CRCPOLY) (not used in I2S mode)

Offset address: 0x10 Reset value: 0x0007

Field	Name	R/W	Description
15:0	CRCPOLY	R/W	CRC Polynomial Value Setup This register contains CRC polynomial of CRC computing, which can be modified, and the reset value is 0x0007.

24.7.6 SPI receive CRC register (SPI_RXCRC) (not used in I2S mode)

Offset address: 0x14 Reset value: 0x0000

Field	Name	R/W	Description
15:0	RXCRC	R	Receive Data CRC Value The CRC data of receive data calculated by hardware are stored in this register; the bits and the length of data frames are consistent, that is, if the received data are 8 bits, the CRC computing is made based on CRC8; if the received data are 16 bits, the CRC computing is made based on CRC16. When CRCEN is set, the hardware clears the register. Note: When BSYFLG bit is set to 1, the value of reading RXCRC register may be wrong.

24.7.7 SPI transmit CRC register (SPI_TXCRC) (not used in I2S mode)

Offset address: 0x18 Reset value: 0x0000

Field	Name	R/W	Description
15:0	TXCRC	R	Transmit Data CRC Value The CRC data of sent data calculated by hardware are stored in this register; the bits and the length of data frames are consistent, that is, if the sent data are 8 bits, the CRC computing is based on CRC8; if the sent data is are 16 bits, the CRC computing is based on CRC16. When CRCEN is set, the hardware clears the register. Note: When BSYFLG bit is set to 1, the value of reading RXCRC register may be wrong.

24.7.8 SPI_I2S configuration register (SPI_I2SCFG)

Offset address: 0x1C Reset value: 0x0000

	Reset value: 0x0000			
Field	Name	R/W	Description	
0	CHLEN	R/W	Channel Length Configure The channel length refers to the data bits per audio channel 0: 16-bit width 1: 32-bit width The vocal tract length can be configured successfully only when the vocal tract length is greater than the data length; otherwise, the hardware will automatically adjust the vocal tract length; this bit can only be configured when I2SEN=0, and is not used in SPI mode.	
2:1	DATALEN	R/W	Configure the Length of the sData to Be Transferred 00: 16-bit data length 01: 24-bit data length 10: 32-bit data length 11: Not allowed This bit can only be configured when I2SEN=0, and is not used in SPI mode.	
3	CPOL	R/W	Idle State Clock Polarity Configure 0: Low level 1: High level This bit can only be configured when I2SEN=0, and is not used in SPI mode.	
5:4	I2SSSEL	R/W	I2S Standard Select 00: I2S Philips standard 01: High-byte alignment standard (left alignment) 10: Low-byte alignment standard (right alignment) 11: PCM standard This bit can only be configured when I2SEN=0, and is not used in SPI mode.	
6	Reserved			
7	PFSSEL	R/W	PCM Frame Synchronization Mode Select 0: Synchronization of short frames 1: Synchronization of long frames Apply only to PCM standard (I2SSSEL=11); this bit can only be configured when I2SEN=0, and is not used in SPI mode.	
9:8	I2SMOD	R/W	I2S Master/Slave Transmit/Receive Mode Configure 00: Slave device transmits 01: Slave device receives 10: Master device transmits 11: Master device receives This bit can only be configured when I2SEN=0, and is not used in SPI mode.	
10	I2SEN	R/W	I2S Enable 0: I2S is disabled 1: I2S is enabled Note: It is not used in SPI mode.	

Field	Name	R/W	Description	
11	MODESEL	R/W	SPI/I2S Mode Select 0: Select SPI mode 1: Select I2S mode Note: This bit can be set only when SPI or I2S is disabled.	
15:12	Reserved			

24.7.9 SPI_I2S prescaler register (SPI_I2SPSC) (not used in SPI mode)

Offset address: 0x20 Reset value: 0x0002

Field	Name	R/W	Description
7:0	I2SPSC	R/W	I2S Linear Prescaler Factor Configure I2SPSC cannot be set to 0 and 1; this bit can be configured only when I2SEN=0, and it is not used in SPI mode.
8	ODDPSC	R/W	Configure the prescaler factor to be odd 0: Actual division factor=I2SPSC*2 1: Actual division factor=(I2SPSC*2)+1 This bit can only be configured when I2SEN=0, and is not used in SPI mode.
9	MCOEN	Master Device Clock Output Enable 0: Disable R/W 1: Enable This bit can only be configured when I2SEN=0, and is not used in SPI mode.	
15:10	Reserved		

25 Controller area network (CAN)

25.1 Full name and abbreviation description of terms

Table 107 Full name and abbreviation description of terms

Full name in English	English abbreviation
First Input First Output	FIFO
Request	REQ

25.2 Introduction

CAN is abbreviation of Controller Area Network, and is serial communication protocol of ISO international standardization and supports CAN Protocol 2.0A and 2.0B. In CAN protocol, the transmitter transmits the message to all receivers in the form of broadcast. When the node receives the message, it will go through the filter group and decide whether the message is needed according to the identifier. This design saves the CPU overhead.

25.3 Main characteristics

- (1) Support CAN protocol 2.0A and 2.0B
- (2) The maximum baud rate of communication is 1Mbit/s
- (3) Transmission function
 - There are three transmiting mailboxes
 - The priority of transmitting message can be configured
 - Record the transmission time
- (4) Receiving function
 - Have two receive FIFO with three depth levels
 - Have 28 filter groups.
 - Record the receiving time

25.4 Functional description

25.4.1 Characteristics of CAN physical layer

There can be multiple communication nodes on the CAN bus, each node consists of a CAN controller and a transceiver. The controller and transceiver are connected through CAN_TX and CAN_RX to transmit logic signals; the transceiver and bus are connected through CAN_High and CAN_Low to transmit differential signals.

25.4.2 Message structure

Figure 105 Standard Data Frame

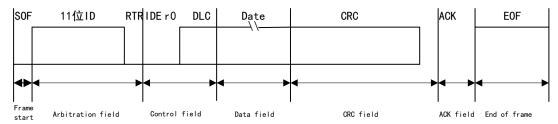
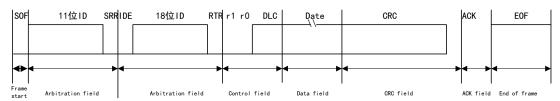



Figure 106 Extended Data Frame

Note:

- (1) Frame start: used to inform each node that there will be data for transmission.
- (2) Arbitration segment: It is used to decide which message can be transmitted when multiple messages are transmitted. Main content of this segment is ID information, the ID in standard format is 11 bits, and the ID in extended format is 29 bits.
- (3) Control segment: The main content of this segment is data length code (DLC), which is used to indicate how many bytes the data segment has in the message. The data segment has up to 8 bytes.
- (4) Data segment: Include the data information to be sent by the node.
- (5) CRC segment: CRC check code is used to ensure correct transmission of the messages.
- (6) ACK segment: This segment includes ACK slot bit and ACK delimiter bit. The transmitting node in ACK slot transmits recessive bits, while the receiving node transmits the dominant bit in this bit to acknowledge.
- (7) Frame end: Seven recessive bits sent by the transmitting nodes are used to indicate the end.

25.4.3 Working Mode

CAN has three main working modes: initialization mode, normal mode and sleep mode.

25.4.3.1 Initialization mode

Set the INITREQ bit of the configuration register CAN_MCTRL to 1 to request to enter the initialization mode; clear the INITFLG bit to confirm entering the initialization mode.

Clear the INITREQ bit of the configuration register CAN_MCTRL to request to exit the initialization mode; clear the INITFLG bit to confirm exiting the

initialization mode.

Message receiving and transmitting is disabled in initialization mode.

25.4.3.2 Normal mode

Clear the INITREQ bit of the configuration register CAN_MCTRL through software to request to enter the normal mode from the initialization mode; wait for the hardware to clear the INITELG bit to enter the normal mode.

Message receiving and transmitting is allowed in normal mode.

25.4.3.3 Sleep mode

Set the SLEEPREQ bit of the configuration register CAN_MCTRL to 1 to request to enter the sleep mode.

The clock of CAN stops work in sleep mode, the software can normally access the mailbox register, and the CAN is in low-power state.

25.4.4 Communication mode

There are four communication modes: silent mode, loopback mode, silent loopback mode and normal mode. Different communication modes can be selected only in initialization mode.

25.4.4.1 Silent mode

Set the SILMEN bit of the configuration register CAN_BITTIM to 1 and select the silent mode.

In this mode, only recessive bit (logic 1) can be sent to the bus, while the dominant bit (logic 0) cannot be sent, and the data can be received from the bus.

MCU

TX

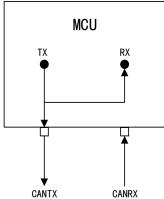
RX

CANTX

CANTX

CANRX

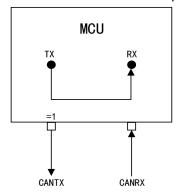
Figure 107 CAN Works in Silent Mode


25.4.4.2 Loopback mode

Set the LBKMEN bit of the configuration register CAN_BITTIM to 1 and select the loopback mode.

In this mode, the sent data are directly transmitted to the input end for receiving, the data are not received from the bus, and all data can be sent to the bus.

Figure 108 CAN Works in Loopback Mode

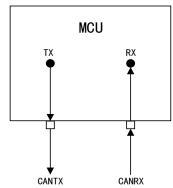


25.4.4.3 Loopback silent mode

Set the LBKMEN and SILMEN bits of the configuration register CAN_BITTIM to 1 and select the loopback silent mode.

In this mode, the sent data are directly transmitted to the input end for receiving, and the data are not received from the bus; only recessive bit (logic 1) can be sent to the bus, while the dominant bit (logic 0) cannot be sent.

Figure 109 CAN Works in Silent Loopback Mode



25.4.4.4 Normal mode

In this mode, data can be sent to the bus and be received from the bus.

Figure 110 CAN Works in Normal Mode

25.4.5 Data transmission

25.4.5.1 Conversion of transmiting mailbox state

Conversion process of transmiting mailbox state:

- (1) First select an empty mailbox to set, submit the transmitting request to the CAN bus controller by setting the TXMREQ bit of the configuration register CAN_TXMIDx to 1, and then the mailbox immediately enters the registration state.
- (2) When multiple mailboxes are in the registered state, conduct priority scheduling. When an mailbox has the highest priority, it will enter the predetermined state.
- (3) When the message in the transmiting mailbox is sent to the bus, it will enter the transmitting state.
- (4) After the message is sent successfully, the mailbox will become idle again.

25.4.5.2 Transmitting priority

When multiple messages are waiting for transmitting, determine the transmitting sequence through the TXFPCFG bit of the configuration register CAN MCTRL:

- When the TXFPCFG bit is set to 0, the priority is determined by the message identifier, the identifier is the lowest, the priority is the highest, the identifier is equal, and the message with small mailbox number will be sent first
- When the TXFPCFG bit is set to 1, the priority will be determined by the sequence of transmitting request

25.4.5.3 **Abort**

Transmit the abort request by setting the ABREQFLG bit of the configuration register CAN_TXSTS to 1.

If the mailbox is in registered or predetermined state, stop transmitting the request immediately; if the mailbox is in the transmitting state, there are two conditions: one is that the mailbox is successfully sent, the mailbox becomes empty, in such case, the TXSUSFLG bit of the CAN TXSTS register is set to 1

by hardware; the other is that the mailbox fails to transmit, the mailbox becomes predetermined and the transmitting request is aborted.

25.4.5.4 Automatic retransmission is disabled

Generally, in time triggered communication mode, automatic retransmission should be disabled.

In the mode that the automatic retransmission is disabled, the message is sent only once, and no matter what the result is (success, error or arbitration loss), the hardware will not transmit the message again automatically.

When the transmitting process is finished, set the REQCFLG bit of the CAN_TXSTS register to 1, and the transmitting result will be on the TXSUSFLG, ARBLSTFLG and TXERRFLG bits

25.4.6 Data receiving

25.4.6.1 Receive FIFO

CAN has two receive FIFOs, each FIFO has three mailboxes, the FMNUM[1:0] bit of the register CAN_RXF reflects the number of messages currently stored; set the RFOM bit to 1 to release the output mailbox of receive FIFO; FFULLFLG is the full state flag bit; FOVRFLG is overrun state flag bit.

25.4.6.2 Receive FIFO state conversion

At the beginning FIFO is in empty state, and after receiving the message, it will become registered.

When FIFO is in registered state and three mailboxes are full, after receiving next effective message, it will enter the overrun state, and there are two situations for loss of messages in overrun state:

- If FIFO lock function is disabled, the finally received message will be covered by new message
- If FIFO lock function is enabled, the newly received message will be discarded

25.4.7 Filtering mechanism

Function of the filter: The receiving node decides whether the message is needed according to the message identifier, and only the required message will be received after filtering. CAN controller has 28 filter groups.

25.4.7.1 Bit width

Each group of filters can configure two kinds of bit width.

Figure 111 One 32-bit Filter

ID	CAN_F i BANK1 [31:24]	CAN_F i BAN	K1[23:16]	CAN_FiBANK1[15:8]	CAN_FiBANK1[7:0]			
Mapping	STDID[10:3]	STDID[2:0]	EXTID[17:13]	EXTID[12:5]	EXTID[4:0]	IDTYP T	XRFR EQ	0

Figure 112 Two 16-bit Filters

ID	CAN_FiBANK1[15:8]	CAN_FiBANK1[7:0]			0]	CAN_FiBANK2[15:8]	CA	CAN_FiBANK2[7:0]		
Mapping	STDID[10:3]	STDID [2:0]		IDTYP ESEL		STDID[12:5]	STDID [2:0]	TXRF REQ	IDTYP ESEL	EXTID [17:15]

25.4.7.2 Filtering mode

Mask bit mode

In this mode, it is only required to use some bits of the message identifier as a list to form the mask, and the message ID should be the same as the mask, and then the message can be received

Table 108 Mask Bit Mode Example

ID	1	0	1	1	0	0	1	0	
Mask	1	0	1	1	1	0	0	1	
Screened ID	1	Х	1	1	0	Х	Х	0	

Identifier list mode

In this mode, each bit of the message ID needs to be the same as the filter identifier, and then the message can be received.

Table 109 Identifier List Mode Example

ID	1	1	1	0	1	0	0	1	1
ID	1	1	1	0	1	0	0	1	1
Screened ID	1	1	1	0	1	0	0	1	1

25.4.7.3 Filter priority

The priority rules are as follows:

- The priority of the filter with bid width of 32 bits is higher than that with bid width of 16 bits
- Under the condition of the same bit width, the priority of the identifier list mode is higher than that of mask bit mode
- Under the condition of the same bit width and mode, the priority of the small filtering number is high

25.4.8 Bit timing and baud rate

25.4.8.1 Bit timing

The CAN peripheral bit timing of APM32 contains three segments: synchronization segment (SYNC_SEG), time segment 1 (BS1) and time segment 2 (BS2), and the sampling points are at the junction of BS1 and BS2 segments.

- Synchronization segment (SYNC_SEG): This bit occupies one time cell
- Time segment 1 (BS1): This segment occupies one to 16 time cells, and it contains PROP_SEG and PHASE_SEG1 in CAN standard
- Time segment 2 (BS2): This segment occupies one to eight time cells, and it represents PHASE SEG2 in CAN standard

25.4.8.2 Calculation of baud rate

Time of BS1 segment: Ts1=Tq* (TIMSEG1[3:0]+1)

Time of BS2 segment: Ts2=Tq* (TIMSEG2[2:0]+1)

Time of one data bit: T1bit=1Tq+Ts1+Ts2

Baud rate=1/T1bit

Tq = (BRPSC+1) * TPCLK

25.4.9 Error management

Transmit the error counter through the TXERRCNT bit of the configuration register CAN_ERRSTS and receive the error counter through the RXERRCNT bit of the register CAN_ERRSTS to reflect the error management of CAN bus.

Control the generation of interrupt in error state through the ERRIEN bit of the configuration register CAN INTEN.

25.4.9.1 Bus-line recovery

When the TXERRCNT of the CAN error state register is greater than 255, the CAN bus controller will enter the bus-line state, then the BOFLG bit of the register CAN_ERRSTS is set to 1, and in this state, the CAN bus controller cannot receive and transmit messages.

Decide the bus-line recovery mode through the ALBOFFM bit of the configuration register CAN_MCTRL:

- If the ALBOFFM bit is set to 1, once the hardware detects 11 continuous recessive bits for 128 times, it will exit the bus-line state automatically;
- If the ALBOFFM bit is set to 0, after the software requests to enter and then exit the initialization mode, it will exit the bus-line state.

25.4.10 Interrupt

Events generating transmitting interrupt:

- The hardware sets REQCFLG0 bit of the register CAN_TXSTS to 1, and the transmiting mailbox 0 becomes idle
- The hardware sets REQCFLG1 bit of the register CAN_TXSTS to 1, and the transmiting mailbox 1 becomes idle
- The hardware sets REQCFLG2 bit of the register CAN_TXSTS to 1, and the transmiting mailbox 2 becomes idle

Events generating FIFO0 interrupt:

- Set the FMNUM0[1:0] bit of the register CAN_RXF0 to a number rather than 0 by the hardware, and FIFO0 will receive a new message
- Set the FFULLFLG0 bit of the register CAN_RXF0 to 1 by the hardware, and FIFO0 will be full
- Set the FOVRFLG0 bit of the register CAN_RXF0 to 1 by the hardware and FIFO0 will overrun

Events generating FIFO1 interrupt:

- Set the FMNUM1[1:0] bit of the register CAN_RXF1 to a number rather than 0 by the hardware, and FIFO1 will receive a new message
- Set the FFULLFLG1 bit of the register CAN_RXF1 to 1 by the hardware, and FIFO1 will be full
- Set the FOVRFLG1 bit of the register CAN_RXF1 to 1 by the hardware and FIFO1 will overrun

Events generating state change and error interrupt:

- Set the SLEEPIEN bit of the register CAN_INTEN to 1 by the hardware and it will enter the sleep mode
- Set the WUPIEN bit of the register CAN_INTEN to 1 by the hardware and interrupt enable will be woken up
- Set the ERRWFLG bit of the register CAN_ERRSTS to 1 by the hardware, and it means that the number of errors has reached the threshold
- Set the ERRPFLG bit of the register CAN_ERRSTS to 1 by the hardware, and it means that the number of errors has reached the threshold of passive error
- Set the LERRC[2:0] bit of the register CAN_ERRSTS by the hardware, and it indicates the condition of last error

Transmit REQCFLG0 TXMEIEN interrupt CAN_TXSTS REQCFLG1 REQCFLG2 FM1EN0 FMNUMO FIFO 0 Interrupt FFULL | ENO CAN_RXF0 -FFULLFLG0 FOVR I ENO F0VRFLG0 FMP I EN1 FMNUM1 FIF0 1 FFULL | EN1 Interrupt FFULLFLG1 CAN_RXF1 FOVR | EN1 F0VRFLG1 ERRIEN ERRWIEN ERRWFLG ERRPIEN ERRPFLG CAN_ERRSTS -BOFF I EN BOFLG LECIEN 1<=LERRC<=6 Change of state error WUPIEN WUPINT CAN_MSTS SLEEPIEN SAINT

Figure 113 Event Flag and Interrupt Generation

CAN_INTEN

25.5 Register address mapping

CAN1 base address: 0x4000_6400

CAN2 base address: 0x4000_6800

Note: Except base address, the register and offset addresses of CAN1 and CAN2 are exactly the same.

Table 110 CAN Register Address Mapping

Register name	Description	Offset address
CAN_MCTRL	CAN main control register	0x00
CAN_MSTS	CAN main state register	0x04
CAN_TXSTS	CAN transmit state register	0x08
CAN_RXF0	CAN receive FIFO 0 register	0x0C
CAN_RXF1	CAN receive FIFO 1 register	0x10
CAN_INTEN	CAN interrupt enable register	0x14
CAN_ERRSTS	CAN error state register	0x18
CAN_BITTIM	CAN bit timing register	0x1C
CAN_TXMIDx	Transmitting mailbox identifier register	0x180, 0x190, 0x1A0
CAN_TXDLENx	Transmiting mailbox data length register	0x184, 0x194, 0x1A4
CAN_TXMDLx	Transmiting mailbox low-byte data register	0x188, 0x198, 0x1A8
CAN_TXMDHx	Transmiting mailbox high-byte data register	0x18C, 0x19C, 0x1AC
CAN_RXMIDx	Receive FIFO mailbox identifier register	0x1B0, 0x1C0
CAN_RXDLENx	Receive FIFO mailbox data length register	0x1B4, 0x1C4
CAN_RXMDLx	Receive FIFO mailbox low-byte data register	0x1B8, 0x1C8
CAN_RXMDHx	Receive FIFO mailbox high-byte data register	0x1BC, 0x1CC
CAN_FCTRL	CAN filter control register	0x200
CAN_FMCFG	CAN filter mode register	0x204
CAN_FSCFG	CAN filter bit width configuration register	0x20C
CAN_FFASS	CAN filter FIFO association register	0x214
CAN_FACT	CAN filter activation register	0x21C
CAN_FiBANKx	Register x of CAN filter group i	0x2400x31C

25.6 Register functional description

25.6.1 CAN control and state register

25.6.1.1 CAN main control register (CAN_MCTRL)

Offset address: 0x00 Reset value: 0x0001 0002

Field	Name	R/W	Description
0	INITREQ	R/W	Request to Enter Initialization Mode 0: Enter the normal work mode from the initialization mode
			1: Enter the initialization mode from the normal work mode

Field	Name	R/W	Description		
1	SLEEPREQ	R/W	Request to Enter Sleep Mode 0: Exit the sleep mode 1: Request to enter the sleep mode. If the AWUPCFG bit is set to 1, when the RX signal detects CAN message, this bit will be cleared by hardware; after reset, reset this bit to 1; after reset, it will enter the sleep mode.		
2	TXFPCFG	R/W	Transmit FIFO Priority Configure This bit is used to determine which parameters determine the transmission priority when multiple messages are waiting for transmission. 0: Determined by the message identifier 1: Determined by the sequence of transmission request		
3	RXFLOCK	R/W	Receive FIFO Locked Mode Configure This bit is used to determine whether FIFO is locked when receiving overrun, and how to deal with the next received message when the message of the receive FIFO has not been read out. 0: Unlocked; If the message of the receive FIFO is not read out, the next received message will cover the original message 1: Locked; when the message of the received FIFO is not read out, the next received message will be discarded		
4	ARTXMD	R/W	Automatic Retransmission Message Disable 0: Automatic retransmission is enabled, and the message will be retransmitted automatically until it is sent successfully 1: Automatic retransmission is disabled and the message is sent only once		
5	AWUPCFG	R/W	Automatic Wakeup Mode Configure 0: Software wakes up the sleep mode by clearing the SMREQ bit of the CAN_MCTRL register 1: Hardware wakes up the sleep mode by detecting CAN message		
6	ALBOFFM	R/W	Automatic Leaving Bus-Off Status Condition Management 0: After the software resets the INITREQ bit of the CAN_MCTRL register to 1 and then clears it, when the hardware detects 11 continuous recessive bits for 128 times, it will exit from the bus-line state 1: When the hardware detects 11 continuous recessive bits for 128 times, it will exit from the bus-line state automatically		
14:7	Reserved				
15	SWRST	R/S	Software Reset CAN 0: Work normally 1: CAN is reset by force, and after reset, CAN enters the sleep mode; the hardware will clear this bit automatically		
16	DBGFRZE	R/W	Debug Freeze 0: Invalid 1: During debugging, CAN cannot receive/transmit, but it still can read and write and control the receive FIFO normally		
31:17			Reserved		

25.6.1.2 CAN main state register (CAN_MSTS)

Offset address: 0x04

Reset value: 0x0000 0C02

Field	Name	R/W	Description
			Being Initialization Mode Flag
			This bit is set to 1 or cleared by hardware.
0	INITFLG	R	1: Exit the initialization mode
			1: Being in the initialization mode; this bit is confirmation for initialization request bit of the CAN_MCTRL register.
			Being Sleep Mode Flag
			This bit is set to 1 or cleared by hardware
1	SLEEPFLG	R	0: Exit the sleep mode
			1: Being in the sleep mode; this bit is confirmation for sleep moderequest bit of the CAN_MCTRL register.
			Error Interrupt Occur Flag
			This bit is set to 1 by hardware and written to 1 and cleared by
2	ERRIFLG	RC_W1	software.
			0: Not occur
			1: Occurred
			Wakeup Interrupt Occur Flag
	WUPIFLG	RC_W1	When entering the sleep mode and detecting SOP wake-up, the bit
3			is set to 1 by hardware; it is written to 1 and cleared by software. 0: Failed to wake up from the sleep mode
			1: Woke up from the sleep mode
			Being Sleep Mode Interrupt Flag
			When entering the sleep mode, this bit is set to 1 by hardware and
			corresponding interrupt will be triggered; when exiting the sleep
4	SLEEPIFLG	RC_W1	mode, this bit is cleared by hardware and is written as 1 and cleared
			by software.
			0: Failed to enter the sleep mode
			1: Entered the sleep mode
7:5			Reserved
			Being Transmit Mode Flag
8	TXMFLG	R	0: CAN is not in transmission mode
			1: CAN is in transmission mode
			Being Receive Mode Flag
9	RXMFLG	R	0: CAN is not in receiving mode
			1: CAN is in receiving mode
10	LSAMVALUE	R	CAN Rx Pin Last Sample Value
11	RXSIGL	R	CAN Rx Pin Signal Level
31:12			Reserved

25.6.1.3 CAN transmitting state register (CAN_TXSTS)

Offset address: 0x08 Reset value: 0x1C00 0000

Field	Name	R/W	Description
0	REQCFLG0	RC_W1	Mailbox 0 Request Completed Flag When the last transmission or abortion request of the mailbox 0 is completed, this bit is set to 1 by hardware; when receiving the transmission request, this bit is cleared by hardware; it is written to 1 or cleared by software. 0: Being transmitted 1: Transmission completed
1	TXSUSFLG0	RC_W1	Mailbox 0 Transmission Success Flag When mailbox 0 attempts to transmit successfully, this bit is set to 1 by hardware; and written to 1 and cleared by software. 0: Last transmission attempt failed 1: Last transmission attempt succeeded
2	ARBLSTFLG0	RC_W1	Mailbox 0 Arbitration Lost Flag When the mailbox 0 loses arbitration, this bit is set to 1 by hardware; and written to 1 and cleared by software. 0: Meaningless 1: Lost
3	TXERRFLG0	RC_W1	Mailbox 0 Transmission Error Flag When mailbox 0 fails to transmit, this bit is set to 1 by hardware; and written to 1 and cleared by software. 0: Meaningless 1: Failed to transmit
6:4			Reserved
7	ABREQFLG0	R/S	Mailbox 0 Abort Request Flag If there is no message waiting for Transmiting in mailbox 0, this bit is ineffective. 0: The transmitting message of mailbox 0 is cleared, and this bit is cleared by hardware 1: Set this bit to 1 to abort the transmission request of mailbox 0
8	REQCFLG1	RC_W1	Mailbox 1 Request Completed Flag When the last request of mailbox 1 is sent or aborted, this bit is set to 1 by hardware; When receiving the transmission request, this bit is cleared by hardware, and written to 1 and cleared by software. 0: Being transmitted 1: Transmission completed
9	TXSUSFLG1	RC_W1	Mailbox 1 Transmission Success Flag When mailbox 1 attempts to transmit successfully, this bit is set to 1 by hardware; and written to 1 and cleared by software. 0: Last transmission attempt failed 1: Last transmission attempt succeeded
10	ARBLSTFLG1	RC_W1	Mailbox 1 Arbitration Lost Flag When the mailbox 1 loses arbitration, this bit is set to 1 by hardware; and written to 1 and cleared by software. 0: Meaningless 1: Lost

Field	Name	R/W	Description			
11	TXERRFLG1	RC_W1	Mailbox 1 Transmission Error Flag When mailbox 1 fails to transmit, this bit is set to 1 by hardware; and written to 1 and cleared by software. 0: Meaningless 1: Failed to transmit			
14:12	Reserved					
15	ABREQFLG1	R/S	Mailbox 1 Abort Request Flag If there is no message waiting for transmitting in mailbox 1, this bit is ineffective. 0: The transmitting message of mailbox 1 is cleared, and this bit is cleared by hardware 1: Set this bit to 1 to abort the transmission request of mailbox 1			
16	REQCFLG2	RC_W1	Mailbox 2 Request Completed Flag When the last transmission or abortion request of the mailbox 2 is completed, this bit is set to 1 by hardware; when receiving the transmission request, this bit is cleared by hardware; it is written to 1 or cleared by software. 0: Being transmitted 1: Transmission completed			
17	TXSUSFLG2	RC_W1	Mailbox 2 Transmission Success Flag When mailbox 2 attempts to transmit successfully, this bit is set to 1 by hardware; and written to 1 and cleared by software. 0: Last transmission attempt failed 1: Last transmission attempt succeeded			
18	ARBLSTFLG2	RC_W1	Mailbox 2 Arbitration Lost Flag When the mailbox 2 loses arbitration, this bit is set to 1 by hardware; and written to 1 and cleared by software. 0: Meaningless 1: Lost			
19	TXERRFLG2	RC_W1	Mailbox 2 Transmission Error Flag When mailbox 2 fails to transmit, this bit is set to 1 by hardware; and written to 1 and cleared by software. 0: Meaningless 1: Failed to transmit			
22:20			Reserved			
23	ABREQFLG2	R/S	Mailbox 2 Abort Request Flag If there is no message waiting for transmitting in mailbox 2, this bit is ineffective. 0: The transmitting message of mailbox 2 is cleared, and this bit is cleared by hardware 1: Set this bit to 1 to abort the transmission request of mailbox 2			
25:24	EMNUM[1:0]	R	Empty Mailbox Number This bit is applicable when there is empty mailbox. When all the Transmiting mailboxes are empty, it means the number of the transmiting mailbox with the lowest priority; when the mailbox is not empty but not all empty, it means the number of next mailbox to be sent.			

Field	Name	R/W	Description
26	TXMEFLG0	R	Transmit Mailbox 0 Empty Flag When the Transmiting mailbox 0 is empty, this bit is set to 1 by hardware. 0: There is message to be sent in mailbox 0 1: There is no message to be sent in mailbox 0
27	TXMEFLG1	R	Transmit Mailbox 1 Empty Flag When the Transmiting mailbox 1 is empty, this bit is set to 1 by hardware. 0: There is message to be sent in mailbox 1 1: There is no message to be sent in mailbox 1
28	TXMEFLG2	R	Transmit Mailbox 2 Empty Flag When the transmiting mailbox 2 is empty, this bit is set to 1 by hardware. 0: There is message to be sent in mailbox 2 1: There is no message to be sent in mailbox 2
29	LOWESTP0	R	The Lowest Transmission Priority Flag For Mailbox 0 0: Meaningless 1: The priority of mailbox 0 is the lowest among those mailboxes waiting to transmit messages Note: If there is only one mailbox waiting, LOWESTP[2:0] is cleared.
30	LOWESTP1	R	The Lowest Transmission Priority Flag For Mailbox 1 0: Meaningless 1: The priority of mailbox 1 is the lowest among those mailboxes waiting to transmit messages
31	LOWESTP2	R	The Lowest Transmission Priority Flag For Mailbox 2 0: Meaningless 1: The priority of mailbox 2 is the lowest among those mailboxes waiting to transmit messages

25.6.1.4 CAN receive FIFO 0 register (CAN_RXF0)

Offset address: 0x0C Reset value: 0x00

Field	Name	R/W	Description			
			The number of Message in receive FIFO0			
1:0	FMNUM0[1:0]	R	These bits are used to reflect the number of messages stored in current receive FIFO0. Every time a new message is received, add 1 to FMNUM0 bit; every time the mailbox message is released and outputted, subtract 1 from FMNUM0 bit.			
2	Reserved					
3	FFULLFLG0	RC_W1	Receive FIFO0 Full Flag When there are three messages in FIFO0, it means the FIFO0 has been full; this bit is set to 1 by hardware and written to 1 and cleared by software. 0: Not full 1: Full			

Field	Name	R/W	Description	
4	FOVRFLG0	RC_W1	Receive FIFO 0 Overrun Flag When there are three messages in FIFO0 and then a new message is received, it means the FIFO0 overrun; this bit is set to 1 by hardware and written to 1 and cleared by software. 0: No overrun 1: Overrun is generated	
5	RFOM0	Release Receive FIFO0 Output Mailbox to Receive Massage This bit is set to 1 by hardware and cleared by software. If there is no message in FIFO, this bit is invalid. When FIFO contains more than two messages, the output mailbox must be first released to acess the second message. 0: Meaningless 1: Release the output mailbox of receive FIFO0		
31:6	Reserved			

25.6.1.5 CAN receive FIFO 1 register (CAN_RXF1)

Offset address: 0x10 Reset value: 0x00

	Neset value. 6x00					
Field	Name	R/W	Description			
1:0	FMNUM1[1:0]	R	The number of Message in receive FIFO1 These bits are used to reflect the number of messages stored in current receive FIFO1. Every time a new message is received, add 1 to FMNUM1 bit; every time the mailbox message is released and outputted, subtract 1 from FMNUM1 bit.			
2			Reserved			
3	FFULLFLG1	RC_W1	Receive FIFO0 Full Flag When there are three messages in FIFO1, it means the FIFO1 has been full; this bit is set to 1 by hardware and written to 1 and cleared by software. 0: Not full 1: Full			
4	FOVRFLG1	RC_W1	Receive FIFO1 Overrun Flag When there are three messages in FIFO1 and then a new message is received, it means the FIFO1 overrun; this bit is set to 1 by hardware and written to 1 and cleared by software. 0: No overrun 1: Overrun is generated			
5	RFOM1	R/S	Release Receive FIFO1 Output Mailbox to Receive Massage This bit is set to 1 by hardware and cleared by software. If there is no message in FIFO, this bit is invalid. When FIFO contains more than two messges, the output mailbox must be first released to acess the second message. 0: Meaningless 1: Release the output mailbox of receive FIFO1			
31:6	Reserved					

25.6.1.6 CAN interrupt enable register (CAN_INTEN)

Offset address: 0x14
Reset value: 0x0000 0000

Field Name R/W Description Transmit Mailbox Empty Interrupt Enable When REQCFLGx bit is set to 1, it means transmission h completed, and the transmiting mailbox is empty; if this bit is an interrupt will be generated. 0: No interrupt 1: Interrupt generated					
0 TXMEIEN R/W When REQCFLGx bit is set to 1, it means transmission h completed, and the transmiting mailbox is empty; if this bit is an interrupt will be generated. 0: No interrupt					
When FMNUM0[1:0] bit of FIFO 0 is not zero, it means	Interrupt Enable When The Number Of FIFO0 Message Is Not 0 When FMNUM0[1:0] bit of FIFO 0 is not zero, it means that the number of messages in FIFO0 is not zero; if this bit is set to 1, an interrupt will be generated. 0: No interrupt				
FIFO0 Full Interrupt Enable When the FFULLFLG0 bit of FIFO0 is set to 1, it means message of FIFO0 is full; if this bit is set to 1, an interrupt generated. 0: No interrupt 1: Interrupt generated					
FIFO0 Overrun Interrupt Enable When the FOVRFLG0 bit of FIFO0 is set to 1, it means that the has been overloaded; if this bit is set to 1, an interrupt generated. 0: No interrupt 1: Interrupt generated					
Interrupt Enable when the number of FIFO1 Message is not When FMNUM1[1:0] bit of FIFO 1 is not zero, it means number of messages in FIFO1 is not zero; if this bit is set interrupt will be generated. 0: No interrupt 1: Interrupt generated	that the				
FIFO1 Full Interrupt Enable When the FFULLFLG1 bit of FIFO1 is set to 1, it means message of FIFO1 is full; if this bit is set to 1, an interrupt generated. 0: No interrupt 1: Interrupt generated					
FIFO1 Overrun Interrupt Enable When the FOVRFLG1 bit of FIFO1 is set to 1, it means that the has been overloaded; if this bit is set to 1, an interrupt generated. 0: No interrupt					
1: Interrupt generated	Reserved				

Field	Name	R/W	Description	
8	ERRWIEN	R/W	Error Warning Interrupt Enable When ERRWFLG bit is set to 1, an error warning will occur; if this bit is set to 1, ERRIFLG shall be set and a warning error interrupt will be generated. 0: ERRIFLG bit is not set 1: ERRIFLG bit is set to 1	
9	ERRPIEN	R/W	Error Passive Interrupt Enable When ERRPFLG bit is set to 1, a pssive error will occur; if this bit is set to 1, ERRIFLG shall be set and a passive error interrupt will be generated. 0: ERRIFLG bit is not set 1: ERRIFLG bit is set to 1	
10	BOFFIEN	R/W	Bus-Off Interrupt Enable When BOFFFLG bit is set to 1, bus-line will occur; if this bit is set to 1, ERRIFLG shall be set and an bus-line error interrupt will be generated. 0: ERRIFLG bit is not set 1: ERRIFLG bit is set to 1	
11	LECIEN	R/W	Last Error Code Interrupt Enable When an error is detected and the hardware sets LERRC [2:0], the last error code is recorded. If this bit set to 1, the ERRIFLG is set to generate the last error interrupt. 0: ERRIFLG bit is not set 1: ERRIFLG bit is set to 1	
14:12	Reserved			
15	ERRIEN	R/W	Error interrupt Enable When the corresponding error state register is set to 1, if this bit is set to 1, an error interrupt will be generated. 0: No interrupt 1: Interrupt generated	
16	WUPIEN	R/W	Wakeup Interrupt Enable When WUPINT bit is set to 1, if this bit is set to 1, a wake-up interrupt	
17	SLEEPIEN	Sleep Interrupt Enable When SLEEPIFLG bit is set to 1, if this bit is set to 1, a sleep interrup will be generated. 0: No interrupt 1: Interrupt generated		
31:18			Reserved	

25.6.1.7 CAN error state register (CAN_ERRSTS)

Offset address: 0x18 Reset value: 0x0000 0000

Field	Name	R/W	Description		
0	ERRWFLG	R	Error Warning Occur Flag When the value of the receiving error counter or transmitting error counter ≥96, this bit is set to 1 by hardware. 0: No error warning 1: Error warning occurred		
1	ERRPFLG	R	Error Passive Occur Flag When the value of the receiving error counter or transmitting error counter ≥127, this bit is set to 1 by hardware. 0: No passive error 1: Passive error occurred		
2	BOFLG	R	Enter Bus-Off Flag When the value of the transmitting error counter TXERRCNT is greater than 255, CAN will enter the bus-line state and this bit is set to 1 by hardware. 0: CAN not in bus-line state 1: CAN in bus-line state		
3	Reserved				
6:4	LERRC	Record Last Error Code When the error on CAN bus is detected, it is set by hardward according to the error category; when the message is sent or received correctly, this bit is cleared by hardware. 000: No error 001: Bit stuffing error 010: Form (Form) error 011: Acknowledgment (ACK) error 100: Recessive bit error 101: Dominant bit error 110: CRC error 111: Set by software			
15:7			Reserved		
23:16	TXERRCNT	R	R Least Significant Byte Of The 9-Bit Transmit Error Counter The counter is implemented according to the transmission part of fault definition mechanism of CAN protocol.		
31:24	RXERRCNT	R	Receive Error Counter The receiving error counter is implemented according to the receiving part of fault definition mechanism of CAN protocol. When receiving error occurs, according to the condition of error, add 1 or 8 to the counter, and subtract 1 after receiving successfully. When the value of the counter is greater than 127, set the counter value to 120.		

$25.6.1.8\,\textbf{CAN bit timing register (CAN_BITTIM)}$

Offset address: 0x1C Reset value: 0x0123 0000

Field	Name	R/W	Description
0:0 PDDS	BDD6C	R/W	Baud Rate Prescaler Factor Setup
9.0	9:0 BRPSC	FX/VV	Time cell tq =(BRPSC+1)× tPCLK

Field	Name	R/W	N Description		
15:10	Reserved				
19:16	TIMSEG1	R/W	Set the time segment 1 (Time Segment 1 Setup) Time occupied by time period 1 tBS1 = tCAN x (TIMSEG1+1).		
22:20	TIMSEG2	R/W	Set the time segment 2 (Time Segment 2 Setup) Time occupied by time period 2 tBS2 = tCAN x (TIMSEG2+1).		
23	Reserved				
25:24	RSYNJW	R/W Resynchronization Jump Width Time that CAN hardware can extend or shorten in this bit tRJW=tCAN x (RSYNJW+1).			
29:26	Reserved				
30	LBKMEN	Loop Back Mode Enable 0: Disable 1: Enable			
31	SILMEN R/W		Silent Mode Enable 0: Normal state 1: Silent mode		

Note: When CAN is in initialization mode, this register can be accessed only by software

25.6.2 CAN mailbox register

This section describes the transmitting and receiving mailbox registers.

The transmitting and receiving mailboxes are almost the same except the following examples:

- FMIDX domain of CAN_RXDLENx register;
- The receiving mailbox is read-only;
- The transmiting mailbox is writable only when it is empty, and if the corresponding TXMEFLG bit of CAN_TXSTS register is 1, it means the transmitting mailbox is empty.

There are three transmiting mailboxes and two receiving mailboxes in total. Each receiving mailbox is FIFO with three levels of depth, and can only access the message that is received first in FIFO.

25.6.2.1 Transmiting mailbox identifier register (CAN_TXMIDx) (x=0..2)

Offset address: 0x180, 0x190, 0x1A0

Reset value: 0xXXXX XXXX, X=undefined bit (except Bit 0, TXMREQ=0 after reset)

Field	Name	R/W	Description
0	TXMREQ	R/W	Transmit Mailbox Data Request 0: When the data in the mailbox is sent, the mailbox is empty and this bit is cleared by hardware 1: Software writes 1, to enable request to transmit mailbox data
1	TXRFREQ	R/W	Transmit Remote Frame Request 0: Data frame 1: Remote frame

Field	Name	R/W	Description
2	IDTYPESEL	R/W	Identifier Type Select 0: Stanard identifier 1: Extended identifier
20:3	EXTID[17:0]	R/W	Extended Identifier Setup Low byte of extended identity label.
31:21	STDID[10:0]/EXTID[28:18]	R/W	Standard Identifier Or Extended Identifier According to the content of IDTYPESEL bit, these bits are standard identifier STDID [10:0] and high byte EXTID[28:18] of extended identifier.

Note: 1. When its mailbox is in the state of waiting for transmission, this register is write-protection

2. This register realizes transmission request control function (No. 0 bit) - the reset value is 0

25.6.2.2 Transmiting mailbox data length register (CAN_TXDLENx) (x=0..2)

When the mailbox is not idle, all bits of this register are write-protected.

Offset address: 0x184, 0x194, 0x1A4

Reset value: 0xXXXX XXXX

Field	Name	R/W	Description			
3:0	DLCODE	R/W	Transmit Data Length Code Setup			
31:4		Reserved				

25.6.2.3 Transmiting mailbox low-byte data register (CAN_TXMDLx) (x=0..2)

When the mailbox is not idle, all bits of this register are write-protected, and the message contains 0 to 7-byte data and starts from the byte 0.

Offset address: 0x188, 0x198, 0x1A8

Reset value: 0xXXXX XXXX

Field	Name	R/W	Description	
7:0	DATABYTE0	R/W	Data Byte 0 of the Message	
15:8	DATABYTE1	R/W	Data Byte 1 of the Message	
23:16	DATABYTE2	R/W	Data Byte 2 of the Message	
31:24	DATABYTE3	R/W	Data Byte 3 of the Message	

25.6.2.4 Transmiting mailbox high-byte data register (CAN_TXMDHx) (x=0..2)

When the mailbox is not idle, all bits of this register are write-protected.

Offset address: 0x18C, 0x19C, 0x1AC

Reset value: 0xXXXX XXXX, X=undefined bit

Field	Name	R/W	Description	
7:0	DATABYTE4	R/W	Data Byte 4 of the Message	
15:8	DATABYTE5	R/W	Data Byte 5 of the Message	
23:16	DATABYTE6	R/W	Data Byte 6 of the Message	
31:24	DATABYTE7	R/W	Data Byte 7 of the Message	

25.6.2.5 Receive FIFO mailbox identifier register (CAN_RXMIDx) (x=0..1)

Offset address: 0x1B0, 0x1C0

Reset value: 0xXXXX XXXX, X=undefined bit

Field	Name	R/W	Description
0			Reserved
1	RFTXREQ	R	Remote Frame Transmission Request 0: Data frame 1: Remote frame
2	IDTYPESEL	R	Identifier Type Select 0: Stanard identifier 1: Extended identifier
20:3	EXTID[17:0]	R	Extended Identifier Setup Low byte of extended identifier.
31:21	STDID[10:0]/EXTID[28:18]	R	Standard Identifier Or Extended Identifier According to the content of IDTYPESEL bit, these bits are standard identifier STDI [10:0] and high byte EXTID [28:18] of extended identifier.

Note: All receiving mailbox registers are read-only.

25.6.2.6 Receive FIFO mailbox data length register (CAN_RXDLENx) (x=0..1)

Offset address: 0x1B4, 0x1C4 Reset value: 0xXXXXX XXXX

Field	Name	R/W	Description			
3:0	DLCODE	R	Receive Data Length Code Setup This bit represents the data length in the frame; for remote frame, DLCODE is constantly 0.			
7:4	Reserved					
15:8	FMIDX	FMIDX R Filter Match Index Setup				
31:16	Reserved					

Note: All receiving mailbox registers are read-only.

25.6.2.7 Receive FIFO mailbox low-byte data register (CAN_RXMDLx) (x=0..1)

Offset address: 0x1B8, 0x1C8; the message contains 0 to 8-byte data, which starts from the byte 0.

Reset value: 0xXXXXX XXXX

Field	Name	R/W	Description
7:0	DATABYTE0	R	Data Byte 0 of the Message
15:8	DATABYTE1	R	Data Byte 1 of the Message
23:16	DATABYTE2	R	Data Byte 2 of the Message
31:24	DATABYTE3	R	Data Byte 3 of the Message

Note: All receiving mailbox registers are read-only.

25.6.2.8 Receive FIFO mailbox high-byte data register (CAN_RXMDHx) (x=0..1)

Offset address: 0x1BC, 0x1CC

Reset value: 0xXXXX XXXX, X=undefined bit

Field	Name	R/W	Description
7:0	DATABYTE4	R	Data Byte 4 of the Message
15:8	DATABYTE5	R	Data Byte 5 of the Message
23:16	DATABYTE6	R	Data byte 6 of the Message
31:24	DATABYTE7	R	Data byte 7 of the Message

Note: All receiving mailbox registers are read-only.

25.6.3 CAN filter register

25.6.3.1 CAN filter control register (CAN_FCTRL)

Offset address: 0x200 Reset value: 0x2A1C 0E01

Field	Name	R/W	Description	
0	FINITEN	R/W	Filter Init Mode Enable 0: Normal mode 1: Initialization mode	
7:1	Reserved			
13:8	CAN2SB	R/W	CAN2 Start Bank They define the start bank for the CAN2 interface (Slave) in the range 0 to 27. Note: When CAN2SB[5:0] = 28d, all the filters to CAN1 can be used. When CAN2SB[5:0] is set to 0, all the filters to CAN2 can be used.	
31:14	Reserved			

Note: The non-reserved bit of this register is completely controlled by software.

25.6.3.2 CAN filter mode configuration register (CAN_FMCFG)

Offset addres: 0x204 Reset value: 0x0000 0000

Field	Name	R/W	Description	
27:0	FMCFGx	R/W	Filter Mode Configure The value of x is within 0-27. 0: Identifier mask bit mode 1: Identifier list mode	
31:28	Reserved			

Note: Only when CAN_FCTRL (FINITEN =1) is set to make the filter in initialization mode, can this register be written.

25.6.3.3 CAN filter bit width configuration register (CAN_FSCFG)

Offset address: 0x20C Reset value: 0x0000 0000

Field	Name	R/W	Description		
27:0	FSCFGx	R/W	Filterx Scale Configure The value of x is within 0-27. 0: Two 16 bits 1: Single 32 bits		
31:28		Reserved			

Note: Only when CAN_FCTRL (FINITEN =1) is set to make the filter in initialization mode, can this register be written.

25.6.3.4 CAN filter FIFO association register (CAN_FFASS)

Offset address: 0x214 Reset value: 0x0000 0000

Field	Name	R/W	Description
0	FFASS0	R/W	Configure Filter0 Associated with FIFO 0: The filter is associted with FIFO0 1: The filter is associted with FIFO1
1	FFASS1	R/W	Configure Filter1 Associated with FIFO Refer to FFASS0 for specific description.
2	FFASS2	R/W	Configure Filter2 Associated with FIFO Refer to FFASS0 for specific description.
3	FFASS3	R/W	Configure Filter3 Associated with FIFO Refer to FFASS0 for specific description.
4	FFASS4	R/W	Configure Filter4 Associated with FIFO Refer to FFASS0 for specific description.
5	FFASS5	R/W	Configure Filter5 Associated with FIFO Refer to FFASS0 for specific description.
6	FFASS6	R/W	Configure Filter6 Associated with FIFO Refer to FFASS0 for specific description.
7	FFASS7	R/W	Configure Filter7 Associated with FIFO Refer to FFASS0 for specific description.
8	FFASS8	R/W	Configure the filter 8 associated with FIFO (Configure Filter8 Associated with FIFO) Refer to FFASS0 for specific description.
9	FFASS9	R/W	Configure Filter9 Associated with FIFO Refer to FFASS0 for specific description.
10	FFASS10	R/W	Configure Filter10 Associated with FIFO Refer to FFASS0 for specific description.
11	FFASS11	R/W	Configure Filter11 Associated with FIFO Refer to FFASS0 for specific description.
12	FFASS12	R/W	Configure Filter12 Associated with FIFO Refer to FFASS0 for specific description.
13	FFASS13	R/W	Configure Filter13 Associated with FIFO Refer to FFASS0 for specific description.
14	FFASS14	R/W	Configure Filter14 Associated with FIFO Refer to FFASS0 for specific description.

	l	- na-	
Field	Name	R/W	Description
15	FFASS15	R/W	Configure Filter15 Associated with FIFO
10	117.0010	10,00	Refer to FFASS0 for specific description.
16	FFASS16	R/W	Configure Filter16 Associated with FIFO
10	FFASSIO	IT/VV	Refer to FFASS0 for specific description.
17	FFASS17	R/W	Configure Filter17 Associated with FIFO
17	FFASSI	FK/VV	Refer to FFASS0 for specific description.
40	EEA CC40	R/W	Configure Filter18 Associated with FIFO
18	FFASS18	K/VV	Refer to FFASS0 for specific description.
40	FF40040	D 44/	Configure Filter19 Associated with FIFO
19	FFASS19	R/W	Refer to FFASS0 for specific description.
00		D 44/	Configure Filter20 Associated with FIFO
20	FFASS20	R/W	Refer to FFASS0 for specific description.
0.4	EE4.0004	D 44/	Configure Filter21 Associated with FIFO
21	FFASS21	FASS21 R/W	Refer to FFASS0 for specific description.
22	FFACCOO	R/W	Configure Filter22 Associated with FIFO
22	FFASS22	K/VV	Refer to FFASS0 for specific description.
	FFACCOO	R/W	Configure Filter23 Associated with FIFO
23	FFASS23	K/VV	Refer to FFASS0 for specific description.
0.4	EEACC04	R/W	Configure Filter24 Associated with FIFO
24	FFASS24	K/VV	Refer to FFASS0 for specific description.
25	FFASS25	R/W	Configure Filter25 Associated with FIFO
25	FFASS23	IK/VV	Refer to FFASS0 for specific description.
26	FFACCOC	DAA	Configure Filter26 Associated with FIFO
26	FFASS26	R/W	Refer to FFASS0 for specific description.
27	EEA CCOZ	R/W	Configure Filter27 Associated with FIFO
	FFASS27	FK/VV	Refer to FFASS0 for specific description.
31:28			Reserved

Note: Only when CAN_FCTRL (FINITEN =1) is set to make the filter in initialization mode, can this register be written.

25.6.3.5 CAN filter activation register (CAN_FACT)

Offset address: 0x21C Reset value: 0x0000 0000

Field	Name	R/W	Description
			Filter0 Active
0	FACT0	R/W	0: Disable
			1: Active
1	4 54074	R/W	Filter1 Active
'	FACT1		Refer to FACT0 for specific description.
2	2 FACT2	FACT2 R/W	Filter2 Active
		CIZ R/W	Refer to FACT0 for specific description.
3	FACT2	54.070 544	Filte3 Active
	FAC13	FACT3 R/W	Refer to FACT0 for specific description.

Field	Name	R/W	Description
			Filter4 Active
4	FACT4	R/W	Refer to FACT0 for specific description.
_		D // /	Filter5 Active
5	FACT5	R/W	Refer to FACT0 for specific description.
6	FACT6	R/W	Filte6 Active
0	FACTO	IX/VV	Refer to FACT0 for specific description.
7	FACT7	R/W	Filter7 Active
	.,		Refer to FACT0 for specific description.
8	FACT8	R/W	Filter8 Active
			Refer to FACT0 for specific description.
9	FACT9	R/W	Filter9 Active
			Refer to FACT0 for specific description.
10	FACT10	R/W	Filter10 Active Refer to FACT0 for specific description.
			Filter11 Active
11	FACT11	R/W	Refer to FACT0 for specific description.
			Filter12 Active)
12	FACT12	R/W	Refer to FACT0 for specific description.
			Filter13 Active
13	FACT13	R/W	Refer to FACT0 for specific description.
4.4	E4 0 E 4 4	D 44/	Filter14 Active
14	FACT14	R/W	Refer to FACT0 for specific description.
15	EA OT45	R/W	Filter15 Active
15	FACT15	FK/VV	Refer to FACT0 for specific description.
16	FACT16	R/W	Filter16 Active
	17.0110	1000	Refer to FACT0 for specific description.
17	FACT17	R/W	Filter17 Active
			Refer to FACT0 for specific description.
18	FACT18	R/W	Filter18 Active
			Refer to FACT0 for specific description.
19	FACT19	R/W	Filter19 Active Refer to FACT0 for specific description.
			Filter20 Active
20	FACT20	R/W	Refer to FACT0 for specific description.
			Filter21 Active
21	FACT21	R/W	Refer to FACT0 for specific description.
			Filter22 Active
22	FACT22	R/W	Refer to FACT0 for specific description.
00	23 FACT23	D^4/	Filter23 Active
		R/W	Refer to FACT0 for specific description.
24	FACT24	R/W	Filter24 Active
	170124	17/1/	Refer to FACT0 for specific description.
25	FACT25	R/W	Filter25 Active
			Refer to FACT0 for specific description.

Field	Name	R/W	Description
26	FACT26	R/W	Filter26 Active Refer to FACT0 for specific description.
27	FACT27	R/W	Filter27 Active Refer to FACT0 for specific description.
31:28	Reserved		

25.6.3.6 Register x of CAN filter group i (CAN_FiBANKx) (i=0...27; x=1...2)

Offset address: 0x240..0x31C

0x24C

The following offset addresses can be obtained in the same way

Reset value: 0xXXXX XXXX

Field	Name	R/W	Description
31:0	FBIT[31:0]	R/W	Filter Bits Setup Identifier list mode: 0: FBITx bit is dominant bit 1: FBITx bit is recessive bit Identifier mask bit mode: 0: FBITx is not used for comparison 1: FBITx must match Note: The value of x is 0~31, indicating the bit number of FBIT.

Note: There are 28 sets of filters in product: i=0..27. Each set of filters consists of two 32-bit registers and CAN_FiBANK [2:1]. The corresponding filter registers can be modified only when the corresponding FACTx bit of CAN_FACT register is cleared or the FINITEN bit of CAN_FCTRL register is 1.

26 Secure digital input/output interface (SDIO)

26.1 Full name and abbreviation description of terms

Table 111 Full name and abbreviation description of terms

Full name in English	English abbreviation
First Input First Output	FIFO
Command Path State Machine	CPSM
Data Path State Machine	DPSM

26.2 Introduction

The secure digital input/output interface can connect SD card, SD I/O card, multi-media card (MMC) and CE-ATA card master interfaces, and provide data transmission between APB2 system bus and SD memory card, SD I/O card, MMC and CE-ATA device.

26.3 Main characteristics

- (1) SD card: Compatible with SD memory card specification version 2.0
- (2) SD I/O card: Compatible with SD I/O card specification version 2.0: support two different bus modes: 1 bit (default) and four bits.
- (3) MMC: Compatible with multimedia card system specification 4.2 and previous versions. Three different data bus modes are supported:1 bit (default), 4 bits and 8 bits.
- (4) CE-ATA: Compatible with CE-ATA digital protocol version 1.1.
- (5) The data transmission rate in 8-bit bus mode is up to 48MHz
- (6) Interrupt and DMA request
- (7) Data and command output enable signal, used for controlling bidirectional driver.

Note: SDIO of current version only supports one SD/SD IO/MMC 4.2 card at the same time, however, it supports multiple MMC4.1 or cards of previous version.

26.4 Functional description

SDIO structure mainly contains two parts:

SDIO adapter: Realize the related functions of MMC/SD/SD I/O cards, and consist of control unit, data unit and command unit. The control unit manages

the clock signal, the data unit manages the data transmission, and the command unit manages the command transmission.

APB2 bus interface: Operate the registers in SDIO adapter, used for FIFO unit for data transmission, generate an interrupt and DMA request signal.

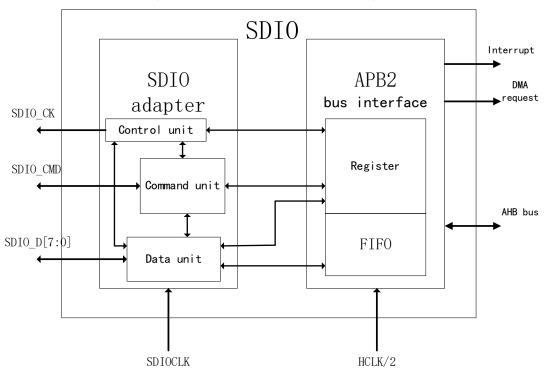


Figure 114 SDIO Structure Block Diagram

Table 112 SDIO Pin Definition

Pin	Direction	Description
SDIO_CK	Output	MMC/SD/SD I/O card clock, clock line from master to card
SDIO_CMD	Bilateral	MMC/SD/SD I/O card command, bidirectional command signal
SDIO_D[7:0]	Bilateral	MMC/SD/SD I/O card data, bidirectional data bus

26.4.1 SDIO bus topology

After power-on reset, the master must initialize the device through a special message-based bus protocol.

Each message is represented by one of the following parts:

- Command: Command is a token to start an operation, from the master to the card, and the command is transmitted to the CMD line serially.
- Response: From the card to the master, as a response to the previously received command, the response is transmitted onto the CMD serially.

 Data: It can be transmitted from the master to the card or from the card to the master. Transmit through data cable. The number of data cables for data transmission can be 1 (D0), 4 (D0-D3), or 8 (D0-D7).

The basic operation on the multimedia card/SD/SD I/O bus is command/response structure.

The data transmitted on SD/SD I/O memory card is transmitted in the form of data block; the data transmitted on MMC is transmitted in the form of data block or data stream; the data transmitted on CE-ATA device is also transmitted in the form of data block.

Figure 115 SDIO "No-response" and "No-data" Operation

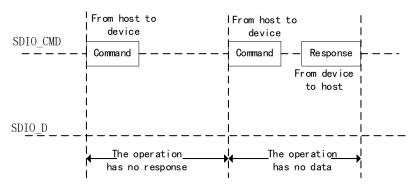


Figure 116 SDIO (Multi-) Data Block Read Operation

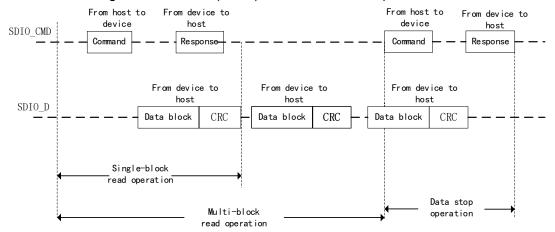
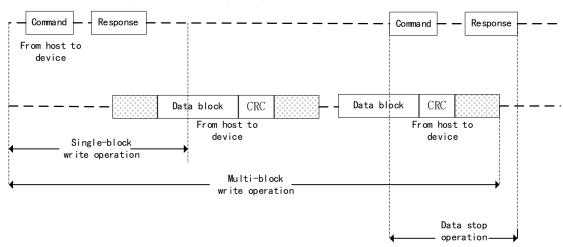



Figure 117 SDIO (Multi-) Data Block Write Operation

: Busy

Figure 118 SDIO Data Flow Read Operation

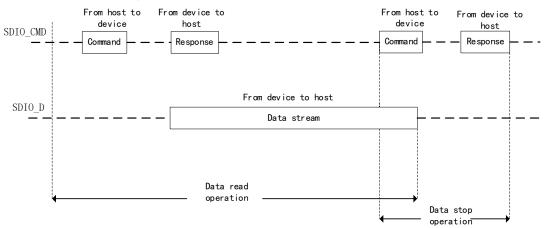
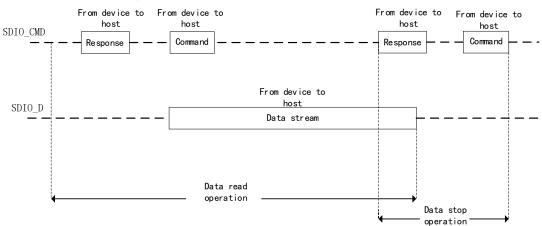



Figure 119 SDIO Data Flow Write Operation

26.4.2 SDIO Adapter

SDIO generates the following signals:

- SDIO_CLK: Clock provided by SDIO controller to the card. Each clock cycle directly transmits 1-bit command or data on the command line (SDIO_ CMD) and all data lines (SDIO)_ D). SDIO_ CLK frequency is within 0-20MHz for MMC card V3.31, within 0-48MHz for MMC card V4.2, and within 0-25MHz for SD or SD I/O card.
- SDIO_CMD: The signal is a bidirectional command channel, which is used for card initialization and command transmission. Command is sent from SDIO controller to the card, and the response is sent from the card to the master. There are two operation modes of CMD signal: the open-drain mode of initialization (used for MMC card V3.31 and previous versions) and the push-pull mode of command transmitting (SD, SD I/O, and MMC card V4.2 initialization are also push-pull mode).
- SDIO_D[7:0]: The signal lines are bidirectional data channels and in push-pull mode. By default, after power-on or reset, only D0 is used for data transmission. SDIO adapter can be configured with wider data bus for data transmission, using D0-D3 and D0-D7 (only on MMC V4.2).

Control unit

The control unit includes power management and clock management functions.

Command unit

The command unit realizes transmitting commands to the card and receiving commands from the card, and the data transmission is controlled by the command state machine (CPSM).

Command state machine

```
CS\_Idle \ gets \ ready \ to \ transmit \ the \ command \ after \\ reset \\ 1. \ CPSM \ is \ enabled \ and \ WAITDEND \ is \ enabled \\ 2. \ CPSM \ is \ enabled \ and \ WAITDEND \ is \ disabled \\ 3. \ CPSM \ is \ turned \ off \\ 7. \ CS\_Send \\ 3. \ CPSM \ is \ turned \ off \\ 8. \ CPSM \ is \ turned \ off \\ 8. \ CPSM \ is \ turned \ off \\ 8. \ CPSM \ is \ turned \ off \\ 8. \ CPSM \ is \ turned \ off \\ 8. \ CPSM \ is \ turned \ off \\ 8. \ CPSM \ is \ turned \ off \\ 8. \ CPSM \ is \ turned \ off \\ 8. \ CPSM \ is \ turned \ off \\ 8. \ CPSM \ is \ turned \ off \\ 8. \ CPSM \ is \ turned \ off \\ 8. \ CPSM \ is \ turned \ off \\ 8. \ CPSM \ is \ turned \ off \\ 8. \ CPSM \ is \ turned \ off \\ 8. \ CPSM \ is \ turned \ off \\ 8. \ CPSM \ is \ turned \ off \\ 8. \ CPSM \ is \ turned \ off \\ 8. \ CPSM \ is \ turned \ off \\ 8. \ CPSM \ in \ in \ time \ interval \ between \ two \ host \ commands \\ 8. \ RCPSM \ in \ in \ time \ interval \ between \ host \ command \ and \ card \ response
```

CS_Pend waits for the end of data transmission

1. Data transmission is completed → CS_Send

2. CPSM is turned off → CS_Idle

CS_Send transmits commands 1. There is response after the command is transmitted → CS_Wait 2. There is no response after the command is transmitted → CS_Idle 3. CPSM is turned off → CS_Idle

```
CS_Wait waits for response start bit

1. Received the response (the start bit is detected)

CS_Wait

2. Receiving response times out 

CS_Idle

3. CPSM is turned off 

CS_Idle

Note: The command timeout period is fixed as 64 SDIO_CLK clock cycles
```

```
CS_Receive receives response and detects CRC

1. Receive the response in CE-ATA mode, disable CE-ATA interrupt and wait for enabling of CE-ATA device command completion signal → CS_Waitcompl

2. Receive the response in CE-ATA mode, disable CE-ATA interrupt and wait for disabling of CE-ATA device command completion signal → CS_Pend

3. CPSM is turned off → CS_Idle

4. Receive the response → CS_Idle

5. The command CRC detection fails → CS_Idle
```

```
CS_Waitcompl waits for CE-ATA device command completion signal

1. Receive CE-ATA command completion signal → CS_Idle

2. CPSM is turned off → CS_Idle

3. The command CRC detection fails → CS_Idle
```

Data unit

The data unit realizes the data transmission between the master and the card. When the data width is 8 bits, SDIO_D[7:0] signal line is used for data transmission. When the data width is 4 bits, SDIO_D[3:0] signal line is used for data transmission. When the data width is 1 bit, SDIO_D[0] signal line is used for data transmission.

Data transmission stream is controlled by data state machine (DPSM).

Data state machine

$\ensuremath{\mathsf{DS}}\xspace_{-1} \ensuremath{\mathsf{Idle}}\xspace$ data unit is idle, waiting for transmitting and receiving data

- 1. DPSM is enabled and the data are transmitted from host to card \rightarrow DS_WaitS
- 2. DPSM is enabled and the data are transmitted from card to host \rightarrow DS_WaitR
- 3. DPSM is enabled, read wait has started and SDIO mode is enabled \rightarrow DS_Readwait

DS_WsitS waits that the empty data FIFO flag is invalid or data transmission ends

- 1. Data transmission ends \rightarrow DS Idle
- 2. DPSM is turned off → DS Idle
- 3. The empty data FIFO flag is invalid \rightarrow DS_Send

DS Send transmits data to the card

- 1. The data have been transmitted \rightarrow DS_Busy
- 2. DPSM is turned off \rightarrow DS_Idle
- 3. Data FIFO underrun error is transmitted \rightarrow DS_Idle
- 4. Internal CRC error \rightarrow DS_Idle

DS_Busy waits for CRC state flag

- 1. The data have been transmitted \rightarrow DS_Busy
- 2. DPSM is turned off \rightarrow DS Idle
- 3. Data FIFO underrun error is transmitted → DS_Idle
- 4. Internal CRC error → DS_Idle

DS_WaitR waits for the start bit of received data

- 1. Data receiving ends \rightarrow DS_Idle
- 2. DPSM is turned off \rightarrow DS_Idle
- 3. Data timeout → DS_Idle
- 4. Receive the start bit before timeout → DS_Receive

$\ensuremath{\mathsf{DS_Receive}}$ receives the card data and writes them to data $\ensuremath{\mathsf{FIFO}}$

- 1. The data block has been received \rightarrow DS WaitR

- 4. The data have been received, read wait starts and SDI/O mode is enabled $\rightarrow \,\,$ DS Readwait
- 5. DPSM is turned off or CRC error occurs → DS_Idle

	DS_Readwait waits for "read wait stop"	comma	and
1. "I	dead wait stop" is enabled	→	DS_WaitR
2. DI	SM is turned off	→	DS_Id1e

26.4.3 APB2 interface

APB2 interface realizes access to SDIO register, data FIFO and generation of interrupt and DMA request. It includes data FIFO unit, register unit and interrupt/DMA request control logic.

SDIO interrupt

When at least one of the selected state flags is high, the interrupt logic will generate an interrupt request. Interrupt enable register enables the interrupt logic to generate corresponding interrupt.

Data FIFO

The data FIFO unit has a data buffer area for receive and transmit FIFO. FIFO includes a data buffer with 32-bit width for each word and with depth of 32 words. The transmit FIFO is used when data needs to be written to the card; the data to be transmitted is written to the transmit FIFO through APB2 bus, and the data unit in SDIO adapter reads data from the transmit FIFO and then transmits the data to the card. The receive FIFO is used to read data from the card, and then write the data to be transmitted to the receive FIFO.

Register unit

The register unit includes all system registers and generates signals for communication between the control card and the controller.

26.4.4 Card Function Description

26.4.4.1 Card register

The card internally defines the interface registers: OCR, CID, CSD, EXT_CSD, RCA, DSR and SCR. These registers can access only through corresponding commands. OCR, CID, CSD and SCR registers include the specific information of the card. RCA and DSR registers are configuration registers for storing the actual configuration parameters. EXT_CSD register includes both the specific information of the card and the actual structure parameters.

OCR register: 32-bit operating condition register stores V_{DD} voltage description and memory mode indication (MMC) of the card. In addition, the register includes a state information bit. If the card power-on process has been completed, this state bit will be set. This register is slightly different between

MMC and SD card. The master can use CMD1 (MMC), ACMD41 (SD memory card), and CMD5 (SD I/O) to capture the content of this register.

CID register: The card identification register (CID) is 128-bit wide. It contains the card identification information used in the card identification phase. Each read/write (RW) card shall have a unique identification number.

CSD register: The specific card data register provides the content information in the access card. CSD defines data format, error correction type, maximum data access time, and data transmission speed.

Extended CSD register: Only MMC4.2 has this register. Extended CSD register defines the card attributes and selection mode. Its length is 512 bytes. At most 320 bytes are the attribute section, which defines the function of the card and cannot be modified by the master. At least 192 bytes are the mode section, which defines under which configuration the card works.

RCA register: The writable 16-bit relative card address register stores the card address, which is released by the card during card initialization. This address is used for communication between the addressing master and the card after the card identification process.

DSR register: 16-bit drive stage register, which can be used to improve bus performance in extended operating conditions (depending on bus length, transmission rate and other parameters).

SCR register: Only SD/SD I/O has this register.

26.4.4.2 Command

The command for the control card consists of four different types:

Table 113 Command Type

Command type	Meaning
Broadcast command (BC)	Transmit to all cards, but there is no response
Broadcast command (BC)	returned
Producet command with recognics (PCP)	Transmit to all cards and receive response from
Broadcast command with response (BCR)	all cards
Addressing (point-to-point) command (AC)	Transmit to addressing card, and there is no data
Addressing (point-to-point) command (AC)	transmission on SDIO_D line
Addressing (point-to-point) data transmission	Transmit to addressing card, and there is data
command (ADTC)	transmission on SDIO_D line

Command format

All command formats are 48-bit fixed code length, which requires 1.92us (25MHz), 0.96us (50MHz) and 0.92us (52MHz) transmission time.

Table 114 Command Format

Bit	47	46	[45:40]	[39:8]	[7:1]	0
Width	1	1	6	32	7	1
Numerical Value	0	1	-	-	-	1
Description Start Bit Tra		Transmission Bit	Command Index	Parameter	CRC7	End bit

SD I/O supports two types of response, both of which support CRC error detection.

- 48-bit short response
- 136-bit long response

Table 115 Short Response Format

Bit	47	46	[45:40]	[39:8]	[7:1]	0
Width	1	1	6	32	7	1
Numerical Value	0	0	-	-	-	1
Description	Start	Transmission	Command	Paramet	CRC7 or	End
Description	Bit	Bit	Index	er	(1111111)	bit

Table 116 Long Response Format

Bit	Bit 135		[133:128]	[127:1]	0
Width	1	1	6	127	1
Numerical Value	0	0	111111	-	1
Description Start Bit		Transmission Bit	Reserved	CID or CSD	End bit

Command description

Table 117 Basic Command

Command	Туре	Parameter	Response	Short	Description		
Index	туре	Farameter	format	name	Description		
CMDO	ha	[31:0]		GO_IDLE_	Reset all cards to the		
CMD0	bc	Stuffing bit	-	STATE	idle state.		
					In the idle state, request		
					the card to transmit the		
CMD1	bc	[31:0]OCR	R3	SEND_OP_ COND	response (including the		
CIVID I					content of the operating		
					condition register)		
					through the CMD line		
					Request any card to		
		[24:0]		ALL CEND	transmit CID data		
CMD2	bcr	[31:0]	R2	ALL_SEND	through the CMD line		
		Stuffing bit		_CID	(all cards connected to		
					the master will respond)		

Command			Response	Short	
Index	Type	Parameter	format	name	Description
IIIdex			Torritat	SEND_REL	Request the card to
CMD3	bcr	[31:0]	R6	ATIVE_AD	release new relative
CIVIDS		Stuffing bit	NO	DR	card address (RCA)
		31:16]DSR		DIX	card address (NCA)
CMD4	bc	[15:0]Stuffin	_	SET_DSR	Set DSR registers of all
OWID		g bit		OLI_BOR	cards.
		[31:25]Reser			
		ved bit			Only apply to I/O card.
CMD5	bcr	[24]S18R	R4	IO_SEND_	Query voltage range of
CIVIDO	501	[23:0]I/O	114	OP_COND	all IO cards.
		OCR			dii 10 dards.
		[31:26]Set to			
		0			
		[25:24]Acces			Only apply to MMC card.
		S		SWITCH	Switch the operation
CMD6	ac	[23:16]Index	R1b		mode of the selected
		[15:8]Value			card or modify
		[7:3]Set to 0			EXT_CSD register.
		[2:0]Comma			
		nd set			
		[31:16]RCA		SELECT/D	
CMD7	ac	[15:0]Stuffin	R1b	ESELECT_	Used for switching of the
		g bit		CARD	card state.
		-			Transmit interface
		[31:12]Reser			conditions to SD card,
		ved bit			including master power
		[11:8]Operati			supply voltage
CMD8	bcr	ng voltage	R7	SEND_IF_	information and query
		(VHS)		COND	whether the card
		[7:0]Inspecti			supports the voltage.
		on mode			The reserved bit should
					be set to 0.
		[31:16]RCA			The selected card
CMD9	ac	[15:0]Stuffin	R2	SEND_CS	transmits to its card
CIVID9	ac	g bit	114	D	specific data (CSD)
		9 511			through CMD
		[31:16]RCA			The selected card
CMD10	ac	[15:0]Stuffin	R2	SEND_CID	transmits to its card
SIVID TO		g bit	1 1/2	02.40_010	identification (CID)
		J ~!!			through CMD

Command Index	Туре	Parameter	Response format	Short name	Description
CMD12	ac	[31:0] Stuffing bit	R1b	STOP_TRA NSMISSIO N	Force the card to stop transmission.
CMD13	ac	[31:16]RCA [15:0]Stuffin g bit	R1	SEND_STA TUS	The selected card transmits its state register.
CMD14	adtc	[31:0] Stuffing bit	R1	BUSTEST_ R	The master reads the reverse bus test data mode from the card.
CMD15	ac	[31:16]RCA [15:0]Stuffin g bit	-	GO_INACTI VE_STATE	Convert the selected card to inactive state.
CMD19	adtc	[31:0] Stuffing bit	R1	BUSTEST_ W	The master transmits the bus test mode to the card.

Table 118 Block-oriented Write Command

Comman d Index	Туре	Parameter	Response format	Short name	Description
CMD23	ac	[31:16]Set to 0 [15:0]Number of blocks	R1	SET_BLOC K_COUNT	Define the number of blocks to be transferred in subsequent blocks or write commands.
CMD24	adtc	[31:0]Data address	R1	WRITE_BLO CK	Write a block according to the selected length of SET_BLOCKLEN command.
CMD25	adtc	[31:0]Data address	R1	WRITE_MU LTIPLE_BLO CK	Continue to write the data block until receiving STOP_TRANSMISSION command or achieving the specified number of blocks.
CMD26	adtc	[31:0] Stuffing bit	R1	PROGAM_C ID	Program the card identification register. This command can be sent to each card once only. The programming involves hardware changes to prevent subsequent operations after the first programming. Reserved to the manufacturer through this command.

Comman d Index	Туре	Parameter	Response format	Short name	Description
CMD27	adtc	[31:0] Stuffing bit	R1	PROGAM_C SD	Program the programmable bits in the card CSD.
CMD28	ac	[31:0]Data address	R1b	SET_WRITE _PROT	If the card has write protection function, this command will set the write protection bit of the specified group. The write protection characteristic is set in the special data area of the card (WP_GRP_SIZE)
CMD29	ac	[31:0]Data address	R1b	CLR_WRITE _PROT	If the card has write protection function, this command will clear the write protection bit of the addressing group.
CMD30	adtc	[31:0]Write protection data address	R1	SEND_WRI TE_PROT	If the card has write protection function, the command requests the card to transmit write protection bit state.

26.4.5 Specific Operations

26.4.5.1 SD I/O card operations

SD I/O card (including IO card and combined card) supports the following specific operations:

- Read wait operation
- Pause/Recovery operation
- Interrupt

SDIO supports these operations only when setting SDIO_DCTRL SDIOEN bit; except for read pause, it does not require special hardware operation.

SD I/O read wait operation

Read wait (RW) is only used for SD I/O 1-bit and 4-bit modes. Read wait operation allows a master to transmit a signal to stop data transmission when performing the operation of reading multiple blocks for the card, and allows the master to transmit commands to any function in the SD I/O card.

Before receiving the first data block, it is allowed to start the read wait process, enable the data channel (DTEN bit is set to 1), enable SDIO specific operation (SDIOEN bit is set to 1), and start read wait. At the same time, the data are transmitted from the card to the SDIO master, and DPSM will directly enter the read wait state from idle state.

In the read wait state, after 2 SDIO_CK clock cycles, DPSM drive SDIO_D2 is 0. In this state, if RWSTOP bit is set, DPSM will stay for 2 more SDIO_CK clock cycles in the waiting state, and (according to SDIO specification) the drive SDIO_D2 is 1 in one clock cycle. Then DPSM starts to wait to receive data from the card. When receiving data block, DPSM will not enter the read wait state even if the start wait is set.

SDIO card cannot perform the above read wait operation, SDIO can stop SDIO_CK entering the read wait and two SDIO_CK cycles later after receiving the current data block, DPSM stops the clock and recovers the clock after setting the read wait start bit.

Figure 120 Read Wait Operation Using SDIO D2 Signal Line

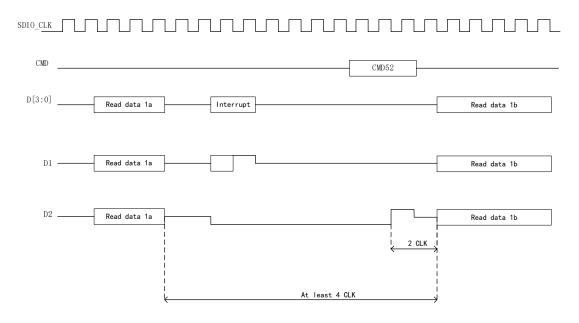
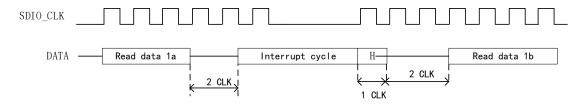



Figure 121 Read Wait Operation through Stop SDIO CLK

SDIO interrupt

When the SDIOEN bit is set, the SDIO master detects SDIO interrupt on SDIO D signal line.

26.4.5.2 **CE-ATA specific operation**

CE-ATA device supports the following specific operation:

- Receive command completion signa
- Transmit command completion and closing signal

SDIO supports these operations only when SDIO CMD ATACMD bit is set.

Command completion signal

CE-ATA defines the command completion signal. The device uses this signal to notify the master that the ATA command is completed or encounters an error, and ATA command is terminated

Command completion and closing signal

The master can transmit a command to complete the function of closing the signal and canceling the device return command to complete the signal.

If the "Enable CMD end bit" of ATACMD is not set and the "Non-terminal enable bit" of INTDIS is set, the command completion and closing signal will be sent 8-bit cycle later after receiving a short response.

26.4.6 Card state register functional description

The response format R1 contains a 32-bit card state field, which is used to transmit the card state information to the card master (the information may be stored in the local state register). Unless otherwise specified, the state returned by the card is always related to the previous command.

The following table defines different state information:

Table 119 Different State Information Types

Abbreviation	Definition
Е	Error bit
S	State bit
R	Detection bit, set according to the actual command response
Х	Detection bit, set during the execution of command. The master of SDIO card reads these bits and queries the card state by transmitting the state command.

Table 120Clear Conditions

Abbreviation	Definition					
А	A According to current state of the card					
В	Always related to previous command. Can be cleared once correct command is					
Б	received (with delay of one command).					
С	Clear once read					

Table 121 Card State

Bit	Name	Type	Numerical Value	Description	Clear conditions
1:0		Reserved	I for the test mode	of the manufacturer.	

Bit	Name	Туре	Numerical Value	Description	Clear conditions
2		Reserved	for the command	related to application.	
3	AKE_SEQ_ERROR	ER	0=No error 1=Error	Verification sequence error.	С
4			Reserved for SI	O I/O card	
5	APP_CMD	SR	0=Not allowed 1=Allowed	The card expects ACMD, or the instruction command has been interpreted as an ACMD command.	С
6			Reserve	ed	•
7	SWITCH_ERROR	EX	0=No error 1=Conversion error	The card is not switched to the desired mode according to the requirements of SWITCH command.	В
8	READY_FOR_DAT A	SR	0=Not ready 1=Ready	Corresponding to the empty signal of the buffer on the bus.	
12:9	CURRENT_STATE	SR	0=Idle 1=Ready 2=Identify 3=Standby 4=Transmit 5=Data 6=Receive 7=Program 8=Disconnect 9=Busy test 10~15=Reserv ed	The state of the state machine in the card when receiving a command. If the execution of a command causes a state change, the change will be reflected in the response of next command. These four bits are interpreted by decimal numbers 0 to 15.	В
13	ERASE_RESET		0=Clear 1=Set	Because a command other than the erase sequence (rather than CMD35, CMD36, CMD38 or CMD13 command) is received, the sequence of entering the erase process is aborted.	С
14	CARD_ECC_DISA BLED	SX	0=Allowed 1=Not allowed	Internal ECC is not used during execution of the command.	А

Bit	Name	Туре	Numerical Value	Description	Clear conditions
15	WP_ERASE_SKIP	EX	0=Not protected 1=Protected	Encounter existing write protection data block, and only part of address space is erased.	C
16	CID/CSD_OVERW RITE	EX	It can be any of the following errors: It has been written into the CID register and cannot be overridden The read-only part of the CSD does not match the content of the card Attempt to reverse copy or permanent write protection, i.e., restore or release the write protection.		С
17	Reserved				
18			Reserve	ed	
19	ERROR	EX	0=No error 1=Error	Generate an error related to the previous master command executed (not defined in the standard) Error inside the card (such as read or write error).	С
20	CC_ERROR	ER	0=No error 1=Error	Error inside the card (not defined in the standard), which has nothing to do with the command of the master.	С
21	CARD_ECC_FAILE D	EX	0=Succeeded 1=Failed	ECC check is implemented in the card, but it fails when correcting the data.	С
22	ILLEGAL_COMMA ND	ER	0=No error 1=Error	The command is illegal for current card state.	В
23	COM_CRC_ERRO R	ER	0=No error 1=Error	CRC parity error in previous command.	В
24	LOCK_UNLOCK_F AILED	EX	0=No error 1=Error	Sequence error of command or wrong password detected in lock/unlock.	С

		_	Numerical		Clear	
Bit	Name	Type	Value	Description	conditions	
			0=Card	When this bit is set, it		
25	CARD_IS_LOCKED	SR	unlocked	means the card has been	Α	
			1=Card locked	locked.		
00	M/D M/OLATION	ΕV	0=No error	Attempt to program the data	0	
26	WP_VIOLATION	EX	1=Error	block of a write protection.	С	
07	EDACE DADAM	ΓV	0=No error	Illegal erase group selected	0	
27	ERASE_PARAM	EX	1=Error	when erasing.	С	
	FDACE CEO FDD		0-N	The sequence of		
28	ERASE_SEQ_ERR		0=No error	transmitting erase command	С	
	OR		1=Error	is wrong.		
				The parameters of		
				SET_BLOCKLEN command		
				exceed the maximum		
			allowable range of the card,			
	29 BLOCK_LEN_ERR OR				or the previously defined	
				data block length is illegal		
20		LOCK_LEN_ERR	SLOCK_LEN_ERR 0=No	0=No error	for the current command	С
29			1=Error	(for example, the master	C	
				transmits a write command,		
				and the current block length		
				is less than the minimum		
				allowable length of the card,		
				while some data blocks are		
				not allowed to be written).		
				The first block defined by		
				the address parameter in		
				the command (compared		
				with the current block		
				length) is not aligned with		
				the physical block of the		
30	ADDRESS_MISALI		0=No error	card.	С	
	GN		1=Error	A multi-data block or data	Ü	
				stream read/write operation		
				(even starting from a legal		
				address) attempts to read or		
				write a data block that is not		
				aligned with the physical		
				block.		

Bit	Name	Type	Numerical	Description	Clear
	Sit Italio		Value	2000	conditions
				The address parameter in	
				the command is beyond the	
	ADDRESS_OUT_O	ERX	0=No error 1=Error	allowed range of the card.	
				A multi-data block or data	
31				stream read/write operation	С
	F_RANGE			(even starting from a legal	
				address) attempts to read or	
				write the part beyond the	
				capacity of the card.	

26.4.6.1 SD state register functional description

The SD state includes the state bits related to the specific functions of the SD memory card and some state bits related to future applications. The length of the SD state is a 512-bit data block. After receiving the ACMD13 command (CMD55, then CMD13), the content of this register will be transmitted to the SDIO card host. The ACMD13 command can be sent only when the card is in transmission state (the card has been selected).

The following table defines different SD state register information.

Table 122 SD State Register Information

Abbreviation	Definition
Е	Error bit
S	State bit
R	Detection bit, set according to the actual command response
Х	Detection bit, set during the execution of command. The master of SDIO card reads these bits and queries the card state by transmitting the state command.

Note: For the abbreviations and definitions of related types and clear condition fields in the table, see.

Table 123 Clear Conditions

Abbreviation	Definition				
А	A According to current state of the card				
В	Always related to previous command. Can be cleared once correct command is				
В	received (with delay of one command).				
C Clear once read					

Table 124 SD State

Bit	Name	Туре	Numerical Value	Description	Clear conditio ns
311:0	Reserved to the manufacturer				

Bit	Name	Туре	Numerical Value	Description	Clear conditio ns
399:312			Reserved		•
401:400	ERASE_OFF SET				
407:402	ERASE_TIME OUT	SR	Fixed offset value added in erase	(See the instructions below)	А
423:408	ERASE_SIZE	SR	Erase the timeout value of specified range of UNIT_OF_ERASE_AU	(See the instructions below)	A
427:424	Reserved	SR	The number of AU that can be erased at a time	(See the instructions below)	А
431:428	AU_SIZE	SR	AU size (see the instructions below)	(See the instructions below)	A
439:432	PERFORMAN CE_MOVE	SR	Transmission performance in 1MB/s (see the instructions below)	(See the instructions below)	А
447:440	SPEED_CLA SS	SR	Speed type of the card (see the instructions below)	(See the instructions below)	A
479:448	SIZE_OF_PR OTECTED_A REA	SR	Size of protected area (see the instructions below)	(See the instructions below)	A
495:480	SD_CARD_T YPE	SR	'00xxh'= SD memory card in physical specification version 1.01~2.00 ('x' means any value). The defined cards are: '0000'= Universal SD read-write card '0001'= SD ROM card	The low 8 bits of this field can define different variants of SD memory card in the future (each bit can be used to define different SD types). The high 8 bits can be used to define SD cards that do not comply with the current SD physical layer	A
508:496			Reserved	specification.	

Bit	Name	Туре	Numerical Value	Description	Clear conditio ns
				The card is in secret	
	SECURED_M		0=Not in the secret	operation mode	_
509	509 ODE	SR	mode	(see "SD	Α
	052		1=In the secret mode	Confidentiality	
				Specification").	
			00=1 (default)	Current data bus	
511:510	DAT_BUS_WI	SR	01-Reserve	width defined by	۸
311.310	DTH	3 K	10=4-bit width	SET_BUS_WIDTH	A
			11=Reserved	command.	

SIZE_OF_PROTECTED_AREA

The way of setting this bit is different between standard-capacity card and high-capacity card:

 For the standard-capacity card, the capacity of the protected area is calculated as follows:

Protected area=SIZE_OF_PROTECTED_AREA * MULT * BLOCK LEN

The unit of SIZE_OF_PROTECTED_AREA is MULT * BLOCK_LEN.

• For the high-capacity card, the capacity of the protected area is calculated as follows:

Protected area=SIZE_OF_PROTECTED_AREA
The unit of SIZE_OF_PROTECTED_AREA is byte.

SPEED_CLASS

These 8 bits indicate the type of speed and can be used for calculating the value of PW/2 (PW is the performance of write).

Table 125 Speed Type Code

SPEED_CLASS	Definition of Numerical Value
00h	Type 0
01h	Type 2
02h	Type 4
03h	Type 6
04h~FFh	Reserved

PERFORMANCE_MOVE

These 8 bits indicate mobility performance (Pm) in 1MB/s. If the card does not use RU (record unit) mobile data, it should be considered that Pm is infinitely

great. Setting this field for FFH means infinitely great.

Table 126 Mobility Perfromance Code

PERFORMANCE_MOVE	Definition of Numerical Value
00h	Undefined
01h	1MB/s
02h	2MB/s
Feh	254MB/s
FFh	Infinitely great

AU_SIZE

These four bits indicate the length of AU, and the value is the multiple of the power of 2 in 16KB.

Table 127 AU SIZE Codes

AU_SIZE	Definition of Numerical Value
00h	Undefined
01h	16KB
02h	32KB
03h	64KB
04h	128KB
05h	256KB
06h	512KB
07h	1MB
08h	2MB
09h	4MB
Ah~Fh	Reserved

According to the capacity of the card, the maximum AU length is defined by the following table. The card can set any AU length between the RU length and the maximum AU length.

Table 128 Maximum AU Length

Capacity	Maximum AU length
16MB~64MB	512KB
128MB~256MB	1MB
512MB	2MB
1GB~32GB	4MB

ERASE_SIZE

This 16-bit field gives the value of NERASE, and when MERASE number of AU is erased, ERASE_TIMEOUT defines the timeout period.

If the master can determine the value of NERASE in a certain erase, the erase progress can be displayed.

Table 129 ERASE_SIZE Codes

ERASE_SIZE	Definition of Numerical Value
0000h	Overtime calculation not supporting erase
0001h	One AU
0002h	Two AUs
0003h	Three AUs
FFFFh	65535 AUs

ERASE_TIMEOUT

These 6 bits give TERASE. When multiple AUs are erased, TERASE gives the erase timeout calculated from offset.

Table 130 Erase Timeout Codes

ERASE_TIMEOUT	Definition of Numerical Value
00	Overtime calculation not supporting erase
01	1 second
02	2 seconds
03	3 seconds
63	63 seconds

ERASE_OFFSET

These two bits give TOFFSET, and when both ERASE_SIZE and ERASE_TIMEOUT are 0, this value is meaningless.

Table 131 Erase Offset Codes

ERASE_OFFSET	Definition of Numerical Value
0	0 second
1	1 second
2	2 seconds
3	3 seconds

26.5 Register address mapping

Table 132 SDIO Register Address Mapping

Register name	Description	Offset address
SDIO_PWRCTRL	SDIO power control register	0x00
SDIO_CLKCTRL	SDIO clock control register	0x04
SDIO_ARG	SDIO parameter register	0x08
SDIO_CMD	SDIO command register	0x0C
SDIO_CMDRES	SDIO command response register	0x10
SDIO_RESx	SDIO response x register	0x14 + 4* (x-1), wherein x=14
SDIO_DATATIME	SDIO data timer register	0x24
SDIO_DATALEN	SDIO data length register	0x28
SDIO_DCTRL	SDIO data control register	0x2C
SDIO_DCNT	SDIO data counter register	0x30
SDIO_STS	SDIO state register	0x34
SDIO_ICF	SDIO clear interrupt register	0x38
SDIO_MASK	SDIO interrupt mask register	0x3C
SDIO_FIFOCNT	SDIO counter register	0x48
SDIO_FIFODATA	SDIO data FIFO register	0x80

26.6 Register functional description

The device communicates with the system through the 32-bit control registers that can be operated on APB2. These peripheral registers must be operated in word (32-bit) mode.

26.6.1 SDIO power control register (SDIO_PWRCTRL)

Offset address: 0x00
Reset value: 0x0000 0000

Field	Name	R/W	Description
1:0	PWRCTRL	R/W	Power Supply Control Select current function state of card clock. 00: Power off, card clock stopped. 01: Reserved. 10: Reserved power-on state. 11: Power-on state, card clock started.
31:2	Reserved		

Note: This register cannot be written within 7 HCLK clock cycles after data write.

26.6.2 SDIO clock control register (SDIO_CLKCTRL)

Offset address: 0x04 Reset value: 0x0000 0000

SDIO_CLKCTRL register controls SDIO_CLK to output the clock.

Field	Name	R/W	Description
7:0	CLKDIV	R/W	Clock Divide Factor This domain defines the division factor between input clock (SDIOCLK) and output clock (SDIO_CLK): SDIO_CLK frequency=SDIOCLK/[CLKDIV + 2].
8	CLKEN	R/W	Clock Enable 0: Disable 1: Enable
9	PWRSAV	R/W	Power Saving Mode Configuration Reduce power consumption by disabling SDIO_ CLK outputs beyond the bus activity. 0: Enable 1: Disable
10	BYPASSEN	R/W	Clock Divider Bypass Enable Before driving SDIO_CLK to output signals, it is required to divide the frequency of SDIOCLK; however, if the divider is bypassed, SDIOCLK will directly drive SDIO_CLK to output signals. 0: Disable 1: Enable
12:11	WBSEL	R/W	Wide Bus Mode Select Select bus mode for different bits, corresponding to different SDIO_D bits. 00: Default, using SDIO_D0 01: 4 bits, using SDIO_D[3:0] 10: 8 bits, using SDIO_D[7:0] 11: Reserved
13	DEPSEL	R/W	SDIO_CLK Dephasing Select Select SDIOCLK rising edge or falling edge to generate SDIO_CLK. 0: Rising edge 1: Falling edge
14	HFCEN	R/W	HW Flow Control Enable 0: Disable 1: Enable
31:15	Reserved		

Note:

- (1) When SD/SD I/O card or multimedia card is in identification mode, the frequency of SDIO_CLK must be less than 400kHz.
- (2) When all cards have been assigned the corresponding address, the clock frequency can be changed to the maximum frequency allowed by the card bus.

(3) This register cannot be written within 7 HCLK clock cycles after writing data. For SD I/O card, SDIO_CLK can be stopped during read wait period, and then SDIO_CLKCTRL register does not control SDIO_CLK.

26.6.3 SDIO parameter register (SDIO_ARG)

Offset address: 0x08
Reset value: 0x0000 0000

Command parameters are also part of the command, and SDIO_ARG register contains 32-bit command parameters and is sent to the card together with the command.

Field	Name	R/W	Description
31:0 CMDARG	R/W	Command Argument	
		Store the command parameters.	

26.6.4 SDIO command register (SDIO_CMD)

Offset address: 0x0C Reset value: 0x0000 0000

SDIO_CMD register contains command index and command type bit.

Field	Name	R/W	Description
5:0	CMDINDEX	R/W	Command Index The command index, as part of the command, is transmitted to the card together with the command.
7:6	WAITRES	R/W	Wait for Response Indicate whether CPSM needs to wait for the response, and if it needs to wait for the response, the response type will be indicated. 00: No response, expecting CMDSENT flag 01: Short response, expecting CMDREND or CCRCFAIL flag 10: No response, expecting CMDSENT flag 11: Long response, expecting CMDREND or CCRCFAIL fag
8	WAITINT	R/W	CPSM Waits for Interrupt Request CPSM enables or disables the command timeout control and waits for interrupt request. 0: Enable 1: Disable
9	WENDDATA	R/W	CPSM Waits for Ends of Data Transfer (CmdPend Internal Signal) 0: Invalid 1: CPSM waits for the end of data transmission before starting to transmit a command.
10	CPSMEN	R/W	Command Path State Machine (CPSM) Enable Enable CPSM. 0: Disable 1: Enable
11	SDIOSC	R/W	SD I/O Suspend Command 0: Invalid 1: The command to be sent is a suspend command (only used for SD I/O card).

Field	Name	R/W	Description
12	CMDCPEN	R/W	Enable CMD Completion Enable command completion signal. 0: Disable 1: Enable
13	INTEN	R/W	Interrupt Enable 0: Enable 1: Disable
14	ATACMD	R/W	CE-ATA Command 0: Invalid 1: Switch CPSM to CMD61
31:15	Reserved		

Note:

- (1) This register cannot be written within 7 HCLK clock cycles after writing data.
- (2) The multimedia card can transmit two kinds of responses: 48-bit short response or 136-bit long response. The SD card and SD I/O card can only transmit short response, parameters can be changed according to the type of response, and the software will distinguish the type of response according to the command sent. CE-ATA devices only transmit short responses.

26.6.5 SDIO command response register (SDIO_CMDRES)

Offset address: 0x10 Reset value: 0x0000 0000

Field	Name	R/W	Description
5:0	CMDRES	R	Response Command Index Store the command index in the finally received command response.
31:6	Reserved		

26.6.6 SDIO response x register (SDIO_RESx)

Offset address: 0x14 + 4*(x-1), wherein x=1...4

Reset value: 0x0000 0000

SDIO_RES1/2/3/4 register contains the card state, namely, some information about the received response.

Field	Name	R/W	Description
31:0	CARDSTSx	R	See the table below.

The state length of the card is 32 bits or 127 bit according to the response state.

Table 133 Response Type and SDIO_RESPx Register

Register	Short response	Long response
SDIO_RES1	Card state [31:0]	Card state [127:96]
SDIO_RES2	Unused	Card state [95:64]
SDIO_RES3	Unused	Card state [63:32]
SDIO_RES4	Unused	Card state [31:1]

Always receive the most significant bit of card state first, and the lowest bit of SDIO RES3 register is always 0.

26.6.7 SDIO data timer register (SDIO_DATATIME)

Offset address: 0x24 Reset value: 0x0000 0000

Field	Name	R/W	Description
31:0 DATATIME		Data Timeout Period	
	DATATIME	R/W	Record the data timeout period in card bus clock cycle.

Note: Before writing the data control register for data transmission, first write the data timer register and data length register.

26.6.8 SDIO data length register (SDIO_DATALEN)

Offset address: 0x28 Reset value: 0x0000 0000

Field	Name	R/W	Description	
24:0	DATALEN	R/W	Data Length Byte length of data to be transmitted.	
31:25	Reserved			

Note: For block data transfer, the value in SDIO_DATALEN must be a multiple of the data block length. Before writing SDIO_DCTRL for data transmission, first write SDIO_DATATIME and SDIO_DATALEN.

26.6.9 SDIO data control register (SDIO_DCTRL)

Offset address: 0x2C Reset value: 0x0000 0000

SDIO_DCTRL register control data channel state channel (DPSM).

Field	Name	R/W	Description
			Data Transfer Enabled
0	DTEN	R/W	0: Disable
			1: Enable
			Data Transfer Direction Configuration
1	DTDRCFG	R/W	0: From controller to card
			1: From card to controller
			Data Transfer Mode Select
2	DTSEL	R/W	0: Block data transfer
			1: Stream data transfer
			DMA Enable
3	DMAEN	R/W	0: Disable
			1: Enable
			Data Block Size
			Define the data bock length:
7:4	DBSIZE	DAM	0000: Block length=20=1 byte
1.4	DRSIZE	SSIZE R/W	0001: Block length=21=2 bytes
			0010: Block length=22=4 bytes
			0011: Block length=23=8 bytes

Field	Name	R/W	Description
			0100: Block length=24=16 bytes
			0101: Block length=25=32 bytes
			0110: Block length=26=64 bytes
			0111: Block length=27=128 bytes
			1000: Block length=28=256 bytes
			1001: Block length=29=512 bytes
			1010: Block length=210=1024 bytes
			1011: Block length=211=2048 bytes
			1100: Block length=212=4096 bytes
			1101: Block length=213=8192 bytes
			1110: Block length=214=16384 bytes
			1111: Reserved
			Read Wait Start
8	RWSTR	R/W	0: Invalid
			1: Start read wait operation
			Read Wait Stop Enable
			If RWSTR is set, stop read operation can be enabled.
9	RWSTOP	RWSTOP R/W	0: Disable
			1: Enable
			Read Wait Mode
10	RDWAIT	R/W	0: Control stop SDIO_D2
			1: Control use SDIO_DK
			SD I/O Enable Functions
11	SDIOF	R/W	If this bit is set, DPSM wil execute specific operation of SD I/O card.
31:12			Reserved

26.6.10 SDIO data counter register (SDIO_DCNT)

Offset address: 0x30 Reset value: 0x0000 0000

When DPSM enters Wait_R or Wait_S state from the idle state, SDIO_DCNT loads values from SDIO_DATALEN, and in the data transmission process, the counter will count down to 0, and then DPSM will enter the idle state and set

DATAEND flag.

Field	Name	R/W	Description	
24:0	DATACNT	R	Data Count Number Store the number of data bytes to be transmitted.	
31:25	Reserved			

Note: This register can be read only by the end of data transmission.

26.6.11 SDIO state register (SDIO_STS)

Offset address: 0x34 Reset value: 0x0000 0000

SDIO_STS is a read-only register, and it contains two kinds of flags:

- (1) Static flag (bit [23:22, 10:0]): Write SDIO interrupt clear register to clear these bits.
- (2) Dynamtic flag (bits [21:11]: The state of these bits changes according to the logic of corresponding part.

0 1 2	Name COMRESP	R/W R	Description
1		R	
-	DDDD	• • •	Command Response Received (CRC detection failure)
2	DBDR	R	Data Block Sent/Received (CRC detection failure)
	CMDRESTO	R	Command Response Timeout Command timeout period is 64 SDIO_CLK clock cycles.
3	DATATO	R	Data Timeout
4	TXUDRER	R	Transmit FIFO Underrun Error
5	RXOVRER	R	Received FIFO Overrun Error
6	CMDRES	R	Command Response (CRC detection succeeded)
7	CMDSENT	R	Command Sent (No Response Required)
8	DATAEND	R	Data end (data counter, SDIO_DCNT=0)
9	SBE	R	Start Bit Not Detected On All Data Signals In Wide Bus Mode
10	DBCP	R	Data Block Sent/Received
11	CMDACT	R	Command Transfer In Progress
12	TXACT	R	Data Transmit In Progress
13	RXACT	R	Data Receive In Progress
14	TXFHF	R	Transmit FIFO Half Empty: At least 8 more words can be written in FIFO.
15	RXFHF	R	Receive FIFO Half Full There are at least eight words in FIFO.
16	TXFF	R	Transmit FIFO Full
17	RXFF	R	Receive FIFO Full If the hardware flow control is used, the RXFF signal will become effective when the FIFO is still 2 words short.
18	TXFE	R	Transmit FIFO Empty If the hardware flow control is used, the TXFE signal will become effective when the FIFO contains 2 words.
19	RXFE	R	Receive FIFO Empty
20	TXDA	R	Data Available In Transmit FIFO
21	RXDA	R	Data Available In Receive FIFO
22	SDIOINT	R	SDIO Interrupt Received
23	ATAEND	R	CE-ATA Command Completion Signal Received For CMD61
31:24			Reserved

26.6.12 SDIO clear interrupt register (SDIO_ICF)

Offset address: 0x38 Reset value: 0x0000 0000

SDIO_ICF is a write-only register, and the corresponding bit in SDIO_STS state register will be cleared in corresponding register bit.

Field	Name	R/W	Description
0	DBCE	R/W	DBCE Flag Clear Clear DBCE flag. 0: Invalid 1: Clear
1	CRCE	R/W	CRCE Flag Clear Clear CRCE flag. 0: Invalid 1: Clear
2	CRTO	R/W	CRTO Flag Clear Clear CRTO flag. 0: Invalid 1: Clear
3	DTO	R/W	DTO Flag Clear Clear DTO flag. 0: Invalid 1: Clear
4	TXFUE	R/W	TXFUE Flag Clear Clear TXFUE flag. 0: Invalid 1: Clear
5	RXFOE	R/W	RXFOE Flag Clear Clear RXFOE flag. 0: Invalid 1: Clear
6	CMDRES	R/W	CMDRES Flag Clear Clear CMDRES flag. 0: Invalid 1: Clear
7	CMDSENT	R/W	CMDSENT Flag Clear Clear CMDSENT flag. 0: Invalid 1: Clear
8	DATAEND	R/W	DATAEND Flag clear Clear DATAEND flag. 0: Invalid 1: Clear
9	SBE	R/W	SBE Flag Clear Clear SBE flag. 0: Invalid 1: Clear

Field	Name	R/W	Description	
	DBCP	R/W	DBCP Flag Clear	
10			Clear DBCP flag.	
10	DBCI	17/77	0: Invalid	
			1: Clear	
21:11	Reserved			
	SDIOIT	DIOIT R/W	SDIOIT flag clear bit	
22			Clear SDIOIT flag.	
22			0: Invalid	
			1: Clear	
	ATAEND R/W	ATAEND flag clear bit		
23		DΛΛ	Clear ATAEND flag.	
23		FK/VV	0: Invalid	
			1: Clear	
31:24	Reserved			

26.6.13 SDIO interrupt mask register (SDIO_MASK)

Offset address: 0x3C

Reset value: 0x0000 0000 Set or cleared by software.

When the corresponding bit is set to 1, SDIO_MASK interrupt mask register decides which state bit generates an interrupt.

Field	Name	R/W	Description
0	CCRCFAIL	R/W	Command CRC Fail Interrupt Enable Enable/Disable command block CRC detection failure interrupt. 0: Disable 1: Enable
1	DCRCFAIL	R/W	Data CRC Fail Interrupt Enable Enable/Disable data block CRC detection failure interrupt. 0: Disable 1: Enable
2	CMDTO	R/W	Command Timeout Interrupt Enable Enable/Disable command timeout interrupt. 0: Disable 1: Enable
3	DATATO	R/W	Data timeout interrupt enable Enable/Disable data timeout interrupt. 0: Disable 1: Enable
4	TXURER	R/W	Tx FIFO Underrun Error Interrupt Enable Enable/Disable transmit FIFO underrun error interrupt. 0: Disable 1: Enable

Field	Name	R/W	Description
5	RXORER	R/W	Rx FIFO Overrun Error Interrupt Enable Enable/Disable receive FIFO overrun error interrupt. 0: Disable 1: Enable
6	CMDRESRC	R/W	Command Response Received Interrupt Enable Enable/Disable receiving response interrupt. 0: Disable 1: Enable
7	CMDSENT	R/W	Command Sent Interrupt Enable Enable/Disable command sent interrupt since the software has set/cleared this bit. 0: Disable 1: Enable
8	DATAEND	R/W	Data End Interrupt Enable Enable/Disable data transmission end interrupt. 0: Disable 1: Enable
9	STRTER	R/W	Start Bit Error Interrupt Enable Enable/Disable start bit error interrupt. 0: Disable 1: Enable
10	DBEND	R/W	Data Block End Interrupt Enable Enable/Disable data block transmission end interrupt. 0: Disable 1: Enable
11	CMDACT	R/W	Command Acting Interrupt Enable Enable/Disable transmitting command interrupt. 0: Disable 1: Enable
12	TXACT	R/W	Data Transmit Acting Interrupt Enable Enable/Disable transmitting data interrupt. 0: Disable 1: Enable
13	RXACT	R/W	Data receive acting interrupt enable Enable/Disable receiving data interrupt. 0: Disable 1: Enable
14	TXHFERT	R/W	Tx FIFO Half Empty Interrupt Enable Enable/Disable transmit FIFO half empty interrupt. 0: Disable 1: Enable
15	RXHFFUL	R/W	Rx FIFO Half Full Interrupt Enable Enable/Disable receive FIFO half full interrupt. 0: Disable 1: Enable

Field	Name	R/W	Description
16	TXFUL	R/W	Tx FIFO Full Interrupt Enable Enable/Disable transmit FIFO full interrupt. 0: Disable 1: Enable
17	RXFUL	R/W	Rx FIFO Full Interrupt Enable Enable/Disable receive FIFO full interrupt. 0: Disable 1: Enable
18	TXEPT	R/W	Tx FIFO Empty Interrupt Enable Enable/Disable transmit FIFO empty interrupt. 0: Disable 1: Enable
19	RXFEIE	R/W	Rx FIFO Empty Interrupt Enable Enable/Disable receive FIFO empty interrupt. 0: Disable 1: Enable
20	TXDAVB	R/W	Data Available in Tx FIFO Interrupt Enable Enable/Disable transmit FIFO data available interrupt. 0: Disable 1: Enable
21	RXDAVB	R/W	Data Available in Rx FIFO Interrupt Enable Enable/Disable receive FIFO data available interrupt. 0: Disable 1: Enable
22	SDIOINTREC	R/W	SDIO Mode Interrupt Received Interrupt Enable Enable/Disable SDIO mode interrupt received. 0: Disable 1: Enable
23	ATACLPREC	R/W	CE-ATA Command Completion Signal Received Interrupt Enable Enable/Disable receiving CE-ATA command completion signal interrupt. 0: Disable 1: Enable
31:24			Reserved

26.6.14 SDIO FIFO counter register (SDIO_FIFOCNT)

Offset address: 0x48 Reset value: 0x0000 0000

Field	Name	R/W	Description	
	3:0 FIFOCNT			Receive And Transmit FIFO Number
23:0		R	The number of data words to be written into FIFO or read out from FIFO.	
			Note: If the data length is not a multiple of 4, the last remaining bytes can be treated as one word.	
31:24	Reserved			

26.6.15 SDIO data FIFO register (SDIO_FIFODATA)

Offset address: 0x80

Reset value: 0x0000 0000

Field	Name	R/W	Description
31:0	DATA	R/W	Receive And Transmit FIFO Data Data to be written into FIFO or read out from FIFO.

27 USB_OTG

27.1 Introduction

This chip is embedded with three USB controllers in total.

OTG_FS

OTG_FS can support both host and slave functions to comply with the On-The-Go supplementary standard of USB 2.0 specification, and can also be configured as " Host only" or "Slave only" mode, to fully comply with USB 2.0 specification, and support host negotiation protocol (HNP) and session request protocol (SRP). In host mode, it support full-speed (FS, 12Mb/s) and low-speed (LS, 1.5Mb/s) transmission, and in slave mode, it only supports full-speed (FS, 12Mb/s) transmission.

OTG_HS1

OTG_HS1 can support both host and slave functions to comply with the On-The-Go supplementary standard of USB 2.0 specification, and can also be configured as "Host only" or "Host only" mode, to fully comply with USB 2.0 specification, and support host negotiation protocol (HNP) and session request protocol (SRP). In host mode, it supports high-speed (HS, 480Mb/s), full-speed (FS, 12Mb/s), and low-speed (LS, 1.5Mb/s) transmission and in slave mode, it only supports high-speed (HS, 480Mb/s) and full-speed (FS, 12Mb/s) transmission.

OTG HS2

OTG_HS2 can support both host and slave functions to comply with the On-The-Go supplementary standard of USB 2.0 specification, and can also be configured as "Host only" or "Host only" mode, to fully comply with USB 2.0 specification, and support high-speed (HS, 480Mb/s), full-speed (FS, 12Mb/s) and low-speed (LS, 1.5Mb/s) transmission, self-test mode defined by USB 2.0 specification, FS/LS serial mode, and 12MHz external crystal clock input.

27.2 OTG_FS global register address mapping

Table 134 OTG_FS Global Register Address Mapping

Register name	Description	Offset address
OTG_FS_GCTRLSTS	Full-speed OTG control state register	0x00
OTG_FS_GINT	Full-speed OTG interrupt register	0x04
OTG_FS_GAHBCFG	Full-speed OTG AHB configuration register	0x08
OTG_FS_GUSBCFG	Full-speed OTG USB configuration register	0x0C

Register name	Description	Offset address
OTG_FS_GRSTCTRL	Full-speed OTG reset control register	0x10
OTG_FS_GCINT	Full-speed OTG module interrupt register	0x14
OTG_FS_GINTMASK	Full-speed OTG module interrupt mask register	0x18
OTG_FS_GRXSTS	Full-speed OTG read debug receive state register	0x1C
OTG_FS_GRXSTSP	Full-speed OTG state read and pop register	0x20
OTG_FS_GRXFIFO	Full-speed OTG receive FIFO size register	0x24
OTG_FS_GTXFCFG	Full-speed OTG TXFIFIO configuration register	0x28
OTG_FS_GNPTXFQSTS	Full-speed OTG non-periodic TXFIFIO queue state register	0x2C
OTG_FS_GGCCFG	Full-speed OTG general module configuration register	0x38
OTG_FS_GCID	Full-speed OTG module ID register	0x3C
OTG_FS_GHPTXFSIZE	Full-speed OTG host periodic TXFIFO size register	0x100
OTG_FS_DTXFIFO1	Full-speed OTG device IN endpoint TXFIFO size register 1	0x104
OTG_FS_DTXFIFO2	Full-speed OTG device IN endpoint TXFIFO size register 2	0x108
OTG_FS_DTXFIFO3	Full-speed OTG device In endpoint TXFIFO size register 3	0x10C

27.3 OTG_FS global register functional description

27.3.1 Full-speed OTG control state register (OTG_FS_GCTRLSTS)

Offset address: 0x00
Reset value: 0x0000 0800

Field	Name	R/W	Description
0	SREQSUC	R	Session Request Success 0: Session request fails 1: Session request succeeds Note: It can be used only in device mode
1	SREQ	R/W	Session Request 0: No request session 1: Request session When HNSUCCHG bit of OTG_FS_GINT register is set, this bit will be cleared by writing 0. This bit will be cleared to 0 when HNSUCCHG is cleared to 0. When USB 1.1 full-speed serial transceiver interface is used for session request, wait for V _{BUS} to discharge to 0.2 V after the BSVD bit of the register is cleared to 0. The discharge time may be different according to different PHY.

Field	Name	Name R/W Description			
			Note: It can be used only in device mode		
7:2		Reserved			
8	HNSUC	R	Host Negotiation Success This bit will be cleared to 0 when HNPREQ of this register is set to 1 0: Host negotiation fails 1: Host negotiation succeeds Note: It can be used only in device mode		
9	HNPREQ	R/W	Host Negotiation Protocol Request (HNP Request) 0: Not transmit HNP request 1: Transmit HNP request When HNSUCCHG bit of OTG_FS_GINT register is set, this bit will be cleared by writing 0. This bit will be cleared to 0 when HNSUCCHG is cleared to 0. Note: It can be used only in device mode		
10	HHNPEN	R/W	Host Set HNP Enable 0: Disable 1: Enable Note: It can be used only in master mode		
11	DHNPEN	R/W	Device HNP Enable 0: Disable 1: Enable Note: It can be used only in device mode		
15:12	Reserved				
16	CIDSTS	R	Connector ID Status 0: OTG_FS controller is in Device A mode 1: OTG_FS controller is in Device B mode Note: It can be used in both device and master modes		
17	LSDEBT	R	Long/Short Debounce Time Indicate the detected debounce time. The long debounce time is used for physical connection, and the short debounce time is used for software (program) connection. 0: Long debounce time (100ms+2.5μs) 1: Short debounce time (2.5μS) Note: It can be used only in master mode		
18	ASVD	R	A-Session Valid 0: Invalid 1: Valid Note: It can be accessed only in master mode		
		-	B-Session Valid		
19	BSVD	R	In OTG mode, this bit is used to confirm whether the device is in connected status. 0: Invalid 1: Valid Note: It can be accessed only in device mode		

27.3.2 Full-speed OTG interrupt register (OTG_FS_GINT)

Offset address: 0x04 Reset value: 0x0000 0000

Field	Name	R/W	Description				
1:0			Reserved				
2	SEFLG	RC_W1	Session End Flag When V_{BUS} <0.8V, it means that V_{BUS} is not used for B-session, and this bit will be set to 1.				
7:3			Reserved				
8	SREQSUCCHG	RC_W1	Session Request Success Bit Change If the value of SREQSUC bit changes, this bit will be set to 1.				
9	HNSUCCHG	RC_W1	Host Negotiation Success Bit Change If the value of HNSUC bit changes, this bit will be set to 1.				
16:10		Reserved					
17	HNFLG	RC_W1	Host Negotiation Flag When USB host negotiation request is detected, this bit will be set to 1.				
18	ADTOFLG	RC_W1	A-Device Timeout Flag If this bit is set to 1, it indicates timeout when A-device is waiting for B-device to connect.				
19	DEBDFLG	RC_W1	Debpouncce Done Flag When the equipment is connected and debounce is completed, this bit shall be set to 1; when an interrupt is generated, the USB will be reset. This bit is valid only when HNPEN and SRPEN bits of OTG_FS_GUSBCFG register are set to 1. Note: It can be accessed only in master mode				
31:20			Reserved				

27.3.3 Full-speed OTG AHB configuration register (OTG_FS_GAHBCFG)

Offset address: 0x08
Reset value: 0x0000 0000

Field	Name	R/W Description		
			Global Interrupt Mask	
0	GINTMASK	R/W	0: Mask global interrupt	
			1: Unmask global interrupt	
6:1		Reserved		
			TXFIFO Empty Level	
			In device mode:	
			0: TXFE interrupt means that IN endpoint TXFIFIO is half-empty	
7	TXFEL	R/W	1: TXFE interrupt means that IN endpoint TXFIFIO is all-empty	
		In master mode:		
			0: NPTXFEM interrupt means that non-periodic TXFIFO is half-empty	
			1: NPTXFEM interrupt means that non-periodic TXFIFO is all-empty	

Field	Name	R/W	Description
8	PTXFEL	R/W	Periodic TXFIFO Empty Level 0: PTXFE interrupt means that periodic TXFIFIO is half-empty 1: PTXFE interrupt means that periodic TXFIFIO is all-empty Note: It can be accessed only in master mode
31:9	Reserved		

27.3.4 Full-speed OTG USB configuration register (OTG_FS_GUSBCFG)

Offset address: 0x0C Reset value: 0x0000 0A00

Field	Name	R/W	Description
2:0	SEFLG	R/W	FS Timeout Calibrate The additional delay of PHY includes the number of PHY clocks and FS timeout interval. The status of data line may be different for different PHY The timeout value of OTG_FS is 16~18-bit time.
5:3			Reserved
6	FSSTSEL	W	Full-Speed Serial Transceiver Select 0: USB2.0 full-speed ULPI PHY 1: USB1.1 full-speed serial transceiver This bit is always 1.
7			Reserved
8	SRPEN	R/W	SRP Enable 0: Disable 1: Enable If the SRP function is disabled, connecting the device cannot be requested to activate V _{BUS} and the session cannot be started.
9	HNPEN	R/W	HNP Enable 0: Disable 1: Enable
13:10	TRTIM	R/W	USB Turnaround Time fphyclk=48MHZ, in fphyclk. TRTIM=4×fahbclk+fphyclk Example: When fahbclk=72MHz, TRTIM will be set to 7.
28:14			Reserved
29	FHMODE	R/W	Forced Host Mode 0: Normal mode 1: Master mode
30	FDMODE	R/W	Forced Device Mode 0: Normal mode 1: Device mode
31	CTXP	R/W	Corrupt TX Packet Debug bit, which cannot be set to 1 Note: It can be accessed in both device and master mode

27.3.5 Full-speed OTG reset register (OTG_FS_GRSTCTRL)

Offset address: 0x10
Reset value: 0x2000 0000

Field	Reset value	R/W		
Field	Name	R/W	Description	
			Core Soft Reset	
			This bit controls HCLK and PCLK reset	
			Clear each interrupt and all control state register bits to 0 except the followings:	
			- GCLK bit in OTG_FS_PCGCTRL	
			- PCLKSTOP bit in OTG_FS_PCGCTRL	
			- PHYCLKSEL bit in OTG_FS_HCFG	
			- DSPDSEL bit in OTG_FS_DCFG	
0	CSRST	R/S	Reset the AHB slave to the idle state and clear TXFIFO and RXFIFO. When the AHB transmission ends, all transactions of AHB shall be terminated as soon as possible and all transactions on USB shall be terminated immediately.	
			Software reset is used generally in either of the following situations:	
			Software development period.	
			 After the user dynamically changes the PHY selection bit in the USB configuration register listed above. When the user changes the PHY, the corresponding clock will be selected for the PHY and used in the PHY domain. Once a new clock is selected, the PHY domain must be reset so as to ensure normal operation. 	
	HSRST	RST R/S	HCLK Soft Reset	
			This bit is used to refresh the control logic of AHB clock domain.	
1			When clearing this interrupt, the corresponding mask interrupt state control bit shall be cleared; when the interrupt state bit is not cleared to zero, the event state after this bit is set to 1 can be read.	
			Host Frame Counter Reset	
2	HFCNTRST	R/S	Reset the frame counter in the host by writing this bit, and the SOF frame number transmitted subsequently is 0.	
			Note: It can be accessed only in master mode.	
3			Reserved	
			RXFIFO Flush	
4	RXFFLU	R/S	This bit is used to refresh the whole RXFIFO. Before writing to this bit, it is required to ensure that the module does not perform read and write operation to RXFIFO.	
			Only after this bit is cleared to 0, can other operations be performed (usually need to wait for 8 clock cycles).	
			TXFIFO Flush	
5	TXFFLU	R/S	This bit is used to refresh one or the whole TXFIFO. Before writing to this bit, it is required to ensure that the module does not perform read and write operation to TXFIFO.	
			TXFIFO Number	
10:6	TXFNUM	R/W	Refresh the FIFO number with TXFIFO refresh bits, and these bits can only be changed after the refresh TXFFIO is cleared to 0.	
				In master mode: 00000: Refresh non-periodic TXFIFO

Field	Name	R/W	Description
			00001: Refresh periodic TXFIFO
			10000: Refresh all TXFIFO
			In device mode:
			00000: Refresh TXFIFO 0
			00001: Refresh TXFIFO 1
			00101: Refresh TXFIFO 15
			10000: Refresh all TXFIFO
30:11			Reserved
31	AHBMIDL	R	AHB Master Idle
31		K	This bit indicates whether the AHB master device is idle.

27.3.6 Full-speed OTG module interrupt register (OTG_FS_GCINT)

Offset address: 0x14 Reset value: 0x0400 0020

In order to avoid generating interrupts before initialization, the software must clear this register to zero before enabling the interrupt bit.

Field	Name	R/W	Description
0	CURMOSEL	R	Current Mode of Operation Select 0: Device mode 1: Master mode
1	MMIS	RC_W1	Mode Mismatch Interrupt This bit will be set to 1 when accessing the following registers: Access the master mode register in device mode Access the device mode register in master mode
2	OTG	R	OTG Interrupt When this bit is set to 1, it indicates that an OTG protocol event has occurred. By reading OTG_FS_GINT register, determine the event that causes the OTG interrupt. This bit can be cleared to zero only after the corresponding bit of the register is cleared.
3	SOF	RC_W1	Start of Frame Interrupt When this bit is set: In master mode, it indicates that USB has transmitted one SOF (FS) or Keep-Alive (LS); In device mode, it indicates that USB has received one SOF, and the current frame number can be obtained by reading the device state register. An interrupt will be generated only when running in FS mode.
4	RXFNONE	R	RXFIFO Non-empty Interrupt This bit indicates that there are still packets in RXFIFO that have not been read.
5	NPTXFEM	R	Non-periodic TXFIFO Empty Interrupt This interrupt will be triggered when the non-periodic TXFIFO is not empty and there is space for writable entries in the request queue. Note: It can be accessed only in master mode

Field	Name	R/W	Description		
6	GINNPNAKE	R	Global IN Non-periodic NAK Effective Interrupt This bit indicates that GINAKSET bit of OTG_FS_DCTRL register is valid; this bit can be cleared by clearing GINAKCLR bit of OTG_FS_DCTRL register. As the priority of STALL is higher than that of NAK bit, generation of this interrupt cannot mean that USB has sent NAK signal. Note: It can be accessed only in device mode		
7	GONAKE	R	Global OUT NAK Effective Interrupt This bit indicates that GONAKSET bit of OTG_FS_DCTRL register is valid; this bit can be cleared by clearing GONALCLR bit of OTG_FS_DCTRL. Note: It can be accessed only in device mode		
9:8			Reserved		
10	ESUS	RC_W1	Early Suspend Interrupt When USB has been idle for 3ms, this bit will be set to 1. Note: It can be accessed only in device mode		
11	USBSUS	RC_W1	USB Suspend Interrupt When USB suspending is detected, this bit will be set to 1; when USB has been idle for 3ms, it will enter pending state. Note: It can be accessed only in device mode		
12	USBRST	RC_W1	USB Reset Interrupt This bit will be set to 1 when reset is detected on USB. Note: It can be accessed only in device mode		
13	ENUMD	RC_W1	Enumeration Done Interrupt This bit will be set to 1 when speed enumeration is completed. Note: It can be accessed only in device mode		
14	ISOPD	RC_W1	Isochronous OUT Packet Dropped Interrupt When the RXFIFO space is insufficient and the module cannot write synchronous OUT data packet to RXFIFO, this bit will be set to 1. Note: It can be accessed only in device mode		
15	EOPF	RC_W1	End of Periodic Frame Interrupt This bit indicates that the current frame has reached the period specified by PFITV bit of OTG_FS_DCFG register. Note: It can be accessed only in device mode		
17:16	Reserved				
18	INEP	R	IN Endpoint Interrupt This bit will be set to 1 when a pending interrupt occurs to one IN endpoint Determine the number of IN endpoint to which an interrupt occurs by reading OTG_FS_DAEPINT register, and determine the causes of the interrupt by reading OTG_FS_DIEPINTx register. To clear this bit, first clear the corresponding state bit of OTG_FS_DIEPINTx register. Note: It can be accessed only in device mode		

Field	Name	R/W	Description			
			OUT Endpoint Interrupt This bit will be set to 1 when a pending interrupt occurs to one OUT endpoint			
19	ONEP	R	Determine the number of OUT endpoint to which an interrupt occurs by reading OTG_FS_DAEPINT register, and determine the causes of the interrupt by reading OTG_FS_DOEPINTx register.			
			To clear this bit, first clear the corresponding state bit of OTG_FS_DOEPINTx register.			
			Note: It can be accessed only in device mode			
			Incomplete Isochronous IN Transfer Interrupt			
20	IIINTX	RC_W1	This bit will be set to 1 when the transmission on at least one synchronous IN endpoint in the current frame is not completed.			
			This interrupt is triggered at the same time with EOPF.			
			Note: It can be accessed only in device mode			
			Incomplete Periodic Transfer Interrupt			
			When this bit is set to 1, the interrupts indicated by it are different in different modes.			
21	IP_OUTTX	RC_W1	In the master mode, if the periodic transaction scheduled to be completed in the current frame is still pending (i.e. incomplete), the incomplete periodic transmission interrupt will be triggered.			
			In device mode, when the transmission on at least one synchronous OUT endpoint in the current frame is not completed, interrupt of incomplete OUT synchronous transmission will be triggered, and this interrupt will be triggered at the same time with EOPF.			
23:22		Reserved				
			Host Port Interrupt			
24	HPORT	R	This bit will be set to 1 when the state of full-speed OTG controller port changes in master mode.			
			Note: It can be accessed only in master mode			
			Host Channels Interrupt			
25	HCHAN	R	This bit will be set to 1 when a suspended interrupt is generated on host channel.			
			Note: It can be accessed only in master mode			
			Periodic TXFIFO Empty Interrupt			
26	PTXFE	R	This interrupt will be triggered when the periodic TXFIFO is empty and there is space for writable entries in the request queue. Note: It can be accessed only in master mode			
27	Reserved					
			Connector ID Status Change Interrupt			
28	CINSTSCHG	RC_W1	This bit will be set to 1 when the state of connector ID line changes.			
			Note: It can be accessed in both master and device mode			
			Device Disconnect Interrupt			
29	DEDIS	RC_W1	This bit will be set to 1 when device disconnection is detected.			
			Note: It can be accessed only in master mode			

Field	Name	R/W	Description
30	SREQ	RC_W1	Session Request/New Session Interrupt In different modes, the conditions for triggering this interrupt are: Session request is detected in master mode In device mode, V _{BUS} is within the range of B-device
31	RWAKE	RC_W1	Resume/Remote Wakeup Interrupt In different modes, the conditions for triggering this interrupt are: Remote wakeup signal is detected on USB in master mode Resume signal is detected on USB bus in device mode

27.3.7 Full-speed OTG module interrupt mask register (OTG_FS_GINTMASK)

Offset address: 0x18
Reset value: 0x0000 0000

This register is used to mask the interrupt, but the corresponding bit of the interrupt register will still be set to 1.

Field	Name	R/W	Description		
0		Reserved			
1	MMISM	R/W	Mode Mismatch Interrupt Mask 0: Mask 1: Not mask		
2	OTGM	R/W	OTG Interrupt Mask 0: Mask 1: Not mask		
3	SOFM	R/W	Frame Start Interrupt Mask 0: Mask 1: Not mask		
4	RXFNONEM	R/W	RXFIFO Nonempty Interrupt Mask 0: Mask 1: Not mask		
5	NPTXFEMM	R/W	Nonperiodic TXFIFO Empty Interrupt Mask 0: Mask 1: Not mask Note: It can be accessed only in master mode		
6	GINNPNAKEM	R/W	Global IN Nonperiodic NAK Effective Interrupt Make 0: Mask 1: Not mask Note: It can be accessed only in device mode		
7	GONAKEM	R/W	Global OUT NAK Effective Interrupt Mask 0: Mask 1: Not mask Note: It can be accessed only in device mode		
9:8	Reserved				
10	ESUSM	R/W	Early Suspend Interrupt Mask 0: Mask		

Field	Name	R/W	Description
			1: Not mask
			Note: It can be accessed only in device mode
			USB Suspend Interrupt Mask
11	USBSUSM	R/W	0: Mask
''	OSBSOSIVI	IN/VV	1: Not mask
			Note: It can be accessed only in device mode
			USB Reset Interrupt Mask
12	USBRSTM	R/W	0: Mask
			1: Not mask
			Note: It can be accessed only in device mode
			Enumeration Done Interrupt Mask
13	ENUMDM	R/W	0: Mask
			1: Not mask
			Note: It can be accessed only in device mode
			Isochronous OUT Packet Dropped Interrupt Mask 0: Mask
14	ISOPDM	R/W	1: Not mask
			Note: It can be accessed only in device mode
			End of Periodic Frame Interrupt Mask 0: Mask
15	EOPFM	R/W	1: Not mask
			Note: It can be accessed only in device mode
16			Reserved
			Endpoint Mismatch Interrupt Mask
			0: Mask
17	EPMISM	R/W	1: Not mask
			Note: It can be accessed only in device mode
			IN Endpoint Interrupt Mask
18	INICOM	R/W	0: Mask
10	INEPM	FK/VV	1: Not mask
			Note: It can be accessed only in device mode
			OUT Endpoint Interrupt Mask
19	OUTEPM	R/W	0: Mask
10	OOTET W	10,00	1: Not mask
			Note: It can be accessed only in device mode
			Incomplete Isochronous IN Transfer Interrupt Mask
20	IIINTXM	R/W	0: Mask
			1: Not mask
			Note: It can be accessed only in device mode
			Incomplete Periodic Transfer Interrupt Mask
			In master mode, this bit controls whether to mask incomplete periodic transmission interrupt.
21	IP_OUTTXM	R/W	In device mode, this bit controls whether to mask the incomplete
			OUT synchronous transmission interrupt. 0: Mask
			1: Not mask
1		1	1. NOT HIGH

Field	Name	R/W	Description		
23:22	Reserved				
24	HPORTM	R/W	Host Port Interrupt Mask 0: Mask 1: Not mask Note: It can be accessed only in master mode		
25	НСНМ	R/W	Host Channels Interrupt Mask 0: Mask 1: Not mask Note: It can be accessed only in master mode		
26	PTXFEM	R/W	Periodic TXFIFO Empty Interrupt Mask 0: Mask 1: Not mask Note: It can be accessed only in master mode		
27	Reserved				
28	CIDSTSCM	R/W	Connector ID Status Change Interrupt Mask 0: Mask 1: Not mask Note: It can be accessed in both master and device mode		
29	DEDISM	R/W	Device Disconnect Interrupt Mask 0: Mask 1: Not mask Note: It can be accessed only in device mode		
30	SREQM	R/W	Session Request/New Session Interrupt Mask 0: Mask 1: Not mask		
31	RWAKEM	R/W	Resume/Remote Wakeup Interrupt Mask 0: Mask 1: Not mask Note: It can be accessed in both master and device mode		

27.3.8 Full-speed OTG read debug receive state register/full-speed OTG state read and pop register (OTG_FS_GRXSTS/OTG_FS_GRXSTSP)

Read offset address: 0x1C Pop offset address: 0x20 Reset value: 0x0000 0000

Master mode

Field	Name	R/W	Description
3:0	CHNUM	R	Channel Number This bit indicates the received data is transmitted by which channel.
14:4	BCNT	R	Byte Count This bit indicates the byte count of received IN data packet.

Field	Name	R/W	Description
16:15	DPID	R	Data Packet ID This bit indicates the received data packet ID (PID) 00: DATA0 10: DATA1 01: DATA2 11: MDATA
20:17	PSTS	R	Packet Status This bit indicates the status of the received data packet. 0010: Received IN data packet 0011: IN transmission completed 0101: Data synchronization error 0111: Channel stop Others: Reserved
31:21	Reserved		

Device mode

Field	Name	R/W	W Description	
3:0	EPNUM	R	Endpoint Number This bit indicates the received data is transmitted by which endpoint.	
14:4	BCNT	R	Byte Count This bit indicates the byte count of received data packet	
16:15	DPID	R	Data PID This bit indicates the received data packet ID (PID) 00: DATA0 10: DATA1 01: DATA2 11: MDATA	
20:17	PSTS	R	Packet Status This bit indicates the status of received data packet 0001: Global OUT NAK 0010: Received OUT data packet 0011: OUT transmission completed 0100: SETUP event completed 0110: Received SETUP data packet Others: Reserved	
24:21	FNUM	R	Frame Number These bits are valid when synchronous OUT endpoint is supported. These bits are the 4 least significant bits of the packet frame number received on the USB	
31:25	Reserved			

27.3.9 Full-speed OTG receive FIFO size register (OTG_FS_GRXFIFO)

Offset address: 0x24 Reset value: 0x0000 0200

Field	Name	R/W	Description
15:0	RXFDEP	R/W	RXFIFO Depth RXFIFO is in word, and the depth range is: 16~256.
31:16	Reserved		

27.3.10 Full-speed OTG TXFIFO configuration register (OTG_FS_GTXFCFG)

Offset address: 0x28 Reset value: 0x0000 0200

Master mode

Field	Name	R/W	Description
15:0	NPTXSA	R/W	Nonperiodic TXFIFO RAM Start Address This bit indicates the start address of non-periodic TXFIFO RAM.
31:16	NPTXFDEP	R/W	Nonperiodic TXFIFO Depth TXFIFO is in word, and the depth range is: 16~256.

Device mode

Field	Name	R/W	Description
15:0 EPTXSA	EDTYSΔ	R/W	Endpoint0 TXFIFO RAM Start Address
	LITAGA		This bit indicates the start address of TXFIFO RAM of endpoint 0.
31:16	EPTXFDEP	R/W	Endpoint0 TXFIFO Depth
			TXFIFO is in word, and the depth range is: 16~256.

$27.3.11\,\text{Full-speed}$ OTG non-periodic TXFIFO queue state register (OTG_FS_GNPTXFQSTS)

Offset address: 0x2C Reset value: 0x0008 0200

Field	Name	R/W	Description
15:0	NPTXFSA	R	Nonperiodic TXFFIO Space Available These bits indicate the size of available space of non-periodic TXFIFO. (In 32-bit words) 0x0: Non-periodic TXFIFO is full 0x1: 1 word 0x2: 2 words 0xn: n words are available (0≤n≤256) Others: Reserved
23:16	NPTXRSA	R	Non-periodic Transmit Request Space Available This bit indicates the available space size of non-periodic transmit request queue. In master mode: Save IN and OUT requests In device mode: There is only IN request 0x0: The queue is full 0x0: 1 position 0x2: 2 positions

Field	Name	R/W	Description	
			 0xn: n positions are available (0≤n≤8) Others: Reserved	
30:24	NPTXRQ	R	Nonperiodic Transmit Request Queue Bit 24: Terminate (last data selected for channel/endpoint) Bit [26:25]: 00: IN/OUT token 01: The transmit data packet length is 0 (IN in device mode/OUT in master mode) 10: PING/CPLIT token 11: Stop channel instruction Bit [30:27]: Channel/endpoint number	
31	Reserved			

27.3.12 Full-speed OTG general module configuration register (OTG_FS_GGCCFG)

Offset address: 0x38 Reset value: 0x0000 0000

Field	Name	R/W	Description
15:0	Reserved		
	PWEN	R/W	Power Down Enable
16			This bit is used to activate the transceiver.
10			0: Power down is activated
			1: Power down inactivated (activate the transceiver)
17	Reserved		
		R/W	A Device V _{BUS} Sensing Enable
18	ADVBSEN		0: Disable
			1: Enable
	BDVBSEN	R/W	B Device V _{BUS} Sensing Enable
19			0: Disable
			1: Enable
	SOFPOUT	SOFPOUT R/W	SOF Pulse Available on PAD Output
20			This bit selects whether SOF pulse can be output from PAD.
20			0: No
			1: Yes
21	VBSDIS	VBSDIS R/W	V _{BUS} Sensing Disable
			0: Enable V _{BUS} sensing
			1: Disable V _{BUS} sensing
31:22	Reserved		

27.3.13 Full-speed OTG module ID register (OTG_FS_GCID)

Offset address: 0x3C Reset value: 0x0000 1100

Field	Name	R/W	Description
31:0	PID	R/W	Product ID Product ID can be programmed by this bit.

27.3.14 Full-speed OTG host periodic TXFIFO size register (OTG_FS_GHPTXFSIZE)

Offset address: 0x100 Reset value: 0x0200 0600

Field	Name	R/W	Description
15:0	HPDTXFSA	R/W	Host Periodic TXFIFO Start Address
31:16	HPDTXFDEP	HPDTXFDEP R/W	Host Periodic TXFIFO Depth
31.10		PDIXFDEP R/W	TXFIFO is in word, and the minimum value is 16.

27.3.15 Full-speed OTG device IN endpoint TXFIFO size register x (OTG_FS_DIEPTXFIFOx) (x=1~3)

Offset address: 0x104+4(x-1) Reset value: 0x0200 0400

x is FIFO number.

Field	Name	R/W	Description
15:0	INEPTXFRSA	R/W	IN Endpoint TXFIFOx Transmit RAM Start Address These bits indicate the start address of the IN endpoint TXFIFOx RAM and need to be aligned with the 32-bit memory.
31:16	INEPTXFDEP	R/W	IN Endpoint TXFIFO Depth TXFIFO is in word, and the minimum value is 16.

27.4 OTG_FS host mode register address mapping

Table 135 OTG_FS Host Mode Register Address Mapping

Register name	Description	Offset address
OTG_FS_HCFG	Full-speed OTG host configuration register	0x400
OTG_FS_HFIVL	Full-speed OTG host frame interval register	0x404
OTG_FS_HFIFM	Full-speed OTG host frame information register	0x408
OTG_FS_HPTXSTS	Full-speed OTG host periodic transmission state register	0x410
OTG_FS_HACHINT	Full-speed OTG host all-channel interrupt register	0x414
OTG_FS_HACHIMASK	Full-speed OTG host all-channel interrupt mask register	0x418
OTG_FS_HPORTCSTS	Full-speed OTG host port control state register	0x440
OTG_FS_HCHX	Full-speed OTG host channel-X characteristics register (X=07)	0x500+20*X
OTG_FS_HCHINTX	Full-speed OTG host channel-X interrupt register (X=07)	0x508+20*X

Register name	Description	Offset address	
OTG FS HCHIMASKX	Full-speed OTG host channel-X interrupt mask	0x50C+20*X	
OTG_I G_ITCHIMASKX	register (X=07)		
OTO ES HOUTSIZEV	Full-speed OTG host channel-X transmission size	0vE10+20*V	
OTG_FS_HCHTSIZEX	register (X=07)	0x510+20*X	

27.5 OTG_FS host mode register functional description

27.5.1 Full-speed OTG host configuration register (OTG_FS_HCFG)

Offset address: 0x400 Reset value: 0x0000 0000

Field	Name	R/W	Description	
1:0	PHYCLKSEL	R/W	FS/LS PHY Clock Select In FS mode: 01: PHY clock is 48MHz Others: Reserved In LS mode: 00: Reserved 01: PHY clock is 48MHz 10: PHY clock is 6MHz 11: Reserved Note: Software reset is required after the value of this bit is changed.	
2	FSSPT	R	FS Support After the host is connected to the device, select whether the host follows the maximum speed supported by the device. If this bit is set to 1, even if the device supports HS mode, the host supports FS at most. 0: The host can support HS/FS/LS 1: The host only supports FS/LS	
31:3	Reserved			

27.5.2 Full-speed OTG host frrame interval register (OTG_FS_HFIVL)

Offset address: 0x404 Reset value: 0x0000 EA60

This register can be edited only after the port (PEN bit of OTG_FS_HPORTCSTS register is set to 1) is enabled.

Field	Name	R/W	Description		
15:0	FIVL	R/W	Frame Interval This bit is used to control the time interval between two continuous SOF (FS), micro-SOF (HS), and Keep-Alive (LS). Time interval=frame duration×PHY clock		
31:16		Reserved			

27.5.3 Full-speed OTG host frrame information register (OTG_FS_HFIFM)

Offset address: 0x408 Reset value: 0x0000 3FFF

Field	Name	R/W	Description
15:0	FNUM	R	Frame Number This bit is used to indicate the current frame number. This bit will be cleared to zero when reaching 0x3FFF.
31:16	FRTIME	R	Frame Remaining Time This bit is used to indicate the current remaining time of frame. The initial value is the value of OTG_FS_HFIVL, and every time passing one PHY clock, the value of this bit will decrease by 1, and when reaching 0, this bit will reload the value of frame interval.

27.5.4 Full-speed OTG host periodic transmission state register (OTG_FS_HPTXSTS)

Offset address: 0x410 Reset value: 0x0008 0100

Neset value. 0x0000 0100			
Field	Name	R/W	Description
15:0	FSPACE	R/W	Periodic Transmit Data FIFO Available Space This bit indicates the idle space of periodic TXFIFO (in 32-bit word). 0x0: TXFIFO is full 0x1: 1 word 0x2: 2 words 0xn: n words are available (0 <n<512) others:="" reserved<="" td=""></n<512)>
23:16	QSPACE	R	Periodic Transmit Request Queue Available Space This bit indicates the available space of periodic transmit request queue. 0x0: The queue is full 0x1: 1 position 0x2: 2 positions 0xn: n positions are available (0 <n<8) others:="" reserved<="" td=""></n<8)>
31:24	QTOP	R	Top of the Periodic Transmit Request Queue This bit indicates the transaction being processed in periodic transmit request queue. [24]: End [26:25]: Type 00: IN/OUT 01: Zero-length data packet 11: Disable channel command [30:27]: Channel/endpoint number [31]: Odd/even frame 0: Even frame 1: Odd frame

27.5.5 Full-speed OTG host all-channel interrupt register (OTG_FS_HACHINT)

Offset address: 0x414 Reset value: 0x0000 0000

Field	Name	R/W	Description		
15:0	ACHINT	R	All Channels Interrupts No. X bit represents interrupt of Channel X. Up 16 channels.		
31:16	Reserved				

27.5.6 Full-speed OTG host all-channel interrupt mask register (OTG_FS_HACHIMASK)

Offset address: 0x418
Reset value: 0x0000 0000

Field	Name	R/W	Description
15:0	ACHIMASK	R/W	All Channels Interrupts Mask No. X bit represents interrupt mask of Channel X. Up 16 channels. 0: Mask 1: Not mask
31:16	Reserved		

27.5.7 Full-speed OTG host port control state register (OTG_FS_HPORTCSTS)

Offset address: 0x440 Reset value: 0x0000 0000

Field	Name	R/W	Description
0	PCNNTFLG	R	Port Connect Flag 0: The port is not connected 1: Port connected
1	PCINTFLG	RC_W1	Port Connect Interrupt Flag This bit will be set to 1 when the port is connected to the device.
2	PEN	RC_W0	Port Enable After the port resets the sequence, the program cannot write to this bit, and can only enable the port through the module. If this bit is cleared to zero, the port will be disabled. 0: Disable 1: Enable
3	PENCHG	RC_W1	PEN Bit Change This bit will be set to 1 when PEN bit of this register changes.
4	POVC	R	Port Overcurrent This bit indicates whether this port is overloaded. 0: No overload 1: Overload
5	POVCCHG	RC_W1	POVC Bit Change This bit will be set to 1 when POVC bit changes.

Field	Name	R/W	Description
6	PRS	R/W	Port Resume 0: Resume signal is not driven 1: Resume signal is driven
7	PSUS	R/S	Port Suspend 0: Port is not suspended 1: Port is suspended
8	PRST	R/W	Port Reset The prot can start reset only when this bit is set to 1 for over 10ms. 0: Not in reset state 1: In reset state
9			Reserved
11:10	PDLSTS	R	Port Data Line Status This bit indicates the logic level of the USB data line at this time. [10] bit means OTG_FS_FS_DP [11] bit means OTG_FS_FS_DM
12	PP	R/W	Port Power This bit controls the power-on of the port. If there is overload, the port will power down (clear 0). 0: Power down 1: Power on
16:13	PTSEL	R/W	Port Test Mode Select 0000: Test is disabled 0001: Test_J 0010: Test_K 0011: Test_SE0_NAK 0100: Test_Packet 0101: Test_Force_Enable Others: Reserved
18:17	PSPDSEL	R	Port Speed Select 01: Full speed 10: Low speed 11: Reserved
31:19			Reserved

27.5.8 Full-speed OTG host channel-X characteristics register (OTG_FS_HCHX) (X=0...7)

Offset address: 0x500+20*X Reset value: 0x0000 0000

Field	Name	R/W	Description
10:0	MAXPSIZE	R/W	Maximum Data Packet Size This bit indicates the maximum data packet size of the device endpoint connected to the host.
14:11	EDPNUM	R/W	Endpoint Number

Field	Name	R/W	Description
			This bit indicates the number of the device endpoint connected to the host.
15	EDPDRT	R/W	Endpoint Direction 0: OUT 1: IN
16			Reserved
17	LSDV	R/W	Low-speed Device This bit indicates the low-seed device is connected.
19:18	EDPTYP	R/W	Endpoint Type This bit is used to select the transmission type of endpoint. 00: Control 01: Synchronous 10: Batch 11: Interrupt
21:20	CNTSEL	R/W	Count Function Select In this register, this bit is only used to indicate the number of transactions that must be executed by the periodic endpoint per frame. 00: Reserved 01: 1 10: 2 11: 3
28:22	DVADDR	R/W	Device Address This bit indicates the device address connected to the host.
29	ODDF	R/W	Odd Frame This bit controls whether the OTG host transmits in odd frame. 0: Even frame 1: Odd frame Note: It applies only to periodic transactions.
30	CHINT	R/S	Channel Interrupt 0: Not interrupt 1: Stop transmitting data through the channel
31	CHEN	R/S	Channel Enable 0: Disable 1: Enable

27.5.9 Full-speed OTG host channel-X interrupt register (OTG_FS_HCHINTX) (X=0...7)

Offset address: 0x508+20*X Reset value: 0x0000 0000

Field	Name	R/W	Description	
0	TSFCMPN	RC_W1	Transfer Complete Normally	
1	TSFCMPAN	RC_W1	Transfer Complete Abnormally	
2	Reserved			

Field	Name	R/W	Description		
3	RXSTALL	RC_W1	STALL Response Received Interrupt		
4	RXNAK	RC_W1	NAK Response Received Interrupt		
5	RXTXACK	RC_W1	ACK Response Received/Transmitted Interrupt		
6			Reserved		
7	TERR	RC_W1	Transaction Error Indicate that one of the following error occurs: CRC failure Timeout Bit stuffing error EOP error		
8	BABBLE	RC_W1	Babble Error		
9	FOVR	RC_W1	Frame Overrun Error		
10	DTOG	RC_W1	Data Toggle Error		
31:11	Reserved				

27.5.10 Full-speed OTG host channel-X interrupt mask register (OTG_FS_HCHIMASKX) (X=0...7)

Offset address: 0x50C+20*X Reset value: 0x0000 0000

Field	Name	R/W	Description
0	TSFCMPNM	R/W	Transfer Complete Normally Mask 0: Mask 1: Not mask
1	TSFCMPANM	R/W	Transfer Complete Abnormally Mask 0: Mask 1: Not mask
2			Reserved
3	RXSTALLM	R/W	STALL Response Received Interrupt Mask 0: Mask 1: Not mask
4	RXNAKM	R/W	NAK Response Received Interrupt Mask 0: Mask 1: Not mask
5	RXTXACKM	R/W	ACK Response Received/Transmitted Interrupt 0: Mask 1: Not mask
6	RXNYETM	R/W	NYET Response Received Interrupt Mask 0: Mask 1: Not mask

Field	Name	R/W	Description
			Transaction Error Mask
7	TERRM	R/W	0: Mask
			1: Not mask
			Babble Error Mask
8	BABBLEM	R/W	0: Mask
			1: Not mask
			Frame Overrun Error Mask
9	FOVRM	R/W	0: Mask
			1: Not mask
			Data Toggle Error Mask
10	DTOGM	R/W	0: Mask
			1: Not mask
31:11	Reserved		

27.5.11 Full-speed OTG host channel-X transmission size register (OTG_FS_HCHTSIZEX) (X=0...7)

Offset address: 0x510+20*X Reset value: 0x0000 0000

Field	Name	R/W	Description
18:0	TSFSIZE	R/W	 Transfer Size For IN: The value of this bit is the size reserved for the transmission buffer, which is generally an integer multiple of the maximum data packet. For OUT: The value of this bit determines the number of bytes to be transmitted by the host.
28:19	PCKTCNT	R/W	Packet Count This bit indicates the value of the transmitted or received data packet. For each data packet transmitted, the value of this bit decreases by 1. When it decreases to 0, it means that the transmission is completed.
30:29	DATAPID	R/W	Data PID This bit is initial PID of data communication. 00: DATA0 01: DATA2 10: DATA1 11: MDATA (controlled transmission)/SETUP (uncontrolled transmission)
31	Reserved		

27.6 OTG_FS device mode register address mapping

Table 136 OTG_FS Device Mode Register Address Mapping

Register name	Description	Offset address
OTG_FS_DCFG	Full-speed OTG device configuration register	0x800

Register name	Description	Offset address
OTG_FS_DCTRL	Full-speed OTG device control register	0x804
OTG_FS_DSTS	Full-speed OTG device state register	0x808
OTG_FS_DINIMASK	Full-speed OTG device IN endpoint interrupt mask register	0x810
OTG_FS_DOUTIMASK	Full-speed OTG device OUT endpoint interrupt mask register	0x814
OTG_FS_DAEPINT	Full-speed OTG device all-endpoint interrupt register	0x818
OTG_FS_DAEPIMASK	Full-speed OTG device all-endpoint interrupt mask register	0x81C
OTG_FS_DVBUSDTIM	Full-speed OTG device VBUS release time register	0x828
OTG_FS_DVBUSPTIM	Full-speed OTG device VBUS pulse time register	0x82C
OTG_FS_DIEIMASK	Full-speed OTG device IN endpoint FIFO empty interrupt mask register	0x834
OTG_FS_DIEPCTRL0	Full-speed OTG device IN endpoint 0 control register	0x900
OTG_FS_DIEPCTRLx	Full-speed OTG device IN endpoint x control register	0x900+20x
OTG_FS_DIEPINTx	Full-speed OTG device IN endpoint x interrupt register (x=03)	0x908+20x
OTG_FS_DIEPTRS0	Full-speed OTG device IN endpoint 0 transmission size register	0x910
OTG_FS_DIEPTRSx	Full-speed OTG device IN endpoint x transmission size register (x=13)	0x910+20x
OTG_FS_DITXFSTSx	Full-speed OTG device IN endpoint x TXFIFO state register (x=03)	0x918+20x
OTG_FS_DOEPCTRL0	Full-speed OTG device OUT endpoint 0 control register	0xB00
OTG_FS_DOEPCTRLx	Full-speed OTG device OUT endpoint x control register (x=13)	0xB00+20x
OTG_FS_DOEPINTx	Full-speed OTG device OUT endpoint x interrupt register (x=03)	0xB08+20x
OTG_FS_DOEPTRS0	Full-speed OTG device OUT endpoint 0 transmission size register	0xB10
OTG_FS_DOEPTRSx	Full-speed OTG device OUT endpoint x transmission size register (x=13)	0xB10+20x

27.7 OTG_FS device mode register functional description

27.7.1 Full-speed OTG device configuration register (OTG_FS_DCFG)

Offset address: 0x800 Reset value: 0x0220 0000

Field	Name	R/W	Description
1:0	DSPDSEL	R/W	Device Speed Select This bit selects the maximum enumeration speed of the device connected to the host, 11: FS (48MHz) Others: Reserved
2	SENDOUT	R/W	Transmit the Received OUT Packet on Nonzero-length Status 0: After receiving the OUT data packet, transmit the data packet to the application program, and reply the handshake signal according to the NAK and STALL bits of the endpoint 1: After receiving the OUT data packet (non-zero length), reply the STALL handshake signal
3	Reserved		
10:4	DADDR	R/W	Device Address This bit is the address of storage device, and the parameters are from SetAddress command.
12:11	PFITV	R/W	Periodic (Micro) Frame Interval This bit is configured to determine the time point of the periodic frame interrupt program, and can determine whether the synchronous communication of the frame is completed. 00: 80% of frame interval 01: 85% of frame interval 10: 90% of frame interval
31:13	Reserved		

27.7.2 Full-speed OTG device control register (OTG_FS_DCTRL)

Offset address: 0x804 Reset value: 0x0000 0000

Field	Name	R/W	Description
			Remote Wakeup Signaling
0	RWKUPS	R/W	The program wakes up the USB host by setting this bit to 1 to make the module exit the suspended state.
			Note: According to the agreement, after this bit is set to 1, it should be cleared to 0 within 1~15ms.
1	SDCNNT	R/W	Soft Disconnect Soft disconnect means that the host cannot receive the signal of "Device connected", and the device cannot receive the signal. 0: Normal. The host can receive device connection event 1: Soft disconnection
2	GINAKSTS	R	Global IN NAK Status This bit determines whether to reply the handshake signal according to the data availability in TXFIFO. 0: Yes 1: No, all non-periodic IN endpoints reply handshake signal

Field	Name	R/W	Description
3	GONAKSTS	R	Global OUT NAK Status 0: Transmit the handshake signal according to FIFO state and NAK and STALL bit state 1: No data is received, and all data packets except the SETUP transaction reply the NAK signal
6:4	TESTSEL	R/W	Test Mode Select 000: Disable the test 001: Test_J 010: Test_K 011: Test_SE0_NAK 100: Test_Packet 101: Test_Force_Enable Others: Reserved
7	GINAKSET	W	Global IN NAK Setup Set the global non-periodic IN NAK to 1 to make the non-periodic IN endpoint transmit NAK signal. This bit can be set to 1 only when GINNPNAKE bit of OTG_FS_GCINT register is cleared to 0.
8	GINAKCLR	W	Global IN NAK Clear Clear the global non-periodic IN NAK to 0.
9	GONAKSET	W	Global OUT NAK Setup Set the global OUT NAK to 1 to make OUT endpoint transmit NAK signal. This bit can be set to 1 only when GONAKE bit of OTG_FS_GCINT register is cleared to 0.
10	GONAKCLR	W	Global OUT NAK Clear Clear the global OUT NAK to 0.
11	POPROGCMP	R/W	Power-on Programming Complete This bit indicates that the programming operation is completed after the register is awakened.
31:12			Reserved

27.7.3 Full-speed OTG device state register (OTG_FS_DSTS)

Offset address: 0x808 Reset value: 0x0000 0010

Field	Name	R/W	Description
0	SUSSTS	R	Suspend Status When the USB bus has been idle for more than 3ms, the module will enter the suspended state, and this bit will be set to 1. When there is an activity on the USB line or the module receives a remote wake-up signal, the module will exit the suspended state.
2:1	ENUMSPD	R	Enumerated Speed Enumeration speed of full-speed OTG after chirp sequence detection. 11: Full speed (48MHz) Others: Reserved

Field	Name	R/W	Description			
3	ERTERR	R	Erratic Error If any irregular error occurs, this bit will be set to 1. At this time, communication can be resumed only by performing soft disconnection.			
7:4		Reserved				
21:8	SOFNUM	NUM R Frame Number of the Received SOF				
31:22	Reserved					

27.7.4 Full-speed OTG device IN endpoint interrupt mask register (OTG_FS_DINIMASK)

Offset address: 0x810 Reset value: 0x0000 0000

Field	Name	R/W	Description	
			Transfer Completed Interrupt Mask	
0	TSFCMPM	R/W	0: Mask	
			1: Not mask	
			Endpoint Disable Interrupt Mask	
1	EPDISM	R/W	0: Mask	
			1: Not mask	
2	Reserved			
			Timeout Interrupt Mask	
3	TOM	R/W	0: Mask	
			1: Not mask	
			IN Token Received when TxFIFO Empty Mask	
4	ITXEMPM	R/W	0: Mask	
			1: Not mask	
			IN Token Received with Endpoint Mismatch Mask	
5	IEPMMM	R/W	0: Mask	
			1: Not mask	
			IN Endpoint NAK Effective Mask	
6	IEPNAKEM	R/W	0: Mask	
			1: Not mask	
31:7			Reserved	

27.7.5 Full-speed OTG device OUT endpoint interrupt mask register (OTG_FS_DOUTIMASK)

Offset address: 0x814 Reset value: 0x0000 0000

Field	Name	R/W	Description
0	TSFCMPM	R/W	Transfer Completed Interrupt Mask 0: Mask 1: Not mask

Field	Name	R/W	Description		
			Endpoint Disable Interrupt Mask		
1	EPDISM	R/W	0: Mask		
			1: Not mask		
2		Reserved			
			SETUP Phase Complete Mask		
3	SETPCMPM	R/W	0: Mask		
			1: Not mask		
			OUT Token Received when Endpoint Disabled Mask		
4	OTXEMPM	R/W	0: Mask		
			1: Not mask		
31:5	Reserved				

27.7.6 Full-speed OTG device all-endpoint interrupt register (OTG_FS_DAEPINT)

Offset address: 0x818 Reset value: 0x0000 0000

Field	Name	R/W	Description
15:0	INEPINT	R	All IN Endpoint Interrupts No. X bit indicates interrupt of IN endpoint X. Up to 16 IN endpoints.
31:16	OUTEPINT	R	All OUT Endpoint Interrupts No. X bit indicates interrupt of OUT endpoint (X-16). Up to 16 OUT endpoints.

27.7.7 Full-speed OTG device all-endpoint interrupt mask register (OTG_FS_DAEPIMASK)

Offset address: 0x81C Reset value: 0x0000 0000

Field	Name	R/W	Description
15:0	AINM	R/W	All IN Endpoint Interrupts Mask No. X bit indicates interrupt mask of IN endpoint X. Up to 16 IN endpoints. 0: Mask 1: Not mask
31:16	AOUTM	R/W	All OUT Endpoint Interrupts Mask No. X bit indicates interrupt mask of OUT endpoint (X-16). Up to 16 OUT endpoints. 0: Mask 1: Not mask

27.7.8 Full-speed OTG device V_{BUS} release time register

(OTG_FS_DVBUSDTIM)

Offset address: 0x828 Reset value: 0x0000 17D7

Field	Name	R/W	Description		
15:0	VBUSDTIM	R/W	Device V _{BUS} Discharge Time Discharge time after V _{BUS} impulses during SRP period. Value=Discharge time (number of PHY clock)/1024		
31:16	Reserved				

27.7.9 Full-speed OTG device V_{BUS} pulse time register

(OTG FS DVBUSPTIM)

Offset address: 0x82C Reset value: 0x0000 05B8

Field	Name	R/W	Description	
11:0	VBUSPTIM	R/W	Device V _{BUS} Pulsing Time V _{BUS} pulse time during SRP. Value=Pulse time (number of PHY clock)/1024	
31:12	Reserved			

27.7.10 Full-speed OTG device IN endpoint FIFO empty interrupt mask register (OTG_FS_DIEIMASK)

Offset address: 0x834 Reset value: 0x0000 0000

Field	Name	R/W	Description		
15:0	INEM	R/W	IN Endpoint Tx FIFO Empty Interrupt Mask No. X bit indicates TXFE interrupt mask of IN endpoint X. Up to 16 IN endpoints. 0: Mask 1: Not mask		
31:16		Reserved			

27.7.11 Full-speed OTG device IN endpoint 0 control register (OTG_FS_DIEPCTRL0)

Offset address: 0x900 Reset value: 0x0000 0000

Field	Name	R/W	Description
1:0	MAXPS	R/W	Maximum Packet Size This bit configures the maximum data packet size of endpoint. 00: 64 bytes 01: 32 bytes 10: 16 bytes
14:2			11: 8 bytes Reserved
15	USBAEP	R	USB Active Endpoint This bit indicates whether the endpoint is activated in the current configuration and interface. This bit is always set to 1.

Field	Name	R/W	Description			
16			Reserved			
17	NAKSTS	R	NAK Status 0: The module replies non-NAK handshake signal according to the FIFO state 1: The module replies the NAK handshake signal on this endpoint. At this time, even if there is space in TXFIFO, the module will still stop transmitting data.			
19:18	EPTYPE	R	Endpoint Type This bit is set to 00 by hardware, indicating control type of the endpoint.			
20		•	Reserved			
21	STALLH	R/S	STALL Handshake The program can only set this bit to 1 and when the endpoint receives the SETUP token, this bit will be cleared to 0. The priority of STALL is higher than that of NAK.			
25:22	TXFNUM	R/W	TXFIFO Number Set a separate FIFO number for IN endpoint 0.			
26	NAKCLR	W	NAK Clear When performing write operation to this bit, the NAK bit of the endpoint 0 will be cleared to 0.			
27	NAKSET	W	NAK Set When performing write operation to this bit, the NAK bit will be set to 1.			
29:28	Reserved					
30	EPDIS	R	Endpoint Disable Data transmission on the endpoint can be stopped by setting this bit to 1. This bit needs to be cleared to 0 before the endpoint disable interrupt bit is set to 1; this bit can only be set to 1 after EPEN is set to 1.			
31	EPEN	R	Endpoint Enable After this bit is set to 1, the endpoint will start to transmit data. When any of the following interrupts is triggered, this bit will be cleared to 0: SETUP completed Disable endpoint Transmission completed			

27.7.12 Full-speed OTG device IN endpoint x control register (OTG_FS_DIEPCTRLx) (x=1~3, endpoint number)

Offset address: 0x900+0x20x Reset value: 0x0000 0000

Field	Name	R/W	Description
10:0	MAXPS	R/W	Maximum Packet Size This bit configures the maximum data packet size of endpoint. (in byte).

Field	Name	R/W	Description			
14:11	Reserved					
15	USBAEP	R/W	USB Active Endpoint This bit indicates whether the endpoint is activated in the current configuration and interface. After USB is reset, this bit will be cleared to 0 (except endpoint 0).			
16	EOF	R	Even Odd Frame This bit is used to indicate the frame number transmitted/received by the endpoint (for synchronization IN) or the PID of data packet (for interrupt/batch IN). Used for synchronous IN endpoints: 0: Even frame 1: Odd frame Endpoint Data PID Used for interrupt/batch IN endpoints: 0: DATA0 1: DATA1			
17	NAKSTS	R	NAK Status 0: The module replies non-NAK handshake signal according to the FIFO state 1: The module replies to the NAK handshake signal on this endpoint; at this time, for asynchronous IN: even if there is data available in TXFIFO, the module will still stop transmitting data; for synchronous IN, the module will transmit zero-length data packet even if there is data available in TXFIFO Note: The module always responds to the SETUP data packet through ACK handshake.			
19:18	EPTYPE	R/W	Endpoint Type 00: Control 01: Synchronous 10: Batch 11: Interrupt			
20		Г	Reserved			
21	STALLH	RW/RS	STALL Handshake For uncontrolled and non-synchronous IN endpoints (read/write mode is R/W): When this bit is set to 1, the device will reply STALL to all tokens from the USB host. This bit can only be cleared to 0 by software. Used for control endpoints (read/write mode is R/W): When this bit is set to 1, it means that the module receives SETUP token.			
25:22	TXFNUM	R/W	TXFIFO Number These bits indicate the FIFO number associated with the endpoint, and a separate FIFO number needs to be set for each valid IN endpoint			
26	NAKCLR	W	NAK Clear When performing write operation to this bit, the NAK bit of the endpoint will be cleared to 0.			

Field	Name	R/W	Description	
27	NAKSET	W	NAK Set When performing write operation to this bit, the NAK bit of the endpoint will be set to 1. This bit can control the transmission of NAK handshake signal.	
28	DPIDSET	W	 DATA0 PID Set Used for interrupt/batch IN endpoints: When performing write operation to this bit, PID will be set to DATA0. Even Frame Set Used for synchronous IN endpoints: When performing write operation to this bit, EOF will be set to even frame. 	
29	OFSET	W	Odd Frame Set It is used for synchronous IN endpoints. When performing write operation to this bit, EOF will be set to odd frame.	
30	EPDIS	R/S	Endpoint Disable Data transmission on the endpoint can be stopped by setting this bit to 1. This bit needs to be cleared to 0 before the endpoint disable interrupt bit is set to 1; this bit can only be set to 1 after EPEN is set to 1.	
31	EPEN	R/S	Endpoint Enable After this bit is set to 1, the endpoint will start to transmit data. When any of the following interrupts is triggered, this bit will be cleared to 0: SETUP completed Disable endpoint Transmission completed	

27.7.13 Full-speed OTG device IN endpoint x interrupt register (OTG_FS_DIEPINTx) (x=0~3, endpoint number)

Offset address: 0x908+0x20x; m=0~3

Reset value: 0x0000 0080

Read this register when ONEP bit of OTG_FS_GCINT register is set to 1; Read OTG_FS_DAEPINT register to obtain the accurate endpoint number of the device endpoint x interrupt register, and then read the register; only when the corresponding bit of the register is cleared to 0, can the corresponding bit of OTG_FS_DAEPINT register and OTG_FS_GCINT register be cleared to 0.

Field	Name	R/W	Description		
0	TSFCMP	RC_W1	Transfer Complete Interrupt This bit indicates that the transmission on the endpoint has been completed.		
1	EPDIS	RC_W1	Endpoint Interrupt Disable This bit means that the endpoint is disabled.		
2	Reserved				

Field	Name	R/W	Description				
3	ТО	RC_W1	Timeout Interrupt This bit is only applicable to the control IN endpoints, indicating that the response to the recently received IN token has timed out.				
4	ITXEMP	RC_W1	Receive IN Token Interrupt when FIFO is empty This bit is only applicable to non-periodic IN endpoints, indicating that IN token is received when the corresponding TXFIFO of the endpoint is empty.				
5		Reserved					
6	IEPNAKE	IN Endpoint NAK Effective This bit indicates that the module samples NAK, namely, the NAK bit of the IN endpoint has taken effect. This bit will be cleared to 0 when NAKCLR bit of OTG FS DIEPCTRLx register is written.					
7	TXFE	R	TXFIFO Empty Interrupt The interrupt will be generated when TXFIFO of this endpoint is empty.				
31:8	Reserved						

27.7.14 Full-speed OTG device IN endpoint 0 transmission size register (OTG_FS_DIEPTRS0)

Offset address: 0x910 Reset value: 0x0000 0000

This register can be modified only after EPEN bit of OTG_FS_DIEPCTRLx register is set to 1; this register can be read only when EPEN bit of

Field Name R/W Description **Endpoint Transfer Size** 6:0 **EPTRS** R/W This bit indicates the data size contained by endpoint 0 in one data transmission. 18:7 Reserved **Endpoint Packet Count** 20:19 **EPPCNT** R/W This bit indicates the number of data packets contained by endpoint 0 in one data transmission.

27.7.15 Full-speed OTG device IN endpoint x transmission size register (OTG_FS_DIEPTRSx) (x=1~3, endpoint number)

Offset address: 0x910+0x20x; x=1~3

Reset value: 0x0000 0000

31:21

This register can be modified only after EPEN bit of OTG FS DIEPCTRLx

Reserved

register is set to 1; this register can be read only when EPEN bit of

OTG FS DIEPCTRLx register is cleared to 0

OTG FS DIEPCTRLx register is cleared to 0

Field	Name	R/W	Description		
18:0	EPTRS	R/W	Endpoint Transfer Size This bit indicates the data size contained by endpoint x in one data transmission (in byte).		
28:19	EPPCNT	R/W	Endpoint Packet Count This bit indicates the number of data packets contained by endpoint x in one data transmission.		
30:29	TXDCNT	R/W	 Transmit Packet Count For periodic IN endpoints, this bit indicates the number of data packets that must be transmitted per frame on USB. For the calculation synchronization IN endpoint, this bit calculates the data PID of the endpoint. 01: 1 10: 2 11: 3 		
31	Reserved				

27.7.16 Full-speed OTG device IN endpoint x TXFIFO state register (OTG_FS_DITXFSTSx) (x=0~3, endpoint number)

Offset address: 0x918+0x20m; m=0~3

Field	Name	R/W	Description			
15:0	INEPTXFSA	R	IN Endpoint TXFIFO Space Available This bit indicates the available space of the IN endpoint TXFIFO (in word). 0x0: IN endpoint TXFIFO is full 0x1: 1 byte 0x2: 2 bytes 0xn: n bytes are available (0 <n<512) other="" reserved<="" td="" value:=""></n<512)>			
31:16	Reserved					

27.7.17 Full-speed OTG device OUT endpoint 0 control register (OTG_FS_DOEPCTRL0)

Offset address: 0xB00 Reset value: 0x0000 8000

Field	Name	R/W	Description		
1:0	MAXPS	R	Maximum Packet Size This bit configures the maximum data packet size of endpoint. 00: 64 bytes 01: 32 bytes 10: 16 bytes 11: 8 bytes		
14:2	Reserved				

Field	Name R/W Description				
i ieiu	Naille	IVV	<u> </u>		
15	USBAEP	R	USB Active Endpoint This bit indicates whether the endpoint is activated in the current configuration and interface. This bit is always set to 1.		
16			Reserved		
17	NAKSTS	R	NAK Status 0: The module replies non-NAK handshake signal according to the FIFO state 1: The module replies the NAK handshake signal on this endpoint. At this time, even if there is space in RXFIFO, the module will still stop receiving data.		
19:18	EPTYPE	R	Endpoint Type This bit is set to 00 by hardware, indicating control type of the endpoint.		
20	SNMEN	R/W	Snoop Mode Enable In snoop mode, the correctness of OUT data packets is not checked before they are transmitted to the storage area.		
21	STALLH	R/S	STALL Handshake The program can only set this bit to 1 and when the endpoint receives the SETUP token, this bit will be cleared to 0. The priority of STALL is higher than that of NAK.		
25:22	Reserved				
26	NAKCLR	W	NAK Clear When performing write operation to this bit, the NAK bit of the endpoint 0 will be cleared to 0.		
27	NAKSET	W	NAK Set When performing write operation to this bit, the NAK bit will be set to 1.		
29:28			Reserved		
30	EPDIS	R	Endpoint Disable Data transmission on the endpoint can be stopped by setting this bit to 1. This bit needs to be cleared to 0 before the endpoint disable interrupt bit is set to 1; this bit can only be set to 1 after EPEN is set to 1.		
31	EPEN	W	Endpoint Enable After this bit is set to 1, the endpoint will start to transmit data. When any of the following interrupts is triggered, this bit will be cleared to 0: SETUP completed Disable endpoint Transmission completed		

27.7.18 Full-speed OTG device OUT endpoint x control register (OTG_FS_DOEPCTRLx) (x=1~3, endpoint number)

Offset address: 0xB00+0x20x Reset value: 0x0000 0000

Field	Name	R/W	Description		
10:0	MAXPS	R/W	Maximum Packet Size This bit configures the maximum data packet size of endpoint. (in byte).		
14:11			Reserved		
15	USBAEP	R/W	USB Active Endpoint This bit indicates whether the endpoint is activated in the current configuration and interface. After USB is reset, this bit will be cleared to 0 (except endpoint 0).		
16	EOF	R	Even Odd Frame This bit is used to indicate the frame number transmitted/received by the endpoint (for synchronization IN) or the PID of data packet (for interrupt/batch IN). Used for synchronous IN endpoints: 0: Even frame 1: Odd frame Endpoint Data PID Used for interrupt/batch IN endpoints: 0: DATA0 1: DATA1		
17	NAKSTS	R	NAK Status 0: The module replies non-NAK handshake signal according to the FIFO state 1: The module replies the NAK handshake signal on this endpoint. At this time, for OUT endpoint, even if there is remaining space in RXFIFO, the module will still stop receiving data Note: The module always responds to the SETUP data packet through ACK handshake.		
19:18	EPTYPE	R/W	Endpoint Type 00: Control 01: Synchronous 10: Batch 11: Interrupt		
20	SNMEN	R/W	Snoop Mode Enable In snoop mode, the correctness of OUT data packets is not checked before they are transmitted to the storage area.		
21	STALLH	RW/RS	STALL Handshake For uncontrolled and non-synchronous IN endpoints (read/write mode is R/W): When this bit is set to 1, the device will reply STALL to all tokens from the USB host. This bit can only be cleared to 0 by software. Used for control endpoints (read/write mode is R/W): When this bit is set to 1, it means that the module receives SETUP token.		
25:22	Reserved				

Field	Name	R/W	Description
26	NAKCLR	W	NAK Clear When performing write operation to this bit, the NAK bit of the endpoint will be cleared to 0.
27	NAKSET	W	NAK Set When performing write operation to this bit, the NAK bit of the endpoint will be set to 1. This bit can control the transmission of NAK handshake signal.
28	DPIDSET	W	DATA0 PID Set Used for interrupt/batch IN endpoints: When performing write operation to this bit, PID will be set to DATA0. Even Frame Set Used for synchronous IN endpoints: When performing write operation to this bit, EOF will be set to even frame.
29	OFSET	W	Odd Frame Set Used for synchronous OUT endpoints: When performing write operation to this bit, EOF will be set to odd frame. Used for interrupt/batch OUT endpoints: When performing write operation to this bit, PID will be set to DATA1.
30	EPDIS	R/S	Endpoint Disable Data transmission on the endpoint can be stopped by setting this bit to 1. This bit needs to be cleared to 0 before the endpoint disable interrupt bit is set to 1; this bit can only be set to 1 after EPEN is set to 1.
31	EPEN	R/S	Endpoint Enable After this bit is set to 1, the endpoint will start to transmit data. When any of the following interrupts is triggered, this bit will be cleared to 0: SETUP completed Disable endpoint Transmission completed

27.7.19 Full-speed OTG device OUT endpoint x interrupt register (OTG_FS_DOEPINTx) (x=0~3, endpoint number)

Offset address: 0xB08+0x20m; m=0~3

Reset value: 0x0000 0080

Read this register when ONEP bit of OTG_FS_GCINT register is set to 1; Read OTG_FS_DAEPINTx register to obtain the accurate endpoint number of the device endpoint x interrupt register, and then read the register; only when the corresponding bit of the register is cleared to 0, can the corresponding bit of OTG_FS_DAEPINT register and OTG_FS_GCINT register be cleared to 0.

Field	Name	R/W	Description		
0	TSFCMP	RC_W1	Transfer Complete Interrupt This bit indicates that the transmission on the endpoint has been completed.		
1	EPDIS	RC_W1	Endpoint Interrupt Disable This bit means that the endpoint is disabled.		
2			Reserved		
3	SETPCMP	RC_W1	SETUP Phase Complete Interrupt This bit is only applicable to the control OUT endpoint, indicating that the SETUP phase has been completed. After an interrupt is generated, the received SETUP data can be decoded.		
4	RXOTDIS	RC_W1	Receive OUT Token When Disable Interrupt This bit is only applicable to the control OUT endpoint, indicating that the OUT token is received without enabling the endpoint.		
5		Reserved			
6	RXBSP	RC_W1	Receive Back-to-Back SETUP Packet Interrupt This bit is only applicable to the control OUT endpoint, indicating that the endpoint has received more than three consecutive SETUP data packets.		
31:7			Reserved		

27.7.20 Full-speed OTG device OUT endpoint 0 transmission size register (OTG_FS_DOEPTRS0)

Offset address: 0xB10 Reset value: 0x0000 0000

This register can be modified only after EPEN bit of OTG_FS_DOEPCTRLx register is set to 1; this register can be read only after EPEN bit of

OTG_FS_DOEPCTRLx register is cleared to 0

Field	Name	R/W	Description	
6:0	EPTRS	R/W	Endpoint Transfer Size This bit indicates the data size contained by endpoint 0 in one data transmission (in byte).	
18:7			Reserved	
19	EPPCNT	R/W	Endpoint Packet Count This bit will decrease to 0 after RXFIFO is written to a data packet.	
28:20	Reserved			
30:29	SPCNT	R/W	SETUP Packet Count These bits indicate the number of SETUP dat packets that can be received continuously 01: 1 10: 2 11: 3	

Field	Name	R/W	Description	
31		Reserved		

27.7.21 Full-speed OTG device OUT endpoint x transmission size register (OTG_FS_DOEPTRS) (x=1~3, endpoint number)

Offset address: 0xB10+0x20m; m=1~3

Reset value: 0x0000 0000

This register can be modified only after EPEN bit of OTG_FS_DOEPCTRLx

register is set to 1; this register can be read only after EPEN bit of

OTG FS DOEPCTRLx register is cleared to 0

Field	Name	R/W	Description
18:0	EPTRS	R/W	Endpoint Transfer Size This bit indicates the data size contained by endpoint x in one data transmission (in byte).
28:19	EPPCNT	R/W	Endpoint Packet Count This bit indicates the number of data packets contained by endpoint x in one data transmission.
30:29	PID_SPCNT	R/W	 Receive Data PID or SETUP Packet Count For synchronous OUT endpoints, this bit indicates the PID of the last received data packet. 00: DATA0 01: DATA2 10: DATA1 11: MDATA For the control OUT endpoint, this bit indicates the number of SETUP data packets that the endpoint can continuously receive. 01: 1 10: 2 11: 3
31	Reserved		

27.8 Full-speed OTG power and clock gating control register

(OTG_FS_PCGCTRL)

Offset address: 0xE00 Reset value: 0x0000 0000

This register is applicable to both master mode and device mode.

Field	Name	R/W	Description
0	PCLKSTOP	R/W	PHY Clock Stop 0: The PHY clock is enabled to start when the USB communication is restored or the session is restarted 1: Stop the PHY clock when USB communication is suspended, the session is invalid, or the device is disconnected

Field	Name	R/W	Description		
1	GCLK	R/W	Gate HCLK 0: When the USB communication is restored or the session is restarted, it is allowed to stop providing the clock to modules other than AHB bus slave interface, main interface and wake-up 1: When the USB communication is suspended or the session is invalid, stop providing the clock for the modules other than AHB bus slave interface, main interface and wake-up		
3:2		Reserved			
4	PHYSUS	R/W	PHY Suspend This bit means that PHY is suspended.		
31:5	Reserved				

27.9 OTG_HS1 global register address mapping

Table 137 OTG HS1 Global Register Address Mapping

Register name	Description	Offset address
OTG_HS1_GCTRLSTS	High-speed OTG control state register	0x00
OTG_HS1_GINT	High-speed OTG interrupt register	0x04
OTG_HS1_GAHBCFG	High-speed OTG AHB configuration register	0x08
OTG_HS1_GUSBCFG	High-speed OTG USB configuration register	0x0C
OTG_HS1_GRSTCTRL	High-speed OTG reset control register	0x10
OTG_HS1_GCINT	High-speed OTG module interrupt register	0x14
OTG_HS1_GINTMAS	High-speed OTG module interrupt mask register	0x18
OTG_HS1_GRXSTS	High-speed OTG read debug receive state register	0x1C
OTG_HS1_GRXSTSP	High-speed OTG read and pop register	0x20
OTG_HS1_GRXFIFO	High-speed OTG receive FIFO size register	0x24
OTG_HS1_GTXFCFG	High-speed OTG TXFIFO configuration register	0x28
OTG_HS1_GNPTXFQSTS	High-speed OTG non-periodic TXFIFO queue state register	0x2C
OTG_HS1_GI2CAC	High-speed OTG I2C access register	0x30
OTG_HS1_GGCCFG	High-speed OTG general module configuration register	0x38
OTG_HS1_GCID	High-speed OTG module ID register	0x3C
OTG_HS1_GHPTXFIFO	High-speed OTG host periodic TXFIFO size register	0x100
OTG_HS1_DTXFIFO1	High-speed OTG device IN endpoint TXFIFO size register 1	0x104
OTG_HS1_DTXFIFO2	High-speed OTG device IN endpoint TXFIFO size register 2	0x108
OTG_HS1_DTXFIFO3	High-speed OTG device IN endpoint TXFIFO size register 3	0x10C

Pogiotor namo	Deparintion	Offset
Register name	Description	address
OTG_HS1_DTXFIFO4	High-speed OTG device IN endpoint TXFIFO size register 4	0x110
OTG_HS1_DTXFIFO5	High-speed OTG device IN endpoint TXFIFO size register 5	0x114
OTG_HS1_DTXFIFO6	High-speed OTG device IN endpoint TXFIFO size register 6	0x118
OTG_HS1_DTXFIFO7	High-speed OTG device IN endpoint TXFIFO size register 7	0x11C

27.10 OTG_HS1 global register functional description

27.10.1 High-speed OTG control state register (OTG_HS1_GCTRLSTS)

Offset address: 0x00
Reset value: 0x0000 0800

F-1 - 1 - 1	Nesset Value. UXUUUU UOUU					
Field	Name	R/W	Description			
			Session Request Success			
0	SREQSUC	R	0: Session request fails			
	ONLGOOD	1	1: Session request succeeds			
			Note: It can be used only in device mode			
			Session Request			
			0: No request session			
			1: Request session			
			When HNSUCCHG bit of OTG_HS1_GINT register is set, this bit will be			
1	CDEO	DAM	cleared by writing 0. This bit will be cleared to 0 when HNSUCCHG is			
1	SREQ	R/W	cleared to 0.			
			When USB 1.1 full-speed serial transceiver interface is used for session request, wait for V_{BUS} to discharge to 0.2 V after the BSVD bit of the			
			register is cleared to 0. The discharge time may be different according			
			to different PHY.			
			Note: It can be used only in device mode			
7:2	Reserved					
			Host Negotiation Success			
	HNSUC		This bit will be cleared to 0 when HNPREQ of this register is set to 1			
8		HNSUC R	0: Host negotiation fails			
			1: Host negotiation succeeds			
			Note: It can be used only in device mode			
			Host Negotiation Protocol Request (HNP Request)			
			0: Not transmit HNP request			
			1: Transmit HNP request			
9	HNPREQ	R/W	When HNSUCCHG bit of OTG_HS1_GINT register is set, this bit will be			
			cleared by writing 0. This bit will be cleared to 0 when HNSUCCHG is			
			cleared to 0.			
			Note: It can be used only in device mode			
			Host Set HNP Enable			
10	HHNPEN	IHNPEN R/W	0: Disable			
			1: Enable			
			Note: It can be used only in master mode			

Field	Name	R/W	Description		
11	DHNPEN	R/W	Device HNP Enable 0: Disable 1: Enable Note: It can be used only in device mode		
15:12			Reserved		
16	CIDSTS	R	Connector ID Status 0: OTG_HS1 controller is in Device A mode 1: OTG_HS1 controller is in Device B mode Note: It can be used in both device and master modes		
17	LSDEBT	R	Long/Short Debounce Time 0: Long debounce time 1: Short debounce time Note: It can be used only in master mode		
18	ASVD	R	A-Session Valid 0: Invalid 1: Valid Note: It can be accessed only in master mode		
19	BSVD	R	B-Session Valid In OTG mode, this bit is used to confirm whether the device is in connected status. 0: Invalid 1: Valid Note: It can be accessed only in device mode		
31:20	Reserved				

27.10.2 High-speed OTG interrupt register (OTG_HS1_GINT)

Offset address: 0x04 Reset value: 0x0000 0000

Field	Name	R/W	Description		
1:0			Reserved		
2	SEFLG	RC_W1	Session End Flag When V_{BUS} <0.8V, it means that V_{BUS} is not used for B-session, and this bit will be set to 1.		
7:3	Reserved				
8	SREQSUCCHG	RC_W1	Session Request Success Flag If the value of SREQSUC bit changes, this bit will be set to 1. Note: It can be accessed in both device and master mode		
9	HNSUCCHG	RC_W1	Host Negotiation Success Flag If the value of HNSUC bit changes, this bit will be set to 1. Note: It can be accessed in both device and master mode		
16:10	Reserved				

Field	Name	R/W	Description
17	HNFLG	RC_W1	Host Negotiation Flag When USB host negotiation request is detected, this bit will be set to 1.
18	ADTOFLG	RC_W1	A-Device Timeout Flag If this bit is set to 1, it indicates timeout when A-device is waiting for B-device to connect. Note: It can be accessed in both device and master mode
19	DEBDFLG RC_W1	RC_W1	Debpouncce Done Flag When the equipment is connected and debounce is completed, this bit shall be set to 1; when an interrupt is generated, the USB will be reset.
			This bit is valid only when HNPEN and SRPEN bits of OTG_HS1_GUSBCFG register are set to 1. Note: It can be accessed only in master mode
31:20	Reserved		

27.10.3 High-speed OTG AHB configuration register (OTG_HS1_GAHBCFG)

Offset address: 0x08 Reset value: 0x0000 0000

Field	Name	R/W	R/W Description			
0	GINTMASK	R/W	Global Interrupt Mask R/W 0: Mask global interrupt 1: Unmask global interrupt			
4:1	BLT	Burst Length/Type 0000: Single time 0001: INCR R/W 0011: INCR4 0101: INCR8 0111: INCR16 Others: Reserved				
5	DMAEN	DMA Enable R/W 0: Run in slave mode 1: Run in DMA mode				
6	Reserved					
7	TXFEL	R/W	TXFIFO Empty Level 0: TXFE interrupt means that IN endpoint TXFIFIO is half-empty 1: TXFE interrupt means that IN endpoint TXFIFIO is all-empty Note: It can be accessed only in device mode			
8	PTXFEL	Periodic TXFIFO Empty Level 0: PTXFE interrupt means that periodic TXFIFIO is half-empty 1: PTXFE interrupt means that periodic TXFIFIO is all-empty Note: It can be accessed only in master mode				
31:9	Reserved					

27.10.4 High-speed OTG USB configuration register (OTG_HS1_GUSBCFG)

Offset address: 0x0C Reset value: 0x0000 0A00

R/W	Pescription FS Timeout Calibration The additional delay of PHY includes the number of PHY clocks and FS timeout interval. The status of data line may be different for different PHY The timeout value of OTG_FS is 16~18-bit time.
R/W	The additional delay of PHY includes the number of PHY clocks and FS timeout interval. The status of data line may be different for different PHY
	Reserved
	Full-Speed Serial Transceiver Select
W	0: USB2.0 high-speed ULPI PHY 1: USB1.1 full-speed serial transceiver
	Reserved
	SRP Enable
R/W	0: Disable 1: Enable If the SRP function is disabled, connecting the device cannot be requested to activate V _{BUS} and the session cannot be started.
R/W	HNP Enable 0: Disable 1: Enable
R/W	USB Turnaround Time fphyclk =48MHZ, in fphyclk. The clock frequency of AHB is at least 30MHz. TRTIM=4×fahbclk+fphyclk Example: When fahbclk=72MHz, TRTIM will be set to 7.
	Reserved
?/W	PHY Low-Power Select 0: Internal PLL clock 480MHz 1: External clock 48MHz Generally, 48MHz clock is used. In 480MHz clock mode, UTMI interface runs at 60 (8-bit data) or 30MHz (16 bit data); in 48MHz mode, run at 48MHz.
	Reserved
2/W	ULPI PHY Interface Select 0: ULPI interface 1: ULPI FS/LS serial interface This bit is valid only when FS serial transceiver is selected on ULPI PHY.
2	/W

Field	Name	R/W	Description	
18	ULPIAR	R/W	ULPI Auto-Resume This bit indicates whether ULPI PHY supports auto-resume function. 0: Not supported 1: Supported	
19	ULPICLKP	R/W	ULPI Clock Power This bit indicates whether internal clock power supply is turned off when PHY is suspended. 0: Open 1: Not off	
20	ULPIEVDSEL	R/W	ULPI External V _{BUS} Drive Select Through this bit, ULPI PHY selects to drive V _{BUS} by internal or external power supply. 0: Internal charge pump 1: External power supply	
21	ULPIEVC	R/W	ULPI External V _{BUS} Compare Through this bit, ULPI PHY selects internal or external V _{BUS} effective comparator. 0: Internal 1: External	
22	DPSEL	R/W	DLine Pulsing Select This bit selects the drive source of the data line pulse during SRP. 0: utmi_txvalid 1: utmi_termsel	
23	SINI	R/W	Signal Invert This bit indicates whether to invert ExternalVbusIndicator signal 0: Not invert 1: Invert; PHY inverts ExternalVbusIndicator input signal and generates complementary output	
24	NPTHQ	R/W	No Pass Through Qualified This bit controls whether the complementary output verifies through internal V _{BUS} effective comparator 0: Pass 1: No pass	
25	ULPIIPCDIS	R/W	ULPI Interface Protect Circuit Disable 0: Enable 1: Disable	
28:26	Reserved			
29	FHMODE	R/W	Forced Host Mode 0: Normal mode 1: Host mode, which takes effect 25ms later	
30	FDMODE	R/W	Forced Device Mode 0: Normal mode 1: Device mode, which takes effect 25ms later	
31	CTXP	R/W	Corrupt TX Packet Debug bit, which cannot be set to 1.	

27.10.5 High-speed OTG reset control register (OTG_HS1_GRSTCTRL)

Offset address: 0x010 Reset value: 0x2000 0000

Field	Name	R/W	Description	
0	CSRST	R/S	Core Soft Reset This bit controls HCLK and PCLK reset. Clear each interrupt and all CSR register bits to 0 except the followings: GCLK bit in OTG_HS1_PCGCTRL PCLKSTOP bit in OTG_HS1_PCGCTRL PHYCLKSEL bit in OTG_HS1_HCFG DSPDSEL bit in OTG_HS1_DCFG Reset the AHB slave to the idle state and clear TXFIFO and RXFIFO. When the AHB transmission ends, all transactions of AHB shall be terminated as soon as possible and all transactions on USB shall be terminated immediately. Software reset is used generally in either of the following situations: Software development period. After the user dynamically changes the PHY selection bit in the USB configuration register listed above. When the user changes the PHY, the corresponding clock will be selected for the PHY and used in the PHY domain. Once a new clock is selected, the PHY domain must be reset so as to ensure normal operation	
1	HSRST	R/S	HCLK Soft Reset This bit is used to refresh the control logic of AHB clock domain. When clearing this interrupt, the corresponding mask interrupt state control bit shall be cleared; when the interrupt state bit is not cleared to zero, the event state after this bit is set to 1 can be read.	
2	HFCNTRST	R/S	Host Frame Counter Reset Reset the frame counter in the host by writing this bit, and the SOF frame number transmitted subsequently is 0. Note: It can be accessed only in master mode.	
3	Reserved			
4	RXFFLU	R/S	Flush RXFIFO This bit is used to refresh the whole RXFIFO. Before writing to this bit, it is required to ensure that the module does not perform read and write operation to RXFIFO. Only after this bit is cleared to 0, can other operations be performed (usually need to wait for 8 clock cycles).	
5	TXFFLU	R/S	Flush TXFIFO This bit is used to refresh one or the whole TXFIFO. Before writing to this bit, it is required to ensure that the module does not perform read and write operation to TXFIFO.	

Field	Name	R/W	Description		
10:6	TXFNUM	R/W	TXFIFO Number Refresh the FIFO number with TXFIFO refresh bits, and these bits can only be changed after the refresh TXFFIO is cleared to 0. In master mode: 00000: Refresh non-periodic TXFIFO 00001: Refresh periodic TXFIFO 10000: Refresh all TXFIFO In device mode: 00000: Refresh TXFIFO 0 00001: Refresh TXFIFO 1 00101: Refresh TXFIFO 15 10000: Refresh all TXFIFO		
29:11	Reserved				
30	DMAREQ	R DMA Request This bit indicates that DMA request is ongoing.			
31	AHBMIDL	R	AHB Master Idle This bit indicates that the AHB master device is idle.		

27.10.6 High-speed OTG module interrupt register (OTG_HS1_GCINT)

Offset address: 0x014 Reset value: 0x0400 0020

In order to avoid generating interrupts before initialization, the software must clear this register to zero before enabling the interrupt bit.

Field	Name	R/W	Description
0	CURMOSEL	R	Current Mode of Operation Select 0: Device mode 1: Master mode
1	MMIS	RC_W1	Mode Mismatch Interrupt This bit will be set to 1 when accessing the following registers: Access the master mode register in device mode Access the device mode register in master mode
2	OTG	R	OTG Interrupt When this bit is set to 1, it indicates that an OTG protocol event has occurred.
3	SOF	RC_W1	Frame Start Interrupt When this bit is set: In master mode, it indicates that USB has transmitted one SOF (FS) or Keep-Alive (LS); In device mode, it indicates that USB has received one SOF, and the current frame number can be obtained by reading the device state register. An interrupt will be generated only when running in FS mode.
4	RXFNONE	R	RXFIFO Non-empty Interrupt This bit indicates that there is at least one data packet in RXFIFO

Field	Name	R/W	Description	
5	NPTXFEM	R	Non-periodic TXFIFO Empty Interrupt This interrupt will be triggered when the non-periodic TXFIFO is not empty and there is space for writable entries in the request queue. Note: It can be accessed only in master mode	
6	GINNPNAKE	R	Global IN Non-periodic NAK Effective Interrupt This bit indicates that SGINAK bit of OTG_HS_DCTL register is valid; this bit can be cleared by clearing CGINAK bit of OTG_HS_DCTL register. The priority of STALL is higher than that of NAK bit. Note: It can be accessed only in device mode	
7	GONAKE	R	Global OUT NAK Effective Interrupt This bit indicates that GONAKSET bit of OTG_HS1_DCTRL register is valid; this bit can be cleared by clearing GONALCLR bit of OTG_HS1_DCTRL. Note: It can be accessed only in device mode	
9:8	Reserved			
10	ESUS	RC_W1	Early Suspend Interrupt When USB has been idle for 3ms, this bit will be set to 1. Note: It can be accessed only in device mode	
11	USBSUS	RC_W1	USB Suspend Interrupt When USB suspending is detected, this bit will be set to 1; when USB has been idle for 3ms, it will enter pending state. Note: It can be accessed only in device mode	
12	USBRST	RC_W1	USB Reset Interrupt This bit will be set to 1 when reset is detected on USB. Note: It can be accessed only in device mode	
13	ENUMD	RC_W1	Enumeration Done Interrupt This bit will be set to 1 when speed enumeration is completed. Note: It can be accessed only in device mode	
14	ISOPD	RC_W1	Isochronous OUT Packet Dropped Interrupt When the RXFIFO space is insufficient and synchronous OUT data packet cannot be written to RXFIFO, this bit will be set to 1 Note: It can be accessed only in device mode	
15	EOPF	RC_W1	End of Periodic Frame Interrupt This bit indicates that the current frame has reached the period specified by PFITV bit of OTG_HS1_DCFG register. Note: It can be accessed only in device mode	
17:16			Reserved	

Field	Name	R/W	Description			
18	INEP	R	IN Endpoint Interrupt This bit will be set to 1 when a suspended interrupt occurs to one IN endpoint. Determine the OUT endpoint to which an interrupt occurs by reading OTG_HS1_DAEPINT register, and determine the causes of the interrupt by reading OTG_HS1_DIEPINTx register; clear this bit by clearing the corresponding state bit of OTG_HS1_D1EPINTx register. Note: It can be accessed only in device mode			
19	ONEP	R	OUT Endpoint Interrupt Determine the number of OUT endpoint to which an interrupt occurs by reading OTG_HS1_DAEPINT register, and determine the causes of the interrupt by reading OTG_HS1_DOEPINTx register. To clear this bit, first clear the corresponding state bit of OTG_HS1_DOEPINTx register. Note: It can be accessed only in device mode			
20	IIINTX	RC_W1	Incomplete Isochronous IN Transfer Interrupt This bit will be set to 1 when the transmission on at least one synchronous IN endpoint in the current frame is not completed This interrupt is triggered at the same time with EOPF. Note: It can be accessed only in device mode			
21	IP_OUTTX	RC_W1	Incomplete Periodic Transfer Interrupt When this bit is set to 1, the interrupts indicated by it are different in different modes. In the master mode, if the periodic transaction scheduled to be completed in the current frame is still pending (i.e. incomplete), the incomplete periodic transmission interrupt will be triggered. In device mode, when the transmission on at least one synchronous OUT endpoint in the current frame is not completed, interrupt of incomplete OUT synchronous transmission will be triggered, and this interrupt will be triggered at the same time with EOPF.			
22	DFSUS	R	Data Fetch Suspended Interrupt In DMA mode, when stopping fetching data due to insufficient space of TXFIFO or request queue, a data fetch suspended interrupt will be generated.			
23		Reserved				
24	HPORT	R	Host Port Interrupt This bit will be set to 1 when the state of full-speed OTG controller port changes in master mode. Note: It can be accessed only in master mode.			
25	HCHAN	R	Host Channels Interrupt This bit will be set to 1 when a suspended interrupt is generated on host channel. Note: It can be accessed only in master mode.			

Field	Name	R/W	Description
26	PTXFE	R	Periodic TXFIFO Empty Interrupt This interrupt will be triggered when the periodic TXFIFO is empty and there is space for writable entries in the request queue. Note: It can be accessed only in master mode.
27			Reserved
28	CINSTSC	RC_W1	Connector ID Status Change Interrupt This bit will be set to 1 when the state of connector ID line changes.
29	DEDIS	RC_W1	Device Disconnect Interrupt This bit will be set to 1 when device disconnection is detected. Note: It can be accessed only in master mode
30	SREQ	RC_W1	Session Request/New Session Interrupt In different modes, the conditions for triggering this interrupt are: Session request is detected in master mode In device mode, V _{BUS} is within the range of B-device
31	RWAKE	RC_W1	Resume/Remote Wakeup Interrupt In different modes, the conditions for triggering this interrupt are: Remote wakeup signal is detected on USB in master mode Resume signal is detected on USB bus in device mode

27.10.7 High-speed OTG module interrupt mask register (OTG_HS1_GINTMAS)

Offset address: 0x018 Reset value: 0x0000 0000

Field	Name	R/W	Description
0			Reserved
1	MMISM	R/W	Mode Mismatch Interrupt Mask 0: Mask the interrupt 1: Interrupt
2	OTGM	R/W	OTG Interrupt Mask 0: Mask the interrupt 1: Interrupt
3	SOFM	R/W	Frame Start Interrupt Mask 0: Mask the interrupt 1: Interrupt
4	RXFNONEM	R/W	RXFIFO Nonempty Interrupt Mask 0: Mask the interrupt 1: Interrupt
5	NPTXFEMM	R/W	Nonperiodic TXFIFO Empty Interrupt Mask 0: Mask the interrupt 1: Interrupt Note: It can be accessed only in master mode

Field	Name	R/W	Description
6	GINNPNAKEM	R/W	Global IN Nonperiodic NAK Effective Interrupt Make 0: Mask the interrupt 1: Interrupt Note: It can be accessed only in device mode
7	GONAKEM	R/W	Global OUT NAK Effective Interrupt Mask 0: Mask the interrupt 1: Interrupt Note: It can be accessed only in device mode
9:8			Reserved
10	ESUSM	R/W	Early Suspend Interrupt Mask 0: Mask the interrupt 1: Interrupt Note: It can be accessed only in device mode
11	USBSUSM	R/W	USB Suspend Interrupt Mask 0: Mask the interrupt 1: Interrupt Note: It can be accessed only in device mode
12	USBRSTM	R/W	USB Reset Interrupt Mask 0: Mask the interrupt 1: Interrupt Note: It can be accessed only in device mode
13	ENUMDM	R/W	Enumeration Done Interrupt Mask 0: Mask the interrupt 1: Interrupt Note: It can be accessed only in device mode
14	ISOPDM	R/W	Isochronous OUT Packet Dropped Interrupt Mask 0: Mask the interrupt 1: Interrupt Note: It can be accessed only in device mode
15	EOPFM	R/W	End of Periodic Frame Interrupt Mask 0: Mask the interrupt 1: Interrupt Note: It can be accessed only in device mode
16		•	Reserved
17	EPMISM	R/W	Endpoint Mismatch Interrupt Mask 0: Mask the interrupt 1: Interrupt Note: It can be accessed only in device mode
18	INEPM	R/W	IN Endpoint Interrupt Mask 0: Mask the interrupt 1: Interrupt Note: It can be accessed only in device mode

Field	Name	R/W	Description		
19	OUTEPM	R/W	OUT Endpoint Interrupt Mask 0: Mask the interrupt 1: Interrupt Note: It can be accessed only in device mode		
20	IIINTXM	R/W	Incomplete Isochronous IN Transfer Interrupt Mask 0: Mask the interrupt 1: Interrupt Note: It can be accessed only in device mode		
21	IP_OUTTXM	R/W	Incomplete Periodic Transfer Interrupt Mask In master mode, this bit controls whether to mask incomplete periodic transmission interrupt. In device mode, this bit controls whether to mask the incomplete OUT synchronous transmission interrupt. 0: Mask the interrupt 1: Interrupt		
22	DFSUSM	R/W	Data Fetch Suspended Interrupt Mask 0: Mask the interrupt 1: Interrupt		
23	Reserved				
24	HPORTM	R	Host Port Interrupt Mask 0: Mask the interrupt 1: Interrupt Note: It can be accessed only in master mode		
25	НСНМ	R/W	Host Channels Interrupt Mask 0: Mask the interrupt 1: Interrupt Note: It can be accessed only in master mode		
26	PTXFEM	R/W	Periodic TXFIFO Empty Interrupt Mask 0: Mask the interrupt 1: Interrupt Note: It can be accessed only in master mode		
27		•	Reserved		
28	CIDSTSCM	R/W	Connector ID Status Change Interrupt Mask 0: Mask the interrupt 1: Interrupt		
29	DEDISM	R/W	Device Disconnect Interrupt Mask 0: Mask the interrupt 1: Interrupt		
30	SREQM	R/W	Session Request/New Session Interrupt Mask 0: Mask the interrupt 1: Interrupt		
31	RWAKEM	R/W	Resume/Remote Wakeup Interrupt Mask 0: Mask the interrupt 1: Interrupt		

27.10.8 High-speed OTG read debug receive state register/high-speed OTG state read and pop register (OTG_HS1_GRXSTS/OTG_HS1_GRXSTSP)

Read offset address: 0x01C Pop offset address: 0x020 Reset value: 0x0000 0000

Master mode

Field	Name	R/W	Description	
3:0	CHNUM	R	Channel Number This bit indicates the received data is transmitted by which channel.	
14:4	BCNT	R	Byte Count This bit indicates the byte count of received IN data packet.	
16:15	DPID	R	Data PID This bit indicates the PID of received data packet 00: DATA0 10: DATA1 01: DATA2 11: MDATA	
20:17	PSTS	R	Packet Status This bit indicates the status of the received data packet. 0010: Received IN data packet 0011: IN transmission completed 0101: Data synchronization error 0111: Channel stop Others: Reserved	
31:21	Reserved			

Device mode

Field	Name	R/W	Description
3:0	EPNUM	R	Endpoint Number This bit indicates the received data is transmitted by which endpoint.
14:4	BCNT	R	Byte Count This bit indicates the byte count of received data packet.
16:15	DPID	R	Data PID This bit indicates the received data packet ID (PID). 00: DATA0 01: DATA2 10: DATA1 11: MDATA
20:17	PSTS	R	Packet Status This bit indicates the status of received data packet 0001: Global OUT NAK 0010: Received OUT data packet 0011: OUT transmission completed

Field	Name	R/W	Description
			0100: SETUP event completed
			0110: Received SETUP data packet
			Others: Reserved
	FNUM	R	Frame Number
24:21			These bits are valid when synchronous OUT endpoint is supported.
21.21			These bits are the 4 least significant bits of the packet frame number received on the USB.
31:25	Reserved		

27.10.9 High-speed OTG receive FIFO size register (OTG_HS1_GRXFIFO)

Offset address: 0x024 Reset value: 0x0000 0200

Field	Name	R/W	Description
15:0	RXFDEP	R/W	RXFIFO Depth RXFIFO is in word, and the depth range is: 16~1024.
31:16	Reserved		

27.10.10 **High-speed OTG TXFIFO configuration register (OTG_HS1_GTXFCFG)**

Offset address: 0x028 Reset value: 0x0000 0200

Master mode

Field	Name	R/W	Description
15:0	NPTXSA	R/W	Nonperiodic TXFIFO RAM Start Address This bit indicates the start address of non-periodic TXFIFO RAM.
31:16	NPTXFDEP	R/W	Nonperiodic TXFIFO Depth TXFIFO is in word, and the depth range is: 16~1024.

Device mode

Field	Name	R/W	Description
15:0	EPTXSA	R/W	Endpoint0 TXFIFO RAM Start Address This bit indicates the start address of TXFIFO RAM of endpoint 0.
31:16	EPTXFDEP	R/W	Endpoint0 TXFIFO Depth TXFIFO is in word, and the depth range is: 16~256.

27.10.11 High-speed OTG non-periodic TXFIFO queue state register (OTG_HS1_GNPTXFQSTS)

Offset address: 0x02C Reset value: 0x0008 0200

Field	Name	R/W	Description	
15:0	NPTXFSA	R	Nonperiodic TXFFIO Space Available These bits indicate the size of available space of non-periodic TXFIFO. (In 32-bit words) hx0: Non-periodic TXFIFO is full hx1: 1 word hx2: 2 words hxn: n words are available (0≤n≤16) Others: Reserved	
23:16	NPTXRSA	R	Non-periodic Transmit Request Space Available This bit indicates the available space size of non-periodic transmit request queue. In master mode: Save IN and OUT requests In device mode: There is only IN request hx0: The queue is full hx1: 1 position hx2: 2 positions hxn: n positions are available (0≤n≤8) Others: Reserved	
30:24	NPTXRQ	R	Nonperiodic Transmit Request Queue Bit [24]: Terminate (last item selected for channel/endpoint) Bit [26:25]: 00: IN/OUT token 01: The transmit data packet length is 0 (IN in device mode/OUT in master mode) 10: PING/CPLIT token 11: Stop channel instruction Bit [30:27]: Channel/endpoint number	
31	Reserved			

27.10.12 High-speed OTG I2C access register (OTG_HS1_GI2CAC)

Offset address: 0x030 Reset value: 0x0000 0000

Field	Name	R/W	Description
7:0	SRWD	R/W	Storage I2C Read/Write Data After read operation, these bits store the data read by the program. During write operation, these bits store the data to be written by the program.
15:8	RADDR	R/W	I2C Register Address These bits are used to store the register address to be read/written.
22:16	DADDR	R/W	I2C Device Address These bits indicate 7-bit I2C device addresses, and can be used to access external I2C slave devices, including I2C slave devices of full-speed serial transceiver.

Field	Name	R/W	Description
23	I2CEN	R/W	I2C Enable 0: Disable 1: Enable
24	ACK	R/W	I2C ACK This bit indicates whether to receive ACK from I2C. 0: NAK 1: ACK This bit is valid when I2C is enabled and I2CSTSFLG bit is cleared to 0.
25			Reserved
27:26	DADDRSEL	R/W	I2C Device Address Select These bits are selected for I2C slave device address of the full-speed serial transceiver used for OTG signals.
28	USBMSEL	R/W	I2C USB Mode Select 0: VP_VM USB mode 1: DAT_SE0 USB mode
29			Reserved
30	RTRCFG	R/W	Register Transfer Configure This bit indicates it is transmission of read register or write register. 0: Write 1: Read
31	I2CSTSFLG	R/W	I2C Status Flag 0: Idle 1: Busy, used to enable one request of I2C

27.10.13 High-speed OTG general module configuration register (OTG_HS1_GGCCFG)

Offset address: 0x038 Reset value: 0x0000 0000

Field	Name	R/W	Description			
15:0		Reserved				
16	PWEN	R/W	Power Down Enable This bit is used to activate the transceiver when transmitting /receiving. 0: Activate 1: Disable (activate the transceiver)			
17	I2CBEN	R/W	I2C Bus Enable This bit is used to connect external PHY of I2C interface. 0: Disable 1: Enable			
18	ADVBSEN	R/W	A Device V _{BUS} Sensing Enable 0: Disable 1: Enable			

Field	Name	R/W	Description	
19	BDVBSEN	R/W	B Device V _{BUS} Sensing Enable 0: Disable 1: Enable	
20	SOFPOUT	R/W	SOF Pulse Available on PAD Output Enable This bit selects whether SOF pulse can be output from PAD. 0: No 1: Yes	
21	VBSDIS	R/W	V _{BUS} Sensing Disable 0: Enable V _{BUS} sensing 1: Disable V _{BUS} sensing	
31:22	Reserved			

27.10.14 High-speed OTG module ID register (OTG_HS1_GCID)

Offset address: 0x03C Reset value: 0x0000 1100

Field	Name	R/W	Description
31:0	31:0 PID	R/W	Product ID
0			ID can be programmed by this bit.

27.10.15 High-speed OTG host periodic TXFIFO size register (OTG_HS1_GHPTXFSIZE)

Offset address: 0x100 Reset value: 0x0200 0600

Field	Name	R/W	Description
15:0	HPDTXFSA	R/W	Host Periodic TXFIFO Start Address
31:16	HPDTXFDEP	R/W	Host Periodic TXFIFO Depth TXFIFO is in word. The minimum value is 16, and the maximum value is 512.

27.10.16 High-speed OTG device IN endpoint TXFIFO size register x (OTG_HS1_GHPTXFIFOx) (x=1~7)

Offset address: 0x104+4(x-1) Reset value: 0x0200 0400 x is FIFO number.

Field	Name	R/W	Description
15:0	INEPTXFRSA	R/W	IN Endpoint TXFIFOx Transmit RAM Start Address These bits indicate the start address of the IN endpoint TXFIFOx RAM and need to be aligned with the 32-bit memory.
31:16	INEPTXFDEP	R/W	IN Endpoint TXFIFO Depth Depth range is: 16~512 The power-on reset value is the maximum IN endpoint depth.

27.11 OTG_HS1 host mode register address mapping

Table 138 OTG HS1 Host Mode Register Address Mapping

Register name	Description	Offset address
OTG_HS1_HCFG	High-speed OTG host configuration register	0x400
OTG_HS1_HFIVL	High-speed OTG host frame interval register	0x404
OTG_HS1_HFIFM	High-speed OTG host frame information register	0x408
OTG_HS1_HPTXSTS	High-speed OTG host periodic transmission state register	0x410
OTG_HS1_HACHINT	High-speed OTG host all-channel interrupt register	0x414
OTG_HS1_HACHIMASK	High-speed OTG host all-channel interrupt mask register	0x418
OTG_HS1_HPORTCSTS	High-speed OTG host port control state register	0x440
OTG_HS1_HCHX	High-speed OTG host channel-X characteristics register (X=011)	0x500+20*X
OTG_HS1_HCHSCTRLX	High-speed OTG host channel-X split-ranging control register (X=011)	0x504+20*X
OTG_HS1_HCHINTX	High-speed OTG host channel-X interrupt register (X=011)	0x508+20*X
OTG_HS1_HCHIMASKX	High-speed OTG host channel-X interrupt mask register (X=011)	0x50C+20*X
OTG_HS1_HCHTSIZEX	High-speed OTG host channel-X transmission size register (X=011)	0x510+20*X
OTG_HS1_HCHDMAX	High-speed OTG host channel-X DMA address register (X=011)	0x514+20*X

27.12 OTG_HS1 host mode register functional description

27.12.1 High-speed OTG host configuration register (OTG_HS1_HCFG)

Offset address: 0x400 Reset value: 0x0000 0000

Field	Name	R/W	Description
1:0	PHYCLKSEL	R/W	FS/LS PHY Clock Select This bit is used to select the PHY clock frequency when the USB is in FS and LS host mode respectively. • When the USB is in FS host mode: 10: 48MHz Others: Reserved • When the USB is in LS host mode: 00: Reserved 01: 48MHz 10: 6MHz

Field	Name	R/W	Description
			11: Reserved Note: Software reset is required before change.
2	HSSPT	R	HS Support This bit is used to control whether the connected device supports HS communication. 0: Support HS/FS/LS 1: Only support FS/LS, and do not support HS
31:3	Reserved		

27.12.2 High-speed OTG host frame interval register (OTG_HS1_HFIVL)

Offset address: 0x404 Reset value: 0x0000 EA60

Field	Name	R/W	Description	
15:0	FIVL	R/W	Frame Interval This bit is used to indicate the time interval between two continuous SOF, micro-SOF or Keep-Alive tokens. If the application does not specify, the value of the interval is calculated by the following formula: Frame interval=frame duration×PHY clock frequency	
31:16	Reserved			

27.12.3 High-speed OTG host frame information register (OTG_HS1_HFIFM)

Offset address: 0x408 Reset value: 0x0000 3FFF

Field	Name	R/W	Description
15:0	FNUM	R	Frame Number This bit is equivalent to a counter. Every time a new SOF is transmitted on USB, the value of this bit will increase by 1, and when it reaches 0x3FFF, it will be cleared to 0.
31:16	FRTIME	R	Frame Remaining Time This bit indicates the remaining time of current frame. Every time 1 PHY clock passes by, this bit will decrease by 1 and when it becomes 0, the value will be reloaded, and a new SOF will be transmitted on USB.

27.12.4 High-speed OTG host periodic transmission state register (OTG_HS1_HPTXSTS)

Offset address: 0x410 Reset value: 0x0008 0100

Field	Name	R/W	Description
			Periodic Transmit Data FIFO Available Space
			This bit indicates the idle space of periodic TXFIFO (in 32-bit word).
15:0	FSPACE	R/W	hx0000: TXFIFO is full
			hx0001: 1 word
			hx0010: 2 words

Field	Name	R/W	Description
			hxn: dxn words (0≤dxn≤dx512)
			Others: Reserved
			Periodic Transmit Request Queue Available Space This bit indicates the available space of transmit request queue (in 32-bit word),
			hx00: TXFIFO is full
23:16	QSPACE	R	hx01: 1 word
			hx10: 2 words
			hxn: dxn words (0≤dxn≤dxHPDTXFDEP)
			Others: Reserved
			Note: HPDTXFDEP bit is in OTG_HS1_GHPTXFIFO register.
			Top of the Periodic Transmit Request Queue
			This bit is used to indicate the item currently being processed by the MAC in the periodic Tx request queue.
			Bit 31: Odd/even frame
			0: Even frame
31:24	QTOP	D	1: Odd frame
31.24	QTOP	R	Bit 30:27: Channel/endpoint number
			Bit 26:25: Type
			00: Input/output
			01: Zero-length data packet
			11: Disable channel command
			Bit 24: End

27.12.5 High-speed OTG host all-channel interrupt register (OTG_HS1_HACHINT)

Offset address: 0x414 Reset value: 0x0000 0000

Field	Name	R/W	Description		
15:0	ACHINT	R	All Channels Interrupts No. X bit represents interrupt of Channel X. Up 16 channels.		
31:16	Reserved				

27.12.6 High-speed OTG host all-channel interrupt mask register (OTG_HS1_HACHIMASK)

Offset address: 0x418 Reset value: 0x0000 0000

Field	Name	R/W	Description	
15:0	ACHIMASK	R/W	All Channels Interrupts Mask No. X bit represents interrupt mask of Channel X. Up 16 channels. 0: Mask 1: Not mask	
31:16	Reserved			

27.12.7 High-speed OTG host port control state register (OTG_HS1_HPORTCSTS)

Offset address: 0x440 Reset value: 0x0000 0000

Field	Name	R/W	Description
0	PCNNTFLG	R/W	Port Connect Flag This bit indicates whether this port is connected to the device. 0: Not connected 1: Connected
1	PCINTFLG	RC_W1	Port Connect Interrupt for Flag Triggering An interrupt will be triggered when the port connection is detected by this bit.
2	PEN	RC_W0	Port Enable 0: Disable 1: Enable
3	PENCHG	RC_W1	PEN Bit Change This bit will be set to 1 when PEN bit of this register changes.
4	POVC	R	Port Overcurrent This bit indicates whether this port is overloaded. 0: No overload 1: Overload
5	POVCCHG	RC_W1	POVC Bit Change This bit will be set to 1 when POVC bit changes.
6	PRS	R/W	Port Resume When the USB remote wake-up signal is received, the resume signal will be driven on this port. 0: Not drive 1: Drive
7	PSUS	R/S	Port Suspend It is used to indicate whether the port is in suspended mode. When the port is suspended, USB will stop transmitting SOF. 0: Not suspended 1: Suspended
8	PRST	R/W	Port Reset It is used to control the port to initiate resume signal. 0: Not reset 1: Reset
9			Reserved
11:10	PDLSTS	R	Port Data Line Status This bit is used to indicate the logic level of the data queue of USB port. [10] indicates logic level of OTG_HS_FS_DP [11] indicates logic level of OTG_HS_FS_DM Others: Reserved

Field	Name	R/W	Description			
12	PP	R/W	Port Power This bit is used to control power-on of the port. 0: Power down 1: Power on			
16:13	PTSEL	R/W	Port Test Mode Select This bit is used to select the mode signal generated by the port. 0000: Test is disabled 0001: Test_J 0010: Test_K 0011: Test_SE0_NAK 0100: Test_Packet 0101: Test_Force_Enable Others: Reserved			
18:17	PSPDSEL	R	Port Speed Select 00: High speed 01: Full speed 10: Low speed 11: Reserved			
31:19			Reserved			

27.12.8 High-speed OTG host channel-X characteristics register (OTG_HS1_HCHX) (X=0...11)

Offset address: 0x500+20*X Reset value: 0x0000 0000

Field	Name	R/W	Description			
10:0	MAXPSIZE	R/W	Maximum Data Packet Size This bit indicates the maximum data packet size of the device endpoint communicating with the host.			
14:11	EDPNUM	R/W	Endpoint Number This bit indicates the number of the device endpoint communicating with the host.			
15	EDPDRT	R/W	Endpoint Direction 0: OUT 1: IN			
16	Reserved					
17	LSDV	R/W	Low-speed Device 0: Communicate with non-LS device 1: Communicate with LS device			
19:18	EDPTYP	R/W	Endpoint Type This bit indicates the transmission type selected for the endpoint. 00: Control 01: Synchronous 10: Batch 11: Interrupt			

Field	Name	R/W	Description
21:20	CNTSEL	R/W	Count Function Select Through SPLEN bit of HCHSCTRLX register, this bit can be selected for the counter used for indication. When SPLEN=0: This bit specifies the number of transactions to be executed by the periodic endpoint per micro-frame, or the number of data packets to be obtained by the channel during non-periodic transmission. 00: Reserved 01: 1 transaction 10: 2 transactions 11: 3 transactions When SPLEN=1: This bit is used to set the number of times of retrying the transaction immediately when an error occurs in the periodic separation transaction. At this time, this bit shall be set to at least 01.
28:22	DVADDR	R/W	Device Address This bit indicates the device communicating with the host.
29	ODDF	R/W	Odd Frame For periodic transactions, this bit controls whether the host transmits odd or even frames. 0: Even frame 1: Odd frame
30	CHINT	R/S	Channel Interrupt 0: No operation 1: Stop transmitting data through the channel
31	CHEN	R/S	Channel Enable 0: Disable 1: Enable

27.12.9 High-speed OTG host channel-X split-ranging control register (OTG_HS1_HCHSCTRLX) (X=0...11)

Offset address: 0x504+20*X Reset value: 0x0000 0000

Field	Name	R/W	Description
6:0	PADDR	R/W	Port Address This bit is used to store the port number of the receiving-end transaction forwarder.
13:7	HADDR	R/W	Hub Address This bit is used to store the hub device address of the transaction forwarder.
15:14	TPOST	R/W	Transaction Position This bit is used to determine to transmit the load in which position of the OUT transaction. 00: Middle 01: End 10: Start

Field	Name	R/W	Description	
			11: All	
16	DO_CMP_SPL	R/W	Do Complete Split 0: Reserved 1: Transmit the request to the host to perform complete split transaction	
30:17	Reserved			
31	SPLEN	R/W	Split Enable 0: Disable 1: Enable; the channel is enabled to execute split transaction	

27.12.10 High-speed OTG host channel-X interrupt register (OTG_HS1_HCHINTX) (X=0...11)

Offset address: 0x508+20*X Reset value: 0x0000 0000

Field	Name	R/W	Description
0	TSFCMPN	RC_W1	Transfer Complete Normally The transmission is completed normally without error.
1	TSFCMPAN	RC_W1	Transfer Complete Abnormally The transmission is abnormal, causing abnormal end.
2	AHBERR	RC_W1	AHB Error Error that occurs only in DMA mode and during AHB read/write operation.
3	RXSTALL	RC_W1	STALL Response Received Interrupt
4	RXNAK	RC_W1	NAK Response Received Interrupt
5	RXTXACK	RC_W1	ACK Response Received/Transmitted Interrupt
6	RXNYET	RC_W1	NYET Response Received Interrupt
7	TERR	RC_W1	Transaction Error Indicate that one of the following errors occurs: CRC failure Timeout Bit stuffing error EOP error
8	BABBLE	RC_W1	Babble Error
9	FOVR	RC_W1	Frame Overrun Error
10	DTOG	RC_W1	Data Toggle Error
31:11			Reserved

27.12.11 High-speed OTG host channel-X interrupt mask register (OTG_HS1_HCHIMASKX) (X=0...11)

Offset address: 0x50C+20*X Reset value: 0x0000 0000

Field	Name	R/W	Description
0	TSFCMPNM	R/W	Transfer Complete Normally Mask 0: Mask 1: Interrupt
1	TSFCMPANM	R/W	Transfer Complete Abnormally Mask 0: Mask 1: Interrupt
2	AHBERRM	R/W	AHB Error Mask 0: Mask 1: Interrupt
3	RXSTALLM	R/W	STALL Response Received Interrupt Mask 0: Mask 1: Interrupt
4	RXNAKM	R/W	NAK Response Received Interrupt Mask 0: Mask 1: Interrupt
5	RXTXACKM	R/W	ACK Response Received/Transmitted Interrupt 0: Mask 1: Interrupt
6	RXNYETM	R/W	NYET Response Received Interrupt Mask 0: Mask 1: Interrupt
7	TERRM	R/W	Transaction Error Mask 0: Mask 1: Interrupt
8	BABBLEM	R/W	Babble Error Mask 0: Mask 1: Interrupt
9	FOVRM	R/W	Frame Overrun Error Mask 0: Mask 1: Interrupt
10	DTOGM	R/W	Data Toggle Error Mask 0: Mask 1: Interrupt
31:11			Reserved

27.12.12 High-speed OTG host channel-X transmission size register (OTG_HS1_HCHTSIZEX) (X=0...11)

Offset address: 0x510+20*X Reset value: 0x0000 0000

Field	Name	R/W	Description
18:0	TSFSIZE	R/W	Transfer Size For OUT: The value of this bit indicates the number of data bytes to be transmitted by the host. For IN: This bit indicates the buffer size.

Field	Name	R/W	Description
28:19	PCKTCNT	R/W	Packet Count This bit is used to record the number of transmitted or received data packets.
30:29	DATAPID	R/W	Data PID This bit is used to set the initial PID when the host transmits data communication and is maintained during transmission. 00: DATA0 01: DATA2 10: DATA1 11: MDATA (controlled transmission)/SETUP (uncontrolled transmission)
31	DO_PING	R/W	Do PING Protocol 0: No operation 1: Execute PIN protocol Note: This bit can be set to 1 only during OUT transmission.

27.12.13 High-speed OTG host channel-X DMA address register (OTG_HS1_HCHDMAX) (X=0...11)

Offset address: 0x514+20*X Reset value: 0x0000 0000

Field	Name	R/W	Description
31:0	ADDR	R/W	DMA Address This bit is used to store the memory address of DMA transmission used by host and device to transmit data.

27.13 OTG_HS1 device mode register address mapping

Table 139 OTG_HS1 Device Mode Register Address Mapping

Register name	Description	Offset address
OTG_HS1_DCFG	High-speed OTG device configuration register	0x800
OTG_HS1_DCTRL	High-speed OTG device control register	0x804
OTG_HS1_DSTS	High-speed OTG device state register	0x808
OTG_HS1_DINIMASK	High-speed OTG device IN endpoint interrupt mask register	0x810
OTG_HS1_DOUTIMASK	High-speed OTG device OUT endpoint interrupt mask register	0x814
OTG_HS1_DAEPINT	High-speed OTG device all-endpoint interrupt register	0x818
OTG_HS1_DAEPIMASK	High-speed OTG device all-endpoint interrupt mask register	0X81C
OTG_HS1_DVBUSDTIM	High-speed OTG device VBUS release time register	0x828
OTG_HS1_DVBUSPTIM	High-speed OTG device VBUS pulse time register	0x82C

Register name	Description	Offset address
OTG_HS1_DTHCTRL	High-speed OTG device threshold control register	0x830
OTG_HS1_DIEIMASK	High-speed OTG device IN endpoint FIFO empty interrupt mask register	0x834
OTG_HS1_DEPINT	High-speed OTG device single-endpoint interrupt register	0x838
OTG_HS1_DEPIMASK	High-speed OTG device single-endpoint interrupt mask register	0x83C
OTG_HS1_DIN1IMASK	High-speed OTG device IN endpoint 1 interrupt mask register	0x844
OTG_HS1_DOUT1MASK	High-speed OTG device OUT endpoint 1 interrupt mask register	0x884
OTG_HS1_DIEPCTRLx	High-speed OTG device IN endpoint x control register (x=07)	0x900+20x
OTG_HS1_DIEPINTx	High-speed OTG device IN endpoint x interrupt register (x=07)	0x908+20x
OTG_HS1_DIEPTRS0	High-speed OTG device IN endpoint 0 transmission size register	0x910
OTG_HS1_DIEPTRSx	High-speed OTG device IN endpoint x transmission size register (x=13)	0x910+20x
OTG_HS1_DIEPDMAx	High-speed OTG device IN endpoint x DMA address register (x=15)	0x914+20x
OTG_HS1_DITXFSTSx	High-speed OTG device IN endpoint x TXFIFO state register (x=05)	0x918+20x
OTG_HS1_DOEPCTRL0	High-speed OTG device OUT endpoint 0 control register	0xB00
OTG_HS1_DOEPCTRLx	High-speed OTG device OUT endpoint x control register (x=13)	0xB00+20x
OTG_HS1_DOEPINTx	High-speed OTG device OUT endpoint x interrupt register (x=07)	0xB08+20x
OTG_HS1_DOEPTRS0	High-speed OTG device OUT endpoint 0 transmission size register	0xB10
OTG_HS1_DOEPTRSx	High-speed OTG device OUT endpoint x transmission size register (x=15)	0xB10+20x
OTG_HS1_DOEPDMAx	High-speed OTG device OUT endpoint x DMA address register (x=15)	0xB14+20x

27.14 OTG_HS1 device mode register functional description

27.14.1 High-speed OTG device configuration register (OTG_HS1_DCFG)

Offset address: 0x800 Reset value: 0x0220 0000

Field	Name	R/W	Description	
1:0	DSPDSEL	R/W	Device Speed Select This bit is used to select the speed of this module. 00: High speed 01: Reserved 10: Reserved 11: Full speed	
2	SENDOUT	R/W	Transmit the Received OUT Packet on Nonzero-length Status At the transmission OUT transaction stage, when the module receives a data packet with non-zero length, select the handshake signal to be transmitted by the program. 0: Transmit the received OUT data packet with zero or non-zero length to the application program and reply the NAK or STALL handshake signal 1: OUT data packets with non-zero length is not transmitted, and the STALL handshake signal is replied	
3	Reserved			
10:4	DADDR	R/W	Device Address The application program writes the device address to this bit after the SetAddress command is executed.	
12:11	PFITV	R/W	Periodic (Micro) Frame Interval This bit is used to select the time point (within one (micro) frame), and the time point is used to indicate when the periodic (micro) frame end interrupt must be used to notify the application program. 00: 80% of frame interval 01: 85% of frame interval 10: 90% of frame interval 11: 95% of frame interval	
23:13			Reserved	
25:24	PSITV	R/W	Periodic Scheduling Interval It indicates the time allocated by DMA to obtain the periodic IN endpoint data. 00: 25% (micro) frame 01: 50% (micro) frame 10: 75% (micro) frame 11: Reserved	
31:26		1	Reserved	

27.14.2 High-speed OTG device control register (OTG_HS1_DCTRL)

Offset address: 0x804 Reset value: 0x0000 0000

Field	Name	R/W	Description
0	RWKUPS	R/W	Remote Wakeup Signaling Transmit the remote wake-up signal, which can make the USB exit the suspended state, so as to wake up the USB host. 0: No operation 1: Transmit

Field	Name	R/W	Description
1	SDCNNT	R/W	Soft Disconnect Soft disconnect means that the host cannot learn that the device is connected, and the device cannot receive the signal on USB. 0: Work normally 1: The application program transmits soft disconnection signal Note: The USB will be always disconnected until this bit is cleared to 0.
2	GINAKSTS	R	Global IN NAK Status This bit controls whether the reply handshake signal is related to the data availability in the transmit FIFO. 0: Related 1: Unrelated; all non-periodic IN endpoints reply NAK handshake signal
3	GONAKSTS	R	Global OUT NAK Status 0: Reply handshake signal according to the FIFO state and related configuration bit 1: No data is received, discard all OUT data packets and all data packets reply the NAK handshake signal
6:4	TESTSEL	R/W	Test Mode Select 000: Disable the test 001: Test_J 010: Test_K 011: Test_SE0_NAK 100: Test_Packet 101: Test_Force_Enable Others: Reserved
7	GINAKSET	W	Global IN NAK Setup This bit can be set to 1 only when GINNPNAKEI bit of OTG_HS1_GCINT register is 0, so as to make all non-periodic IN ports transmit the NAK handshake signal.
8	GINAKCLR	W	Global IN NAK Clear When this bit is set to 1, GINAKSET bit will be cleared.
9	GONAKSET	W	Global OUT NAK Setup This bit can be set to 1 only when GONAKEI bit of OTG_HS1_GCINT register is 0, so as to make all OUT ports transmit the NAK handshake signal.
10	GONAKCLR	W	Global OUT NAK Clear When this bit is set to 1, GONAKSET bit will be cleared.
11	POPROGCMP	R/W	Power-on Programming Complete This bit indicates that the register has completed the programming operation after wake-up from power-down mode.
31:12			Reserved

27.14.3 High-speed OTG device state register (OTG_HS1_DSTS)

Offset address: 0x808 Reset value: 0x0000 0010

Field	Name	R/W	Description		
0	SUSSTS	R	Suspend Status 0: Non-suspended state 1: Suspended state		
2:1	ENUMSPD	R	Enumerated Speed Enumeration speed after controlling OTG_HS1 to detect the speed through chirp sequence. 00: High speed 01: Reserved 10: Reserved 11: Full speed		
3	ERTERR	R	Erratic Error 0: No irregular error 1: Irregular error is detected		
7:4			Reserved		
21:8	SOFNUM	R	Frame Number of the Received SOF This bit stores the frame number of receiving SOF.		
31:22	Reserved				

27.14.4 High-speed OTG device IN endpoint interrupt mask register (OTG_HS1_DINIMASK)

Offset address: 0x810 Reset value: 0x0000 0000

Field	Name	R/W	Description
			Transfer Completed Interrupt Mask
0	TSFCMPM	R/W	0: Mask
			1: Interrupt
			Endpoint Disable Interrupt Mask
1	EPDISM	R/W	0: Mask
			1: Interrupt
2			Reserved
			Timeout Interrupt Mask
3	TOM	R/W	0: Mask
			1: Interrupt
			IN Token Received when TxFIFO Empty Mask
4	ITXEMPM	R/W	0: Mask
			1: Interrupt
			IN Token Received with Endpoint Mismatch Mask
5	IEPMMM	R/W	0: Mask
			1: Interrupt
			IN Endpoint NAK Effective Mask
6	IEPNAKEM	R/W	0: Mask
			1: Interrupt
7			Reserved

Field	Name	R/W	Description
8	FUDRM	R/W	FIFO Underrun Mask 0: Mask 1: Interrupt
9	BNAM	R/W	BNA Interrupt Mask 0: Mask 1: Interrupt
31:10	Reserved		

27.14.5 High-speed OTG device OUT endpoint interrupt mask register (OTG_HS1_DOUTIMASK)

Offset address: 0x814 Reset value: 0x0000 0000

Field	Name	R/W	Description
			Transfer Completed Interrupt Mask
0	TSFCMPM	R/W	0: Mask
			1: Interrupt
			Endpoint Disable Interrupt Mask
1	EPDISM	R/W	0: Mask
			1: Interrupt
2			Reserved
			SETUP Phase Complete Mask
3	SETPCMPM	R/W	0: Mask
			1: Interrupt
			OUT Token Received when Endpoint Disabled Mask
4	OTXEMPM	R/W	0: Mask
			1: Interrupt
5	Reserved		
			Back-to-back SETUP Packets Received Mask
6	BTBSETM	R/W	0: Mask
			1: Interrupt
7			Reserved
			OUT Packet Error Mask
8	OPCKTERRM	R/W	0: Mask
			1: Interrupt
			BNA Interrupt Mask
9	BNAM	R/W	0: Mask
			1: Interrupt
31:10			Reserved

27.14.6 High-speed OTG device all-endpoint interrupt register (OTG_HS1_DAEPINT)

Offset address: 0x818 Reset value: 0x0000 0000

The corresponding bits of the register correspond to the bits of OTG_HS1_DIEPINTx/OTG_HS1_DOEPINTx, and the corresponding endpoint interrupt bits need to be consistent.

Field	Name	R/W	Description
15:0	INEPINT	R	All IN Endpoint Interrupts No. X bit indicates interrupt of IN endpoint X. Up to 16 IN endpoints.
31:16	OUTEPINT	R	All OUT Endpoint Interrupts No. X bit indicates interrupt of OUT endpoint (X-16). Up to 16 OUT endpoints.

27.14.7 High-speed OTG device all-endpoint interrupt mask register (OTG_HS1_DAEPIMASK)

Offset address: 0x81C Reset value: 0x0000 0000

Field	Name	R/W	Description
15:0	AINM	R/W	All IN Endpoint Interrupts Mask No. X bit indicates interrupt mask of IN endpoint X. Up to 16 IN endpoints. 0: Mask 1: Interrupt
31:16	AOUTM	R/W	All OUT Endpoint Interrupts Mask No. X bit indicates interrupt mask of OUT endpoint (X-16). Up to 16 OUT endpoints. 0: Mask 1: Interrupt

$27.14.8\,\text{High-speed OTG device V}_{\text{BUS}}$ release time register

(OTG_HS1_DVBUSDTIM)

Offset address: 0x828 Reset value: 0x0000 17D7

Field	Name	R/W	Description		
15:0	VBUSDTIM	R/W	Device V_{BUS} Discharge Time The value of this bit is the V_{BUS} discharge time after the pulse is sent out during SRP. Value=Discharge time of V_{BUS} (number of PHY clock)/1024		
31:16	Reserved				

27.14.9 High-speed OTG device V BUS pulse time register (OTG_HS1_DVBUSPTIM)

Offset address: 0x82C Reset value: 0x0000 05B8

Field	Name	R/W	Description
11:0	VBUSPTIM	R/W	Device V _{BUS} Pulsing Time The value of this bit is the _{VBUS} pulse time during SRP. Value=Discharge time of V _{BUS} (number of PHY clock)/1024

Field	Name	R/W	Description
31:12			Reserved

27.14.10 High-speed OTG device threshold control register (OTG_HS1_DTHCTRL)

Offset address: 0x830 Reset value: 0x0000 0000

Field	Name	R/W	Description		
			Nonisochronous IN Endpoints Threshold Enable		
0	NSINTHEN	R/W	0: Disable		
			1: Enable		
			Isochronous IN Endpoint Threshold Enable		
1	SINTHEN	R/W	0: Disable		
			1: Enable		
			Transmit Threshold Length		
10:2	TXTHLTH	R/W	This bit indicates the size of the transmission threshold, in double		
			words, with a minimum value of 8 double words.		
15:11			Reserved		
			Receive Threshold Enable		
16	RXTHEN	R/W	0: Disable		
			1: Enable		
			Receive Threshold Length		
25:17	RXTHLTH	R/W	This bit indicates the size of the receiving threshold, in double		
			words, with a minimum value of 8 double words.		
26	Reserved				
			Arbiter Parking Enable		
27	APARKEN	R/W	0: Disable		
			1: Enable		
31:28	Reserved				

27.14.11 High-speed OTG device IN port FIFO empty interrupt mask register (OTG_HS1_DIEIMASK)

Offset address: 0x834 Reset value: 0x0000 0000

Field	Name	R/W	Description	
15:0	INEM	R/W	IN Endpoint Tx FIFO Empty Interrupt Mask Bit X indicates masking the interrupt of TXFEM (in OTG_HS1_DIEPINTx register) of IN endpoint X. Up to 16. 0: Mask 1: Interrupt	
31:16	Reserved			

27.14.12 High-speed OTG device single-endpoint interrupt register (OTG_HS1_DEPINT)

Offset address: 0x838

Reset value: 0x0000 0000

Field	Name	Name R/W Description					
0	Reserved						
1	IN1INT	R/W In Endpoint 1 Interrupt					
16:2	Reserved						
17	OUT1INT	OUT1INT R/W OUT Endpoint 1 Interrupt					
31:18	Reserved						

27.14.13 High-speed OTG device single-endpoint interrupt mask register (OTG_HS1_DEPIMASK)

Offset address: 0x83C Reset value: 0x0000 0000

Field	Name	R/W	Description					
0		Reserved						
1	IN1M	R/W	R/W In Endpoint 1 Interrupt Mask					
16:2		Reserved						
17	OUT1M	1M R/W OUT Endpoint 1 Interrupt Mask						
31:18	Reserved							

27.14.14 High-speed OTG device IN endpoint 1 interrupt mask register (OTG_HS1_DIN1IMASK)

Offset address: 0x844 Reset value: 0x0000 0000

Field	Name	R/W	Description		
			Transfer Completed Interrupt Mask		
0	TSFCMPM	R/W	0: Mask		
			1: Interrupt		
			Endpoint Disable Interrupt Mask		
1	EPDISM	R/W	0: Mask		
			1: Interrupt		
2	Reserved				
			Timeout Interrupt Mask		
3	TOM	R/W	0: Mask		
			1: Interrupt		
			IN Token Received when TxFIFO Empty Mask		
4	ITXEMPM	R/W	0: Mask		
			1: Interrupt		
			IN Token Received with Endpoint Mismatch Mask		
5	IEPMMM	R/W	0: Mask		
			1: Interrupt		

Field	Name	R/W	Description			
			IN Endpoint NAK Effective Mask			
6	IEPNAKEM	R/W	0: Mask			
			1: Interrupt			
7			Reserved			
			FIFO Underrun Mask			
8	TXFUDRM	R/W	0: Mask			
			1: Interrupt			
			BNA Interrupt Mask			
9	BNAM	R/W	0: Mask			
			1: Interrupt			
12:10		Reserved				
			NAK Interrupt Mask			
13	NAKM	R/W	0: Mask			
			1: Interrupt			
31:14	Reserved					

27.14.15 High-speed OTG device OUT endpoint 1 interrupt mask register (OTG_HS1_DOUT1MASK)

Offset address: 0x884 Reset value: 0x0000 0000

Field	Name	R/W	Description			
			Transfer Completed Interrupt Mask			
0	TSFCMPM	R/W	0: Mask the interrupt			
			1: Interrupt			
			Endpoint Disable Interrupt Mask			
1	EPDISM	R/W	0: Mask the interrupt			
			1: Interrupt			
			AHB Error Interrupt Mask			
2	AHBERRIM	R/W	0: Mask the interrupt			
			1: Interrupt			
7:3	Reserved					
			OUT Packet Error Interrupt Mask			
8	OPERRM	R/W	0: Mask the interrupt			
			1: Interrupt			
			BNA Interrupt Mask			
9	BNAM	R/W	0: Mask the interrupt			
			1: Interrupt			
11:10	Reserved					
			Babble Error Interrupt Mask			
12	BERRM	R/W	0: Mask the interrupt			
			1: Interrupt			

Field	Name	R/W	R/W Description	
13	NAKM	R/W	NAK Interrupt Mask 0: Mask the interrupt 1: Interrupt	
14	NYETM	NYET Interrupt Mask 0: Mask the interrupt 1: Interrupt		
31:15	Reserved			

27.14.16 High-speed OTG device IN endpoint x control register (OTG_HS1_DIEPCTRLx) (x=0~7, endpoint number)

Offset address: 0x900+0x20m; m=0~7

Reset value: 0x0000 0000

Field	Name	R/W	Description	
10:0	MAXPS	R/W	Maximum Packet Size This bit indicates the maximum data packet size of the current endpoint (in byte).	
14:11			Reserved	
15	USBAEP	R/W	USB Active Endpoint This bit indicates whether the endpoint is activated in the current configuration and interface. After USB is reset, this bit will be cleared to 0 (except endpoint 0).	
16	EOF	R	Even Odd Frame Used for synchronous IN endpoints 0: Even frame 1: Odd frame Endpoint Data PID Used for interrupt/batch IN endpoints 0: DATA0 1: DATA1	
17	NAKSTS	R	NAK Status 0: The module replies non-NAK handshake according to the FIFO state 1: The module replies the NAK handshake on this endpoint. At this time, for OUT endpoint, even if there is remaining space in RXFIFO, the module will still stop receiving data Note: The module always responds to the SETUP data packet through ACK handshake.	
19:18	EPTYPE	R/W	Endpoint Type 00: Control 01: Synchronous 10: Batch 11: Interrupt	
20	Reserved			

Field	Name	R/W	Description
			STALL Handshake For uncontrolled and non-synchronous IN endpoints (read/write mode is RW):
21	STALLH	RW/RS	When this bit is set to 1, the device will reply STALL to all tokens from the USB host. This bit can only be cleared to 0 by software. Used for control endpoints (read/write mode is RW) When this bit is set to 1, it means that the module receives SETUP token.
25:22	TXFNUM	R/W	TXFIFO Number These bits indicate the FIFO number associated with the endpoint, and a separate FIFO number needs to be set for each effective IN endpoint.
26	NAKCLR	W	NAK Clear When performing write operation to this bit, the NAK bit of the endpoint will be cleared to 0.
27	NAKSET	W	NAK Set When performing write operation to this bit, the NAK bit of the endpoint will be set to 1. This bit can control the transmission of NAK handshake signal.
28	DPIDSET	W	DATA0 PID Set Used for interrupt/batch IN endpoints: When performing write operation to this bit, PID will be set to DATA0. Even Frame Set Used for synchronous IN endpoints: When performing write operation to this bit, EOF will be set to even frame.
29	OFSET	W	Odd Frame Set It is used for synchronous OUT endpoints. When performing write operation to this bit, EOF will be set to odd frame.
30	EPDIS	R/S	Endpoint Disable Data transmission on the endpoint can be stopped by setting this bit to 1. This bit needs to be cleared to 0 before the endpoint disable interrupt bit is set to 1; this bit can only be set to 1 after EPEN is set to 1.
31	EPEN	R/S	Endpoint Enable After this bit is set to 1, the endpoint will start to transmit data. When any of the following interrupts is triggered, this bit will be cleared to 0: SETUP completed Disable endpoint Transmission completed

27.14.17 High-speed OTG device IN endpoint x interrupt register (OTG_HS1_DIEPINTx) ((x=0~7, endpoint number)

Offset address: 0x908+0x20m; m=0~7

Reset value: 0x0000 0080

Read this register when ONEP bit of OTG_HS1_GCINT register is set to 1; Read OTG_HS1_DAEPINT register to obtain the accurate endpoint number of the device endpoint x interrupt register, and then read the register; only when the corresponding bit of the register is cleared to 0, can the corresponding bit of OTG_HS1_DAEPINT register and OTG_HS1_GCINT register be cleared to 0.

Field	Name	R/W	Description
0	TSFCMP	RC_W1	Transfer Complete Interrupt This bit indicates that the transmission on the endpoint has been completed.
1	EPDIS	RC_W1	Endpoint Interrupt Disable This bit means that the endpoint is disabled.
2		1	Reserved
3	ТО	RC_W1	Timeout Interrupt This bit is only applicable to the control IN endpoints, indicating that the response to the recently received IN token has timed out.
4	ITXEMP	RC_W1	Receive IN Token Interrupt when FIFO is empty This bit is only applicable to non-periodic IN endpoints, indicating that IN token is received when the corresponding TXFIFO of the endpoint is empty.
5			Reserved
6	IEPNAKE	RC_W1	IN Endpoint NAK Effective This bit indicates that the module samples NAK, namely, the NAK bit of the IN endpoint has taken effect. This bit will be cleared to 0 when NAKCLR bit of OTG_HS1_DIEPCTRLx register is written.
7	TXFE	R	TXFIFO Empty Interrupt An interrupt will be generated when TXFIFO of this endpoint is empty.
8	TXFUDR		TXFIFO Underrun An interrupt will be generated when TXFIFO underrun is detected.
9	BUFFNA		Buffer Not Available Interrupt When the descriptor cannot be processed by the module, the buffer is unavailable, and an interrupt will be generated.
10			Reserved
11	PDROFLG		Packet Dropped Flag This bit indicates that an ISOC OUT data packet is discarded without interrupt.
12	BERR		Babble Error Interrupt
13	NAK		NAK Interrupt This interrupt can be generated in two situations: The device transmits/receives NAK The synchronous IN endpoint transmits the data packet with 0 length

Field	Name	R/W	Description		
31:14		Reserved			

27.14.18 High-speed OTG device IN endpoint 0 transmission size register (OTG_HS1_DIEPTRS0)

Offset address: 0x910 Reset value: 0x0000 0000

This register can be modified only after EPEN bit of OTG_HS1_DIEPCTRL0 register is set to 1; this register can be read only after EPEN bit of OTG_HS1_DIEPCTRL0 register is cleared to 0.

Field	Name	R/W	Description	
6:0	EPTRS	R/W	Endpoint Transfer Size This bit indicates the data size contained by endpoint 0 in one data transmission.	
18:7	Reserved			
20:19	EPPCNT R/W Endpoint Packet Count This bit indicates the number of data packets contained by endpoint 0 in one data transmission.			
31:21	Reserved			

27.14.19 High-speed OTG device IN endpoint x transmission size register (OTG_HS1_DIEPTRSx) (x=1~3, endpoint number)

Offset address: 0x910+0x20m; m=1~3

Reset value: 0x0000 0000

This register can be modified only after EPEN bit of OTG_HS1_DIEPCTRLx register is set to 1; this register can be read only after EPENA bit of

OTG HS1 DIEPCTRLx register is cleared to 0

Field	Name	R/W	Description	
18:0 EPTRS	EPTRS	R/W	Endpoint Transfer Size This bit indicates the data size contained by endpoint x in one data	
28:19	EPPCNT	R/W	transmission (in byte). Endpoint Packet Count This bit indicates the number of data packets contained by endpoint x in one data transmission.	
30:29	TXDSEL	R/W	 Transmit Packet Select For periodic IN endpoints, this bit indicates the number of data packets that must be transmitted per frame on USB. For the calculation synchronization IN endpoint, this bit calculates the data PID of the endpoint. 01: 1 10: 2 11: 3 	
31	Reserved			

27.14.20 High-speed OTG device IN endpoint x DMA address register (OTG_HS1_DIEPDMAx) (x=1~5, endpoint number)

Offset address: 0x914+0x20m; m=1~5

Reset value: 0xXXXX XXXX

Field	Name	R/W	Description
31:0	DMAADDR	R/W	DMA Address This bit indicates the start address of external storage, and is used to store or obtain the endpoint data

27.14.21 High-speed OTG device IN endpoint x TXFIFO state register (OTG_HS1_DITXFSTSx) (x=0~5, endpoint number)

Offset address: 0x918+0x20m; m=0~5

Reset value: 0x0000 0000

Field	Name	R/W	Description
15:0	INEPTXFSA	R	IN Endpoint TXFIFO Space Available This bit indicates the available space of the IN endpoint TXFIFO (in word). 0x0: IN endpoint TXFIFO is full 0x1: 1 byte 0x2: 2 bytes 0xn: n bytes are available (0 <n<512) other="" reserved<="" td="" value:=""></n<512)>
31:16	Reserved		

27.14.22 High-speed OTG device OUT endpoint 0 control register (OTG_HS1_DOEPCTRL0)

Offset address: 0xB00 Reset value: 0x0000 8000

Field	Name	R/W	Description		
			Maximum Packet Size		
			The same as the maximum data packet size of IN endpoint 0		
1:0	MAXPS	R/W	00: 64 bytes		
1.0	W/ OCI O	10,00	01: 32 bytes		
			10: 16 bytes		
			11: 8 bytes		
14:2	Reserved				
			USB Active Endpoint		
15	USBAEP	R/W	When this bit is set to 1, it indicates that the current configuration		
			and the endpoint 0 are activated.		
16		Reserved			
			NAK Status		
17	NAKSTS	R	0: The module replies non-NAK handshake signal according to the FIFO state		
17			1: The module replies the NAK handshake signal on this endpoint. At this time, even if there is space in RXFIFO, the module will still stop receiving data.		

Field	Name	R/W	Description
19:18	EPTYPE	R/W	Endpoint Type This bit is set to 00 by hardware, indicating control type of the endpoint.
20	SNMEN	R/W	Snoop Mode Enable In snoop mode, the correctness of OUT data packets is not checked before they are transmitted to the storage area.
21	STALLH	RS	STALL Handshake The program can only set this bit to 1 and when the endpoint receives the SETUP token, this bit will be cleared to 0. The priority of STALL is higher than that of NAK.
25:22			Reserved
26	NAKCLR	W	NAK Clear When performing write operation to this bit, the NAK bit of the endpoint will be cleared to 0.
27	NAKSET	W	NAK Set When performing write operation to this bit, the NAK bit will be set to 1.
29:28			Reserved
30	EPDIS	R	Endpoint Disable The control OUT endpoint 0 cannot be disabled.
31	EPEN	W	Endpoint Enable After this bit is set to 1, start to transmit data on the endpoint. When any of the following interrupts is triggered, this bit will be cleared to 0: Complete SETUP Disable endpoint Complete transmission

27.14.23 High-speed OTG device OUT endpoint x control register (OTG_HS1_DOEPCTRLx) (x=1~3, endpoint number)

Offset address: 0xB00+0x20m; m=1~3

Reset value: 0x0000 0000

Field	Name	R/W	Description	
10:0	MAXPS	R/W	Maximum Packet Size This bit indicates the maximum data packet size of endpoint.	
14:11		Reserved		
15	USBAEP	R/W	USB Active Endpoint When this bit is set to 1, it indicates that the current configuration and the endpoint 0 are activated.	
16	EOF	R	Even Odd Frame This bit is used to indicate the frame number transmitted/received by the endpoint (for synchronization IN) or the PID of data packet (for interrupt/batch IN). Used for synchronous IN endpoints: 0: Even frame	

Field	Name	R/W	Description
			1: Odd frame Endpoint Data PID Used for interrupt/batch IN endpoints: 0: DATA0 1: DATA1
17	NAKSTS	R	NAK Status 0: The module replies non-NAK handshake according to the FIFO state 1: The module replies the NAK handshake signal on this endpoint. At this time, for OUT endpoint, even if there is remaining space in RXFIFO, the module will still stop receiving data Note: The module always responds to the SETUP data packet through ACK handshake.
19:18	EPTYPE	R/W	Endpoint Type 00: Control 01: Synchronous 10: Batch 11: Interrupt
20	SNMEN	R/W	Snoop Mode Enable In snoop mode, the correctness of OUT data packets is not checked before they are transmitted to the storage area.
21	STALLH	RW/RS	STALL Handshake For uncontrolled and non-synchronous IN endpoints (read/write mode is RW): When this bit is set to 1, the device will reply STALL to all tokens from the USB host. This bit can only be cleared to 0 by software. Used for control endpoints (read/write mode is RW) When this bit is set to 1, it means that the module receives SETUP token.
25:22		•	Reserved
26	NAKCLR	W	NAK Clear When performing write operation to this bit, the NAK bit of the endpoint will be cleared to 0.
27	NAKSET	W	NAK Set When performing write operation to this bit, the NAK bit of the endpoint will be set to 1. This bit can control the transmission of NAK handshake signal.
28	DPIDSET	W	 DATA0 PID Set Used for interrupt/batch IN endpoints: When performing write operation to this bit, PID will be set to DATA0. Even Frame Set Used for synchronous IN endpoints: When performing write operation to this bit, EOF will be set to even frame.

Field	Name	R/W	Description
29	OFSET	W	Odd Frame Set When performing write operation to this bit, EOF bit of synchronous OUT endpoint will be set to odd frame.
30	EPDIS	R/S	Endpoint Disable Data transmission on the endpoint can be stopped by setting this bit to 1. This bit needs to be cleared to 0 before the endpoint disable interrupt bit is set to 1; this bit can only be set to 1 after EPEN is set to 1.
31	EPEN	R/S	Endpoint Enable After this bit is set to 1, the endpoint will start to transmit data. When any of the following interrupts is triggered, this bit will be cleared to 0: SETUP completed Disable endpoint Transmission completed

27.14.24 High-speed OTG device OUT endpoint x interrupt register (OTG_HS1_DOEPINTx) ((x=0~7, endpoint number)

Offset address: 0xB08+0x20m; m=0~7

Reset value: 0x0000 0080

OTG_HS1_ Read this register when ONEP bit of GCINT register is set to 1; Read OTG_HS1_DAEPINTx register to obtain the accurate endpoint number of the device endpoint x interrupt register, and then read the register; only when the corresponding bit of the register is cleared to 0, can the corresponding bit of OTH_HS1_DAEPINT register and OTG_HS1_GCINT register be cleared to 0.

Field	Name	R/W	Description
0	TSFCMP	RC_W1	Transfer Complete Interrupt This bit indicates that the transmission on the endpoint has been completed.
1	EPDIS	RC_W1	Endpoint Interrupt Disable This bit means that the endpoint is disabled.
2	Reserved		
3	SETPCMP	RC_W1	SETUP Phase Complete Interrupt This bit is only applicable to the control OUT endpoint, indicating that the SETUP phase has been completed. After an interrupt is generated, the received SETUP data can be decoded.
4	RXOTDIS	RC_W1	Receive OUT Token Disable Interrupt This bit is only applicable to the control OUT endpoint, indicating that the OUT token is received without enabling the endpoint.
5	Reserved		
6	RXBSP	RC_W1	Receive Back-to-Back SETUP Packet Interrupt This bit is only applicable to the control OUT endpoint, indicating that the endpoint has received more than three consecutive SETUP data packets.

Field	Name	R/W	Description
13:7			Reserved
14	NYET	RC_W1	NYET Interrupt When the non-synchronous OUT endpoint responds to the NYET handshake signal, the interrupt will be generated.
31:15	Reserved		

27.14.25 High-speed OTG device OUT endpoint 0 transmission size register (OTG_HS1_DOEPTRS0)

Offset address: 0xB10 Reset value: 0x0000 0000

This register can be modified only after EPEN bit of OTG_HS1_DOEPCTRL0 register is set to 1; this register can be read only after EPEN bit of OTG_HS1_DOEPCTRL0 register is cleared to 0.

Field	Name	R/W	Description		
			Endpoint Transfer Size		
6:0	EPTRS	R/W	This bit indicates the data size contained by endpoint 0 in one data transmission (in byte).		
18:7		Reserved			
19	EPPCNT	R/W	Endpoint Packet Count		
19	EPPCNI		This bit will decrease to 0 after RXFIFO is written to a data packet.		
28:20	Reserved				
	SPCNT	R/W	SETUP Packet Count		
20.00			These bits indicate the number of SETUP dat packets that can be received continuously		
30:29			01: 1		
			10: 2		
			11: 3		
31	Reserved				

27.14.26 High-speed OTG device OUT endpoint x transmission size register (OTG_HS1_DOEPTRSx) (x=1~5, endpoint number)

Offset address: 0xB10+0x20m; m=1~5

Reset value: 0x0000 0000

This register can be modified only after EPEN bit of OTG_HS1_DOEPCTRLx register is set to 1; this register can be read only after EPEN bit of

OTG_HS1_DOEPCTRLx register is cleared to 0

Field	Name	R/W	Description
18:0	EPTRS	R/W	Endpoint Transfer Size This bit indicates the data size contained by endpoint x in one data transmission (in byte).

Field	Name	R/W	Description	
28:19	EPPCNT	R/W	Endpoint Packet Count This bit indicates the number of data packets contained by endpoint x in one data transmission.	
30:29	PID_SPCNT	R/W	Receive Data PID or SETUP Packet Count For synchronous OUT endpoints, this bit indicates the PID of the last received data packet. 00: DATA0 01: DATA2 10: DATA1 11: MDATA For the control OUT endpoint, this bit indicates the number of SETUP data packets that the endpoint can continuously receive. 01: 1 10: 2 11: 3	
31	Reserved			

27.14.27 High-speed OTG device OUT endpoint x DMA address register (OTG_HS1_DOEPDMAx) (x=1~5, endpoint number)

Offset address: 0xB14+0x20m; m=1~5

Reset value: 0xXXXX XXXX

Field	Name	R/W	Description
31:0	DMAADDR	R/W	DMA Address This bit indicates the start address of external storage, and is used to store or obtain the endpoint data

27.15 High-speed OTG power and clock gating control

register (OTG_HS1_PCGCTRL)

Offset address: 0xE00 Reset value: 0x0000 0000

Field	Name	R/W	Description
0	PCLKSTOP	R/W	PHY Clock Stop 0: The PHY clock is enabled to start when the USB communication is restored or the session is restarted 1: Stop the PHY clock when USB communication is suspended, the session is invalid, or the device is disconnected
1	GCLK	R/W	Gate HCLK 0: When the USB communication is restored or the session is restarted, it is allowed to stop providing the clock to modules other than AHB bus slave interface, main interface and wake-up

Field	Name	R/W	Description	
			1: When the USB communication is suspended or the session is invalid, stop providing the clock for the modules other than AHB bus slave interface, main interface and wake-up	
3:2	Reserved			
4	PHYSUS	R/W	PHY Suspend This bit means that PHY is suspended.	
31:5	Reserved			

27.16 OTG_HS2 register address mapping

Table 140 OTG_HS2 Register Address Mapping

Register name	Description	Offset address
USB_SWITCH	USB shadow switch register	0x200
POWERON_CORE	Power-on core register	0x204
USB_PLL_EN	USB PLL enable register	0x208
SHORT_5V_ENABLE	Short5V enable register	0x20C
OTG_SUSPENDM	OTG suspend register	0x210
TXBITSTUFFENABLE	Transmit bit stuff enable register	0x214
USB_DBNCE_FLTR_BYPASS	Debounce filter bypass enable register	0x238

27.17 OTG_HS2 global register functional description

27.17.1 USB shadow switch register (USB_SWITCH)

Offset address: 0x200 Reset value: 0x0000 0000

Field	Name	R/W	Description	
0	usb_switch	R/W	USB Switch 0: OTG_HS original is selected	
			1: OTG_HS shadow is selected	
31:1	Reserved			

27.17.2 Power-on core register (POWERON_CORE)

Offset addres: 0x204 Reset value: 0x0000 0000

Field	Name	R/W	Description
0	poweron_core	R/W	Power on Core This signal is used to get ultra-low power, high active 0: Power-down the core (analog domain) 1: Power-on the core (analog domain) is in working state In normal use, this pin suggest to tie H.
31:1	Reserved		

27.17.3 USB PLL enable register (USB_PLL_EN)

Offset address: 0x208 Reset value: 0x0000 0000

Field	Name	R/W	Description
0	usb_pll_en	R/W	USB PLL Enable 0: Disable 1: Enable
31:1	Reserved		

27.17.4 **SHORT_5V_ENABLE**

Offset address: 0x20C Reset value: 0x0000 0000

Field	Name	R/W	Description
0	short_5v_enable	R/W	V _{BUS} Short 5V Enable Enable V _{BUS} short protect function, disable PHY function when DP or DM short to 5V. 0: Disable 1: Enable
31:1	Reserved		

27.17.5 OTG suspend register (OTG_SUSPENDM)

Offset address: 0x210 Reset value: 0x0000 0000

Field	Name	R/W	Description	
0	otg_suspendm	R/W	OTG V _{BUS} Suspend 0: Disable V _{BUS} power supply voltage comparator 1: Enable V _{BUS} power supply voltage comparator	
31:1	Reserved			

27.17.6 Transmit bit stuff enable register (TXBITSTUFFENABLE)

Offset address: 0x214 Reset value: 0x0000 0000

Field	Name	R/W	Description			
0	txbitstuffenable	R/W	TX Bit Stuff Enable Indicates if the DATA_OUT[7:0] lines needs to be bit stuffed or not. 0: Disable 1: Enable			
31:1	Reserved					

27.17.7 Debounce filter bypass enable register (USB_DBNCE_FLTR_BYPASS)

Offset address: 0x238 Reset value: 0x0000 0000

Field	Name	R/W	Description	
0	usb_dbnce_fltr_bypass	R/W	Bypass debounce filters for avalid, bvalid, vbusvalid, sessend, iddig signals when enabled. 0: Disable 1: Enable	
31:1	Reserved			

28 Ethernet

Note: Only APM32F407/417xExG series products have such module.

28.1 Introduction

Ethernet provides configurable and flexible peripherals to meet various application requirements of customers. It supports two industry standard interfaces connected to the external physical layer: MII and RMI are used by default, and MII is only defined in IEEE 802.3 specification. It has many application fields, such as switch, network interface card and so on. Ethernet can transmit and receive data according to IEEE 802.3-2002 standard with the help of peripherals.

Ethernet complies with the following standards:

- IEEE802.3-2002 for Ethernet MAC
- IEEE1588-2008 standards which specify synchronization precision of networked clock
- AMBA 2.0 for AHB master/slave ports
- RMII specification of RMII Alliance

28.2 Main characteristics of Ethernet

28.2.1 Main characteristics of MAC

(1) MII interface and PHY communication that conforms to IEEE802.3 specification

- (2) Support 10/100Mbp data transmission rate
- (3) Half-duplex operation
 - Support CSMA/CD protocol
 - Provide back pressure flow control
- (4) Full-duplex operation
 - Support IEEE 802.3x flow control
 - If the flow control input signal disappears, the zero-range pause frame will be automatically transmitted
 - The received pause frame can be forwarded to the user application program
- (5) Insertion of frame data (SFD) in transmit path, and header and frame start data deleted in receive path
- (6) Automatically generate CRC and pad, which can be automtically cleared when receiving frames
- (7) Programmable frame interval
- (8) Programmable frame length; it supports up to 16KB jumbo frame
- (9) Address filter mode
 - Four 48-bit DA address registers; each byte can be masked
 - Three 48-bit SA address registers; each byte can be masked
 - 64-bit Hash filter, applicable to multicast and unicast addresses
 - Can transmit multi-cast address frames
 - Support mixed mode, and can transmit all frames, with network monitoring not filtered
 - A state report will be attached when transmitting incoming data packets
- (10) Independent transmitting, receiving and control interface
- (11) 32-bit data transmitting interface and receiving interface
- (12) Conduct IEEE 802.1Q VLAN variable detection for received frames
- (13) MDIO main interface (optional), used for PHY device configuration and management
- (14) Conduct forced network statistics through RMON/MIB counter
- (15) Detect LAN wake-up frame and AMD Magic Packet™ frame
- (16) Support Ethernet frame timestamp, and each frame gives 64-bit timestamp
- (17) 2KB transmit FIFO of programmable threshold function and 2KB receive FIFO of configurabe threshold function

- (18) During multi-frame storage of the receive FIFO, the receiving state vector is inserted into the receive FIFO after EOF transmission, so that the receiving state of these frames will not be stored by the receive FIFO
- (19) In storage and forwarding mode, all error frames will be filtered in receiving process and not be forwarded to the application program
- (20) Generate pulses for lost or damaged frames in the receive FIFO to support data statistics
- (21) Select to forward good frames of small size
- (22) In enhanced receiving, IPv4 header checksum and TCP, UDP or ICMP checksum encapsulated in IPv4 or IPv6 data packets can be checked
- (23) The checksum unloads the received IPv4 and TCP data packets encapsulated by Ethernet frames
- (24) Storage and forwarding mechanism transmitted to MAC
- (25) The pause frame control or back pressure signal to be transmitted to the MAC core is automatically generated according to the receive FIFO filling level
- (26) Handle automatic retransmission of conflict frames during transmission
- (27) Discard frames under excessive collision, delay collision, excessive delay and underflow conditions
- (28) Control and refresh Tx FIFO through software
- (29) Calculate IPv4 header checksum and TCP, UDP or ICMP checksum and insert the frames transmitted in storage and forwarding mode
- (30) Internal loopback through MII during debugging

28.2.2 Main characteristics of PTP

- (1) Timestamp of transmitting and receiving frames
- (2) Coarse calibration and precision calibration
- (3) An interrupt will be triggered when the system time is greater than the target time
- (4) Output second pulse

28.2.3 Main characteristics of DMA

- (1) AHB burst type can be selected at the AHB main interface
- (2) Select address alignment burst from AHB master port
- (3) AHB slave interface supports all AHB burst types

- (4) Double-buffer (buffering ring) or linked list (chain) descriptor link
- (5) Byte aligned addressing supported by data buffer
- (6) Optimize packet-oriented DMA transmission
- (7) Descriptor architecture, which allows transmission of large data blocks with minimal CPU intervention (each descriptor can transmit up to 8KB data)
- (8) Comprehensive state when reporting normal operation and transmission errors
- (9) Size of single programmable burst for transmitting and receiving DMA engine, for optimal host bus
- (10) Programmable interrupt option
- (11) Control transmitting/receiving completion interrupt
- (12) Loop scheduling arbitration or fixed priority arbitration is adopted between the transmitting engine and the receiving engine
- (13) The current Tx/RX descriptor pointer and buffer pointer are used as state registers

28.3 Functional description

28.3.1 Multiplexing function mapping

The following table displays MAC signal and corresponding MII/RMII signal mapping.

Table 141 Multiplexing Function Mapping

Post.	AF11
Port	ETH
PA0-WKUP	ETH_MII_CRS
PA1	ETH_MII_RX_CLK/ETH_RMII_REF_CLK
PA2	ETH_MDIO
PA3	ETH_MII_COL
PA7	ETH_MII_RX_DV/ETH_RMII_CRS_DV
PB0	ETH_MII_RXD2
PB1	ETH_MII_RXD3
PB5	ETH_PPS_OUT
PB8	ETH_MII_TXD3
PB10	ETH_MII_RX_ER

Post.	AF11
Port	ETH
PB11	ETH_MII_TX_EN/ETH_RMII_TX_EN
PB12	ETH_MII_TXD0/ETH_RMII_TXD0
PB13	ETH_MII_TXD1/ETH_RMII_TXD1
PC1	ETH_MDC
PC2	ETH_MII_TXD2
PC3	ETH_MII_TX_CLK
PC4	ETH_MII_RXD0/ETH_RMII_RXD0
PC5	ETH_MII_RXD1/ETH_RMII_RXD1
PE2	ETH_MII_TXD3
PG8	ETH_PPS_OUT
PG11	ETH_MII_TX_EN/ETH_RMII_TX_EN
PG13	ETH_MII_TXD0/ETH_RMII_TXD0
PG14	ETH_MII_TXD1/ETH_RMII_TXD1
PH2	ETH_MII_CRS
PH3	ETH_MII_COL
PH6	ETH_MII_RXD2
PH7	ETH_MII_RXD3
PI10	ETH_MII_RX_ER

28.3.2 SMI, MII and RMII

Ethernet peripherals include MAC 802.3 with dedicated DMA controller. It supports MII and RMII used by default and switches them through select bit. It also includes SMI for communicating with external PHY. The mode and function of MAC controller and DMA controller can be selected through a configuration register.

When transmitting data, first transmit the data from the system memory to the TX FIFO buffer through DMA, and then transmit it through the MAC core. The Ethernet frame received through the line is stored by RX FIFO before it is transmitted to the system memory through DMA.

Note: When using Ethernet, the clock frequency of AHB shall be at least 25MHz.

28.3.2.1 Station management interface (SMI)

SMI supports accessing 32 PHY. The application program selects one PHY among the 32 PHY through the 2-wire clock and data line, and then accesses any PHY register. Only one register in one PHY can be addressed at any given

time.

Both MDC clock line and MDIO data line are used as multiplexing function I/O in the microcontroller:

- MDC: Periodic clock, which provides reference timing when transmitting data at 2.5MHz. The minimum high/low-level time of MDC is 160ns. The minimum cycle of MDC is 400ns. In idle state, the SMI management interface drives the MDC clock signal to low level.
- MDIO: Data input/output bit stream, which is used to synchronize the transmission state with PHY device through MDC clock signal.

SMI frame format

Table 142Frame Format

	Management frame format						
Header	Each operation can be started through the header field, and the header field is used to establish synchronization with the PHY device and corresponds to 32 consecutive logical "1" bits on the MDIO line and 32 cycles on the MDC.						
Start	It is defined by the <01> mode, and used to verify transition of the state of the line from the default logic "1" - logic "0" - logic "1".						
Operation	Define the type of ongoing operation.						
PADDR	The PHY address has 5 bits, allowing 32 unique PHY addresses. The MSB bit of the address is the first to transmit and receive.						
RADDR	The register address has 5 bits, and 32 different registers can be addressed in the selected PHY device. The MSB bit of the address is the first to transmit and receive.						
TA	A 2-bit mode is defined between RADDR and DATA to avoid competition during read operation. When performing read operation, the MAC controller drives two bits of the TA to the high-impedance state on MDIO line. PHY device will drive the first bit of TA to high-impedance state and the second bit to "0".						
	When write operation is performed, the MAC controller will drive the <10> mode for the TA. The PHY device drives two bits of TA to the high-impedance state.						
Data	The data field is 16 bits. Bit 15 of the MAC_DATA register is the first bit.						
Idle	MDIO line is driven to the high-impedance state. The three-state driver is disabled, and the pull-up resistance of PHY keeps the line in the logic "1" state.						

SMI clock selection

Mac starts management read/write operation. SMI clock is a frequency division clock with AHB clock as clock source. The frequency division factor depends on the clock range set in MAC_ADDR register.

Table 143 Clock Range

CR bit	HCLK clock	MDC clock		
000	60-100MHz	AHB clock/42		
001	100-150MHz	AHB clock/62		
010	20-35MHz	AHB clock/16		

CR bit	HCLK clock	MDC clock
011	35-60MHz	AHB clock/26
100	150-180MHz	AHB clock/102
101、110、111	Reserved	-

SMI write operation

When MB bit and MW bit of MAC_ADDR are set to 1 by application program, SMI will trigger write operation of PHY register by transmitting PHY address, and register address in PHY, and writing data. When performing write operation, the application program cannot modify MAC_ADDR and MAC_DATA registers. After write operation is completed, SMI will reset MB bit.

SMI read operation

When MB bit of MAC_ADDR is set and MW bit is cleared to zero, SMI will trigger read operation of PHY register by transmitting PHY address, and register address in PHY. When performing read operation, the application program cannot modify MAC_ADDR and MAC_DATA registers. After read operation is completed, SMI will reset MB bit, and update the read data from PHY to MAC_DATA register.

28.3.2.2 Media independent interface (MII)

MII defines the interconnection between MAC sublayer and PHY at data transmission rate of 10 Mbit/s and 100 Mbit/s.

The signals are as follows:

- (1) MII_TX_EN: Transmit enable signal; MAC is currently transmitting half byte for MII
- (2) MII_RX_DV: Data receiving effective signal; PHY is currently receiving recovered and decoded half byte of MII
- (3) MII TXD [3:0]: Data transmitting signal
- (4) MII_RXD [3:0]: Data receiving signal
- (5) MII_RX_ER: Receiving error signal
- (6) MII_TX_CLK: Continuous clock signal, providing reference timing for TX data transmission
- (7) MII_RX_CLK: Continuous clock signal, providing reference timing for RX data transmission
- (8) MII_CRS: Carrier sense signal
- (9) MII_COL: Conflict detection signal

Table 144 TX Interface Signal Encoding

MII_TX_EN	MII_TXD [3:0]	Description		
0	0000-1111	Normal frame internal		
1	0000-1111	Normal data transmission		

Table 145 RX Interface Signal Encoding

MII_RX_DV	MII_RX_ER	MII_RXD [3:0]	Description
0	0	0000-1111	Normal frame internal
0	1	0000	Normal frame internal
0	1	0001-1101	Reserved
0	1	1110	Error carrier detection
0	1	1111	Reserved
1	0	0000-1111	Normal data receiving
1	1	0000-1111	Data receiving error

MII clock source

TX_CLK and RX_CLK clock signal can take effect only when 25MHz clock is provided to external PHY, and this signal can be output through MCO pin. The required frequency can be obtained on MCO pin through 25 MHz external quartz crystal only when PLL frequency doubling is configured.

28.3.2.3 Reduced media independent interface (RMII)

RMII reduces the number of pins of MCU of Ethernet peripherals and external PHY at 10/100Mbit/s. According to IEEE 802.3u standard, MII has 16 data and control signal pins. RMII reduces the number of pins to 7.

RMII is instantiated between MAC and PHY. It is conductive to converting MII of MAC to RMII. RMII has the following characteristics:

- (1) Separate 2-bit wide transmitting and receiving data path
- (2) 10-Mbit/s and 100-Mbit/s running speed
- (3) The reference clock is 50MHz
- (4) Provide the same reference clock to MAC and external Ethernet PHY from the outside

RMII clock source

Use external 50MHz clock or embedded PLL to generate 50MHz-frequency signal to drive PHY.

28.3.2.4 MII/RMII selection

When the Ethernet controller is not in reset mode or the clock is enabled, the application program needs to set MII/RMII mode.

28.3.3 Media access control (MAC 802.3)

The access method of IEEE 802.3 international standard applicable to LAN is CSMA/CD. The Ethernet peripheral consists of one MAC 802.3 controller with MII and a dedicated DMA controller.

- (1) The following system uses LAN CSMA/CD sublayer
 - Support half-duplex and full-duplex
 - The conflict detection access method is applicable only to half-duplex
 - The data rate of baseband system and broadband system is 10 Mbit/s and 100Mbit/s
 - Support MAC to control frame sublayer
- (2) Functions of MAC sublayer
 - Data encapsulation
 - Framing
 - Addressing
 - Error detection
 - Media access management
 - Media distribution
 - Contention resolution
- (3) Working mode of MAC sublayer
 - Half-duplex: Contention for physical media with CSMA/CD algorithm
 - Full duplex: When the physical media supports synchronous transmission and receiving, and two full-duplex stations are connected to the LAN, data can be transmitted and received at the same time without solving the contention problem.

28.3.3.1 MAC 802.3 frame format

IEEE 802.3-2002 standard specifies MAC uses MAC sublayer and optional MAC control sublayer (10/100 Mbit/s).

- (1) Two frame formats are specified for data communication system using CSMA/CD MAC
 - Basic MAC frame format
 - Tagged MAC frame format
- (2) Frame structure of field
 - Header: 7 bytes, used for synchronization
 - Start frame delimiter: 1 byte, indicating the start of the frame
 - Destination address and source address: MAC address field (6 bytes), indicating the address of destination station and source station

- (3) Address assignment is based on the following types
 - Single address: The physical address related to THE special station in the network.
 - Group address: A multi-destination address related to one or more stations in a given network. There are two kinds of multicast addresses, namely, multicast group address and broadcast address.
 - QTag prefix: A 4-byte field inserted in the source address and MAC client length/type field. This field is an extension of the basic frame (untagged) to obtain the tagged MAC frame. There is no untagged MAC frame.
 - Data and PAD: n bytes; the data are completely transparent, which
 means that any number of bytes may appear in data field. If PAD
 exists, its size is decided by the data size.
 - MAC client length/type: 2 bytes, which have different meanings.
 - Frame inspection sequence: 4 bytes including CRC value. CRC calculation is based on the following fields: source address, destination address, QTag prefix, length/type, LLC data and PAD.

28.3.3.2 MAC frame transmission

All operations when DMA controls transmission. DMA pushes the data read from system memory into FIFO. Then the frame will pop up and be transmitted to MAC core. When frame transmission is over, the transmission state will be obtained from MAC core and sent back to DMA. The FIFO fill level is indicated to the DMA to initiate data acquisition in the required system memory burst by using the AHB interface. The data from AHB main interface will be pushed to FIFO. The depth of transmit FIFO is 2KB

Transmit protocol

MAC controls transmission of Ethernet frame. The following functions are implemented to meet IEEE 802.3/802.3z specification:

- Generate header and SFD
- Generate transmitted frame state
- Generate blocking signals in half-duplex mode
- Control the flow (back pressure) in half-duplex mode
- Control Jabber timeout
- Including timestamp snapshot logic that conforms to IEEE 1588

Transmit CRC: Automatic generation of CRC and pad

In order to meet the minimum data field requirements of IEEE 802.3, when the number of bytes received from the application program is less than 60, zero will be attached to the transmitted frame to make the data length become 46 bytes. MAC can set not adding filling value. Calculate the CRC of the FCS field and attach it to the data being transmitted. If MAC is set to not attach the CRC value

to the end of the Ethernet frame, the CRC will not be transmitted. However, when MAC is set to attach filling to the frame less than 60 bytes, CRC will be attached to the end of the filling frame.

Transmit data packets

Transmission of data packets contains transmission of single data packet and multiple data packets, and their operation mode is different.

Transmit scheduler

MAC is responsible for scheduling the frame transmission on MII. The interval between two transmitted frames can be maintained, and the truncated binary exponential rollback algorithm can be observed in half-duplex mode. MAC enables transmission after meeting IFG counter and rollback delay conditions.

Transmit flow control

In full-duplex mode, when MAC_FCTRL[TXFCTRLEN]=1, MAC will generate pause frame and transmit it when needed. The pause frame and CRC are transmitted together. Generation of the pause frame can be enabled in two ways. When the application program sets FCTRLB bit to 1 or the receive FIFO is full, the pause frame will be transmitted.

Transmit FIFO refresh

FTXF bit of ETH_DMAOPMOD register controls to clear the transmit FIFO. Even if Tx FIFO is transmitting the frame to MAC core, Tx FIFO and the corresponding pointer will be immediately cleared to the initial state, as a result, an underrun event will be generated to MAC transmitter, and the frame transmission will be terminated. The state of the frame will mark both the underrun event and the frame emptying event.

Transmit status word

After the Ethernet frame is transmitted to the MAC core and the core completes the transmission of the frame, the transmission state will be provided to the application program.

Transmit checksum offload

The communication protocol realizes the checksum field, which helps understanding the integrity of data transmitted through the network. Because encapsulating TCP and UDP on IP datagrams is the most wide application of the Ethernet, the Ethernet controller has the function of transmitting checksum offload, and this function supports checksum calculation and insertion in the transmitting path, and error detection in the receiving path.

Retransmitting during conflict

In half-duplex mode, when transmitting frames to MAC, collision event may occur on the MAC line interface. The MAC may even indicate retrying before finishing receiving the frame. Then the frame will be retransmitted and pop up from the FIFO again.

MII/RMII

Each half byte from MII is transmitted on RMII, double bits are transmitted at one time, and the transmitting order is from low to high.

28.3.3.3 MAC frame receiving

The MAC pushes the received frame into the Rx FIFO. Once the state of this FIFO exceeds the configured receiving threshold, it will be indicated to DMA so that DMA can initiate preconfigured burst transmission to AHB interface.

Receive protocol

When a frame is received, the header and SFD of the frame will be removed. When SFD is detected, MAC will transmit Ethernet frame data to RX FIFO, which starts from the first byte after SFD. After the IEEE 1588 timestamp function is enabled, once an SFD is detected on the MII, a snapshot of the system time will be obtained. This timestamp will be transmitted to the application program, unless the MAC filters and discards the frame.

Receive multiple frames

Since the state is available immediately after receiving the data, the frames can be stored as long as the FIFO is not full.

Receive CRC: Automatic CRC and pad removal

The MAC will check the CRC error in the received frame and calculate the 32-bit CRC in it. No matter whether the pad/CRC is automatically removed, the Mac will receive the whole frame to calculate the CRC check of the received frame.

Received frame controller

When MAC_FRAF[RXA]=0, MAC will perform frame filtering according to the destination address and source address. If filtering fails, the frame will be discarded and not be transmitted to the application program. When the filtering parameters change dynamically, the filtering fails, the remaining frames will be discarded and the receive status word will be updated immediately. In Ethernet power-down mode, all received frames will be discarded and not be forwarded to the application program.

Receive checksum offload

The IPC bit in the MAC_CFG register controls the receive checksum offload. This function is to detect and process IPv4 and IPv6 frames in received Ethernet frame to ensure data integrity. The MAC identifies IPv4 or IPv6 frames by checking the type field of the received Ethernet frame. This identification method is also applicable to frames with VLAN tag.

Receive flow control

MAC_FCTRL[RXFCTRLEN] controls the detection function of pause frame. When this bit is set, the MAC will detect the receiving pause frame and the frame transmission will pause. The specific time is determined by the delay set in the received pause frame. After the flow control is enabled, start to monitor whether the destination address of the received frame matches the multicast address of the control frame. If they match, the MAC will determine whether to transmit the received control frame to the application program according to the MAC_FRAF[PCTRLF] bit.

Error processing

Table 146 Error Handling Situation

Occurrence	Processing results
Rx FIFO has been full before EOF data is received from MAC.	Discard the entire frame, and the overrun counter in the ETH_DMAMFABOCNT register increses.
Use FERRF and FUF bits in the ETH_DMAOPMOD register to enable the corresponding functions.	Rx FIFO can filter error frames and too small frames.
Configure the receive FIFO to work in storage and forwarding mode.	Filter and discard all error frames.
In pass-through mode, if the SOF of the frame is read from Rx FIFO, the state and length of the frame are available.	The whole error frame can be discarded. DMA can empty the error frame being read from FIFO. Then stop the data transmission to DMA, read from the inside and discard the remaining frames. If available, transmission of next frame can be started.

Receive status word

At the end of Ethernet frame receiving, MAC will output the receiving state to DMA. The detailed description of receiving state is the same as RXDES0[31:0].

Frame length interface

The data transmission and receiving between the application and the MAC are conducted in the form of transmitting a complete frame. The application layer needs to know the length of the frame received from the inbound port in order to transmit the frame to the outbound port. The MAC core provides the length of

each received frame at the end of receiving of each frame.

MII/RMII receive bit sequence

Each half byte is transmitted from the two bits received on RMII to MII, and the transmitting order is from low to high.

28.3.3.4 MAC interrupt

Various events can generate an interrupt to the MAC core, and the MAC_ISTS register describes various event interrupts. Setting the corresponding mask bit in the interrupt mask register can prevent event interrupts from being generated. The interrupt can be cleared by reading the corresponding state register and other registers.

28.3.3.5 MAC filtering

Address filtering

Check the destination address and source address of all received frames and report the corresponding address filtering state. The address check depends on the setting of the frame filter register. The filtered frames can be identified: multicast frames or broadcast frames. Address filtering uses the MAC address of the station and the multi-broadcast list for address check.

Unicast destination address filtering

MAC supports 4 MAC addresses for unicast perfect filtering. If MAC_FRAF[HUC]=0, MAC will compare whether all 48 bits of the received unicast address match the set MAC address.

Multicast destination address filtering

The PM of MAC_FRAF register controls whether to set the MAC to pass all multicast frames. When the PM bit is reset, the HMC bit of the MAC_FRAF register controls the multicast address filtering.

Hash or perfect address filtering

When setting HPF bit, HUC bit ad HMC bit of MAC_FRAF register, DA filter is configured to allow frames to pass when its DA matches hash filter or perfect filter. This configuration is applicable to unicast and multicast frames. If the HPF bit is reset, there is only one filtering method.

Broadcast address filtering

In the default mode, the MAC does not filter broadcast frames. However, if MAC_FRAF[DISBF]=1, all broadcast frames will be discarded.

Unicast source address filtering

The MAC performs perfect filtering according to the source address of the received frame. By default, the MAC compares the SA field with the value in the SA register. When Bit 30 in the corresponding register is set, the MAC address register will be configured to contain SA for comparison. If MAC_FRAF[SAFEN]=0, the result of SA filtering will be presented in the status bit of the received status word. Otherwise, the MAC will discard the frames that do not pass SA filtering.

Reverse filtering

In the final output, the DAIF and SAIF bits of MAC_FRAF control the filtering of destination address and source address respectively. The DAIF bit is applicable to unicast and multicast Da frames. When this bit is set, the result of unicast/multicast destination address filtering will be reversed. When the SAIF bit is set, the result of unicast SA filtering will be reversed.

Table 147 Destination Address Filtering

Frame	PR	HUC	нмс	DAIF	PM	DISBF	HPF	DA filtering operation						
type	FK	ПОС		DAIF	FIVI	DISBI	ПРГ	DA Internig operation						
	1	Х	Χ	Х	Х	Х	Χ	Pass						
Broadcast	0	Х	Χ	Х	Х	0	X	Pass						
	0	Х	Χ	Х	Х	1	Χ	Fail						
	1	Х	Χ	Х	Х	Х	Χ	All frames pass						
	0	0	Х	0	Х	Х	Х	Pass when perfect/group filter						
	ŭ	Ŭ		Ŭ	^		^	matches						
	0	0	X	1	Х	X	X	Fail when perfect/group filter						
								matches						
Unicast	0	1	Χ	0	Χ	Х	0	Pass when hash filter matches						
	0	1	Χ	1	Χ	X	0	Fail when hash filter matches						
	0	0 1	Х	0	Х	Х	1	Pass when hash or perfect/group						
								filter matches						
	0) 1	Х	1	Х	Х	1	Fail when hash or perfect/group						
								filter matches						
	1	Χ	Χ	Χ	Х	X	X	All frames pass						
	Χ	Χ	Χ	Χ	1	X	Χ	All frames pass						
		0 X								If PCTRLF=0x, pass when				
	0		0	0	0	Х	Х	perfect/group filter matches, and						
Multicast								discard the pause control frame						
Mullicast								If PCTRLF=0x, pass when hash						
	0	0 X	1	0	0	X	0	filter matches, and discard the						
								pause control frame						
	0	X	X 1	0	0	Х	1	If PCTRLF=0x, pass when hash						
	0	0	0	U	U	U	U	^	ı	U	U	^	ı	or perfect/group filter matches,

Frame type	PR	HUC	нмс	DAIF	РМ	DISBF	HPF	DA filtering operation
								and discard the pause control frame
	0	Х	0	1	0	X	Х	If PCTRLF=0x, fail when perfect/group filter matches, and discard the pause control frame
	0	Х	1	1	0	Х	0	If PCTRLF=0x, fail when hash filter matches, and discard the pause control frame
	0	Х	1	1	0	X	1	If PCTRLF=0x, fail when hash or perfect/group filter matches, and discard the pause control frame

Table 148 Source Address Filtering

Frame type	PR	SAIF	SAFEN	SA filtering operation
Unicast	1	Χ	Χ	All frames pass
	0	0	0	Pass when perfect/group filter matches, but the pause control frame is not discarded
	0	1	0	Fail when perfect/group filter matches, but the frame is not discarded
	0	0	1	Pass when perfect/group filter matches, and discard the failed frames
	0	1	1	Fail when perfect/group filter matches, but the failed frames are not discarded

28.3.3.6 MAC loopback mode

MAC can loop back the received frames. This function is controlled by BM bit of MAC_CFG register, and it is disabled by default.

28.3.3.7 MAC management counter (MMC)

MMC has a control register, two interrupt state registers, and two mask interrupt registers to collect information about received frames and transmitted frames. These registers are accessible from the application program.

Receive the MMC counter and update the frames that have passed address filtering. The discarded frame will not be updated unless the discarded frame is a short frame less than 6 bytes.

Good frame

- (1) If there are no following errors during transmission, the transmitted frame is a "good frame":
 - Frame underrun
 - No carrier/lost carrier

- Jabber timeout
- Delay conflict
- Excessive delay
- Excessive conflict
- (2) If there are no following errors during receiving, the received frame is a "good frame":
 - Short frame
 - CRC error
 - MII RXER input error
 - Alignment error (for 10/100Mb/s only)
 - Length error (for non-type frames only)
 - Out of range (for non-type frames only, exceeding the maximum size)
- (3) The frame type determines the maximum frame size as follows:
 - Maximum size of untagged frame=1518
 - Maximum size of VLAN frame=1522

28.3.3.8 Power management (PMT)

PMT supports receiving network remote wake-up frame and magic data packet frame. Interrupts can be generated for wake-up frames and magic data packet frames received by MAC. PMT module can be enabled by WKUPFEN bit and MPEN bit of MAC_PMTCTRLSTS register. When the power-down mode is enabled in the PMT, the MAC will discard all received frames and will not forward them to the application. The power-down mode will exit only when the remote wake-up frame or magic data packet frame is received and the corresponding detection is enabled.

Detect remote wake-up frame

When MAC is in sleep mode and MAC_PMTCTRLSTS[WKUPFEN]=1 is enabled, the MAC can resume normal work after receiving the remote wake-up frame.

Detect magic data packet

AMD Company's technology can be used to power on the devices which are in sleep mode on the network. MAC receives a specific information packet called magic data packet, and its address is the node on the network. Only the magic data packets that are transmitted to the device or multicast address are checked to determine whether they meet the wake-up requirements.

System precautions during power-down

When the EINT 19 interrupt line is enabled, the Ethernet PMT module can detect frames when the system is in stop mode. The MAC receiver state machine shall remain enabled in power-down mode.

28.3.3.9 Precision time protocol (IEEE 1588PTP)

The IEEE 1588 standard defines a protocol. It is suitable for systems that communicate through LAN supporting multicast message transmission and synchronous heterogeneous systems, including clocks with different fixing accuracy, resolution and stability. It supports precision clock synchronization in measurement and control systems which are realized by technologies such as network communication, LAN computing and distributed objects. It supports system-level synchronization accuracy within the subsecond range, and requires minimal network and local clock computing resources. This protocol, called precision time protocol, is transmitted through UDP/IP. The system or network is divided into master node and slave node, which are used to allocate timing/clock information. The protocol synchronizes the slave node to the master node by exchanging PTP messages.

Use PTP to transmit frames

The timestamp is captured when the SFD of the frame is output on the MII. Each transmitted frame may be tagged to indicate whether there is need to capture the timestamp of this frame. PTP frames can be identified without processing the transmitted frame. Transmit the control bit control frame in the descriptor. The captured timestamp is returned to the application in a manner of providing the frame state. The timestamp will be transmitted back to the corresponding transmit descriptor along with the transmission state of the frame, so that the timestamp can be connected with the specific PTP frame. The 64-bit timestamp information is written back to the TXDES2 and TXDES3 fields, wherein TXDES2 maintains the 32 least significant bits of the timestamp.

Use PTP to receive frames

When the IEEE 1588 timestamp function is enabled, the timestamps of all frames received on the MII will be captured by the Ethernet MAC. The MAC provides the timestamp when the frame receiving is completed. The captured timestamp is returned to the application in a manner of providing the frame state. The timestamp will be transmitted back to the corresponding receive descriptor along with the receiving state of the frame. The 64-bit timestamp information is written back to the RXDES2 and RXDES3 fields, wherein RXDES2 maintains the 32 least significant bits of the timestamp.

Reference timing source

To take a time snapshot, the core needs a 64-bit reference time. PTP reference clock input is used to generate reference time and capture timestamp internally. The frequency of the generated reference clock cannot be less than the resolution of the timestamp counter. The synchronization precision target between the master node and each slave node is about 100ns.

Calibration method

Synchronizing or updating the system time in a process is the coarse calibration method, and synchronizing or updating the system time in order to reduce the system time jitter is the precision calibration method.

System time calibration method

The 64-bit PTP time is refreshed by the PTP input reference clock HCLK. In order to obtain the timestamp of the Ethernet frame transmitted or received on the MII, this time is used as the clock source. The system time timer can be initialized or calibrated in coarse calibration or precision calibration method.

System time initialization

The timestamp function is controlled by TSEN bit of PTP_TSCTRL register. After setting, the timestamp can be enabled only by initializing the timestamp counter.

PTP trigger connected internally to TMR2

In order to avoid the uncertainty of command execution time caused by use of interrupt when the system time is greater than the target time, the PTP trigger output signal internally connected to TMR2 input trigger can be set to high level when the system time is greater than the target time.

PTP pulse per second output signal

PTP pulse is used to check the synchronization of all nodes in the network. Two clocks can be provided with pulses per second (PPS) output signals to test the difference between the local slave clock and the master reference clock. The pulse width of PPS output is 125ms.

28.3.4 DMA controller

DMA is used for packet data transmission. The controller can be set to generate CPU interrupt under normal/error conditions such as completion of transmitting frames and receiving frames. DMA has separate transmitter and receiver and corresponding control and state registers. The transmitter transmits the data in the system memory to Tx FIFO, and the receiver transmits the data received by Rx FIFO to the system memory. DMA descriptor can transmit data from the source address to the destination address with minimal CPU intervention. The communication mode between DMA and CPU falls into the following two data structures:

- Control and state register
- Descriptor list and data buffer

28.3.4.1 Host bus burst access

DMA attempts fixed-length burst transmission on the AHB main interface. The maximum length of the burst depends on the PBL bit of DMABMOD register. The receive and transmit descriptors access the 16 bytes to be read with the maximum possible burst size.

28.3.4.2 Host data buffer alignment

The transmit and receive data buffers do not limit the start address alignment. In our system, the start address of the buffer can be aligned with any of the four bytes. DMA always starts transmission when the address is aligned with the bus width, and uses unnecessary byte channels to transmit empty data at the beginning or end of Ethernet frame transmission.

28.3.4.3 Calculate buffer size

DMA only updates the status of transmit and receive descriptors, not the size. The size needs to be calculated by the driver. Transmit DMA will transmit the correct number of bytes to the MAC core.

28.3.4.4 **DMA arbiter**

The arbiter in DMA arbitrates between the transmitting channel and the receiving channel accessing the AHB main interface respectively. Circular scheduling and fixed priority arbitration can be used.

28.3.4.5 Error response to DMA

If the slave gives an error response to the data transmission initiated by the DMA channel, the corresponding DMA will stop all operations and update the FBERRFLG bit and ERRB bit in ETH DMASTS register.

28.3.4.6 Tx DMA

Tx DMA contains two modes: default mode and OSF mode

Process transmitted frames

The expected data buffer of transmit DMA contains a complete Ethernet frame, excluding header, pad and FCS. The DA, SA, and type/length fields contain valid data. When the transmit descriptor indicates that the MAC core disables the insertion of CRC or pad, the buffer must have a complete Ethernet frame containing CRC bytes. The frame is bounded by the first descriptor and the last descriptor, which can be a data link or across multiple buffers.

Pause transmission polling

When DMA detects all descriptors and the TXBU bit of ETH_DMASTS register is set, the transmission polling will be suspended. Or when a transmission error caused by underrun is detected, the frame transmission will be aborted. The

corresponding transmit descriptor 0 bit will be set to 1. If the second condition occurs, AINTS bit and TXUNF bit of ETH_DMASTS register will be set, and if the information is written to the transmission descriptor 0, the transmission polling will also be suspended.

28.3.4.7 Functional description of general transmit descriptor

The general transmit descriptor structure consists of four 32-bit words. If the timestamp is activated or IPv4 checksum offload is activated, the enhanced descriptor must be used.

Transmit descriptor word 0 (TXDES0)

Field	Name	R/W	Description
0	DEF	R/W	Deferred When this bit is set, it indicates that the MAC is delayed before transmission due to the existence of carrier. This bit is valid only in half-duplex mode. 0: No delay 1: Delay
1	UFERR	R/W	Underflow Error When this bit is set, it indicates the MAC terminates the frame because the data arrives late from the host memory. The underflow error indicates that the DMA encountered an empty transmit buffer while transmitting frames. The transmitting process enters the pending state.
2	EDEF	R/W	Excessive Deferral If MAC_CFG[4] is set to 1, this bit indicates that transmission has been over.
6:3	CCNT	R/W	Collision Count The value of this bit field indicates the number of collision that occurs before frame transmission. Invalid when TXDES0[8] is set to 1.
7	VLANF	R/W	VLAN Frame When this bit is set, it indicates that the transmitted frame is a frame of VLAN type.
8	EC	R/W	Excessive Collision When this bit is set, it indicates that the transmission is terminated after 16 consecutive collisions when trying to transmit the current frame. If MAC_CFG[9] is set, this bit will be set after the first collision, and the transmission of the frame will be terminated.
9	LC	R/W	Late Collision When this bit is set, it indicates that the frame transmission is terminated due to a collision after the collision window. This bit is invalid if underflow error is set.
10	NC	R/W	No Carrier When this bit is set, it indicates that the carrier detection signal of PHY is continuously formed during transmission.
11	LSC	R/W	Loss of Carrier When this bit is set, it indicates that the carrier is lost during frame transmission. Only when the MAC works in half-duplex mode, it is valid for frames transmitted without conflict.

IPERR R/W When this bit is set to 1, it indicates that the MAC transmitter detects an error in the TCP, UDP, or ICMP IP packet payload. The transmitter will check the payload length received in the IPv4 or IPv6 header according to the actual number of bytes of TCP, UDP or ICMP IP packets received from the application program. If there is mismatch, the error status will be displayed. Frame Flushed When this bit is set, it indicates that DMA or MTL refreshes the frame due to the software refresh command given by the CPU. Jabber Timeout When this bit is set, it indicates that the MAC transmitter has experienced a jabber timeout. This bit can be set only when JDIS bit of MAC_CFG register is not set. Error Summary The value is OR operation result of the following bits:
When this bit is set to 1, it indicates that the MAC transmitter detects an error in the TCP, UDP, or ICMP IP packet payload. The transmitter will check the payload length received in the IPv4 or IPv6 header according to the actual number of bytes of TCP, UDP or ICMP IP packets received from the application program. If there is mismatch, the error status will be displayed. Frame Flushed When this bit is set, it indicates that DMA or MTL refreshes the frame due to the software refresh command given by the CPU. Jabber Timeout When this bit is set, it indicates that the MAC transmitter has experienced a jabber timeout. This bit can be set only when JDIS bit of MAC_CFG register is not set. Error Summary
13 FF R/W When this bit is set, it indicates that DMA or MTL refreshes the frame due to the software refresh command given by the CPU. Jabber Timeout When this bit is set, it indicates that the MAC transmitter has experienced a jabber timeout. This bit can be set only when JDIS bit of MAC_CFG register is not set. Error Summary
14 JTO R/W When this bit is set, it indicates that the MAC transmitter has experienced a jabber timeout. This bit can be set only when JDIS bit of MAC_CFG register is not set. Error Summary
TXDES0[1]: UFERR TXDES0[2]: EDEF TXDES0[8]: EC TXDES0[9]: LC TXDES0[10]: NC TXDES0[11]: LSC TXDES0[11]: LSC TXDES0[12]: IPERR TXDES0[13]: FF TXDES0[14]: JTO TXDES0[16]: IHERR
IP Header Error When this bit is set to 1, it indicates that the MAC transmitter has detected an error in the IP data header. The transmitter will check the header length of IPv4 packets according to the number of header byte received from the application program. If there is a mismatch, it indicates the error status. If the main header length of IPv6 frame is n 40 bytes, a header error will be reported. If the value of the header length field of IPv4 frame is less than 0x5, a header error will also be reported. Besides, the Ethernet length/type field value of IPv4 or IPv6 frame must match the IP header version received along with the data packet.
TX Timestamp Status This status bit indicates that the timestamp of the corresponding transmitted frame has been captured. When this bit is set, TXDES2 and TXDES3 have the timestamp values captured for the transmitted frames. This bit field is valid only when the last control bit (TXDES0[29]) in the descriptor is set.
When the enhanced descriptor is enabled, TXTSS=1 indicates that there is timestamp value in TXDES6 and TXDES7.

Field	Name	R/W	Description			
20	TXCH	R/W	Second Address Chained When this bit is set to 1, the second address in the descriptor is the address of the next descriptor, not the address of the second buffer, and TXDES1[28:16] is "irrelevant" value. The priority of TXDES0[21] is higher than TXDES0[20].			
21	TXENDR	R/W	Transmit End of Ring When this bit is set to 1, the descriptor list has reached the last descriptor. DMA will return the base address of the descriptor list and form a descriptor ring.			
23:22	CHINS	R/W	Checksum Insertion Control These bits control the calculation and insertion of checksum. The bit codes are as follows: 00: Disable checksum insertion 01: Enable calculation and insertion of IP header checksum 10: Enable the calculation and insertion of payload checksum and IP header checksum, but the pseudo header checksum will not be calculated in hardware 11: Enable the calculation and insertion of payload checksum and IP header checksum, and the pseudo header checksum will be calculated in hardware.			
24	Reserved					
25	TXTSEN	R/W	Transmit Timestamp Enable When this bit is set to 1 and TSEN is set to 1, the IEEE1588 hardware timestamp function will be activated for the transmitted frame described in the descriptor. This bit is valid only when TXDES0[28]=1.			
26	DISP	R/W	Disable Pad 0: DMA will automatically add complementary bit item and CRC for frames less than 64 bytes. Whether to add CRC field has nothing to do with TXDES0[27] 1: MAC will not automatically add complementary bit item for frames less than 64 bytes This bit is valid only when TXDES0[28]=1.			
27	DISC	R/W	Disable CRC When this bit is set to 1, MAC will not attach the CRC to the end of the transmitted frame. This bit is valid only when TXDES0[28]=1.			
28	FS	R/W	First Segment When this bit is set to 1, it indicates that the buffer includes the first segment of the frame.			
29	LS	R/W	Last Segment When this bit is set to 1, it indicates that the buffer includes the last segment of the frame.			
30	INTC	R/W	Interrupt on Completion When this bit is set to 1, after transmission of current frame is completed, an interrupt will be transmitted.			

Field	Name	R/W	Description
31	OWN	R/W	Own 0: This describer belongs to CPU 1: This describer belongs to DMA DMA will clear this bit when the frame transmission is completed or the buffer allocated in the descriptor is empty. All bits of the first descriptor of this frame should be set after all subsequent descriptors belonging to the same frame are set.

Transmit descriptor word 1 (TXDES1)

Field	Name	e R/W Description			
12:0	TXBS1	R/W Transmit Buffer 1 Size These bits indicate the size of the first data buffer. If the bit is 0, DMA will ignore this buffer and use the buffer 2 or the next descriptor, depending on the value of TXDES0[20].			
15:13	Reserved				
28:16	TXBS2 R/W Transmit Buffer 2 Size These bits indicate the size of the second data buffer in bytes. If TXDES0[20]=1, this field will be invalid.				
31:29	Reserved				

Transmit descriptor word 2 (TXDES2)

Transmit descriptor word 3 (TXDES3)

Field	Name	R/W	Description
31:0	TXADDR2_TXFTSH	R/W	Transmit Buffer 2 Address Pointer (Next descriptor address) / Transmit frame timestamp high It indicates the location of the data in the memory to the DMA. When all data have been transmitted, the DMA can use these bits to return the timestamp data. TXADDR2: When TXDES0[31]=1 and the descriptor ring structure is used, these bits indicate the physical address of buffer 2. If TXDES1[24]=1, this address contains the pointer of the physical register where the next descriptor is located. The buffer address pointer matches the bus width only when TXDES1[24]=1. TXFTSH: Before TXDES0[31] is cleared to zero, the DMA will update this field with the 32 most significant bits of the timestamp captured for the corresponding transmitted frame. The bit field contains a timestamp only when the timestamp function of this frame is activated and LS=1.

28.3.4.8 Functional description of enhanced transmit descriptor

If the timestamp or IPv4 checksum offload is activated, the enhanced descriptor must be used. The enhanced descriptor consists of eight 32-bit words, which is twice the normal size of the descriptor. Definitions of TXDES0, TXDES1, TXDES2 and TXDES3 are the same as those of general transmit descriptor. TXDES6 and TXDES7 contain the timestamp.

When selecting the enhanced descriptor mode, 32-byte memory need to be allocated for each descriptor. If the timestamp or IPv4 checksum offload is not used, the enhanced descriptor format can be disabled, and the software can use a general descriptor with a default size of 16 bytes.

Transmit descriptor word 4 (TXDES4)

Field	Name	R/W	Description
31:0			Reserved

Transmit descriptor word 5 (TXDES5)

Field	Name	R/W	Description
31:0			Reserved

Transmit descriptor word 6 (TXDES6)

Field	Name	R/W	Description
31:0	TXFTSL	R/W	Transmit Frame Timestamp Low This bit field will be updated by the DMA with the 32 least significant bits of the timestamp captured for the corresponding transmitted frame. The bit field contains a timestamp only when LS=1.

Transmit descriptor word 7 (TXDES7)

Fie	d Name	R/W	Description
31:	TXFTSH	R/W	Transmit Frame Timestamp High This bit field will be updated by the DMA with the 32 most significant bits of the timestamp captured for the corresponding transmitted frame. The bit field contains a timestamp only when LS=1.

28.3.4.9 Rx DMA

Obtain receiving descriptor

The receiver always tries to get an additional descriptor to add to the frame to be received. It will attempt to obtain the descriptor when any of the following operations occurs:

- (1) The command of receiving polling requirements has been issued
- (2) After DMA runs, the STRX bit of ETH_DMAOPMOD register is immediately set
- (3) The descriptor data buffer is full before the end of the currently transmitted frame
- (4) The receiving process is suspended because RDES0[OWN]=0, and a new frame is received
- (5) The receive data frame is completed, but the receive descriptor is not disabled

Process received frames

The MAC will transmit the received frames to the memory only when the frame whose size is not less than the threshold number of bytes set for the receive FIFO passes the address filtering, or when the whole frame is written to the FIFO in the storage and forwarding mode.

Stop when receiving

If a new received frame is detected when the receiving process is suspended, the DMA will obtain the current descriptor in memory again. If the descriptor is owned by DMA, the frame will be received again. If it is owned by the host, by default, the DMA will discard the current frame at the top of Rx FIFO and the lost frame counter will increase. If multiple frames are stored in Rx FIFO, the above process will be repeated. After DISFRXF bit of ETH_DMAOPMOD register is set, it can avoid discarding or refreshing the frame at the top of the Rx FIFO. At this time, RXBU bit is set to 1 and the receiving process returns to the suspended state.

28.3.4.10 Functional description of general receive descriptor

The general receive descriptor structure consists of four 32-bit words. If the timestamp function or IPv4 checksum offload is activated, the enhanced descriptor must be used.

Receive descriptor word 0 (RXDES0)

	Receive descriptor word 0 (RXDES0)						
Field	Name	R/W	Description				
0	PERR_ESA	R/W	Payload Checksum Error / extended status available When this bit is set, the TCP, UDP or ICMP checksum calculated by the core does not match the checksum field of the received encapsulated TCP, UDP or ICMP segment. This bit will also be set when the number of payload bytes received does not match the value of the length field of the IPv4 or IPv6 datagram encapsulated in the received Ethernet frame. After the enhanced descriptor format is enabled, this bit has ESA functions. When ESA is set to 1, it indicates that there is an extended state in RXDES4. ESA is valid only when RXDES0[8]=1.				
1	CERR	R/W	CRC Error When this bit is set, a CRC error will occur on the received frame. This bit is valid only when RXDES0[8]=1				
2	DERR	R/W	Dribble Error When this bit is set, the received frame has a multiple of non-integer bytes. This bit is valid only in MII mode.				
3	RERR	R/W	Receive Error When this bit is set and RX_DV signal is transmitted during frame receiving, RX_ERR signal will be generated.				
4	RXWDTTO	R/W	Receive Watchdog Timeout When this bit is set, the receive watchdog timer has timed out when receiving the current frame, and the current frame will be truncated when the watchdog times out.				
5	FT	R/W	Frame Type 0: The received frame is an Ethernet type frame 1: The received frame is an IEEE802.3 frame When this bit is set. When this bit is reset, it indicates that this bit is invalid for short frames less than 14 bytes.				
6	LC	R/W	Late Collision When this bit is set, a delay collision occurs when a frame is received in half-duplex mode.				
7	IPCERR_TSV	R/W	IPv header Checksum Error / Time Stamp Valid When this bit is set, there is an error in the IPv4 or IPv6 header. The reasons may be: the Ethernet type field is inconsistent with the IP header version field, and does not match the checksum of the header in IPv4, or the Ethernet frame lacks the required number of IP header bytes. After the enhanced descriptor format is enabled, this bit has TSV functions. When TSV=1, it indicates that the timestamp snapshot will be written in RXDES6 and RXDES7. TSV is valid only when RXDES0[8]=1.				

Field	Name	R/W	Description
8	LDES	R/W	Last Descriptor When this bit is set, the buffer pointed to by the descriptor is the last buffer of the frame.
9	FDES	R/W	First Descriptor When this bit is set, the descriptor contains the first buffer of the frame. If the size of the first buffer is 0, the second buffer contains the beginning of the frame. If the size of the second buffer is also 0, the next descriptor contains the beginning of the frame.
10	VLANF	R/W	VLAN Frame When this bit is set, the frame referred to by this descriptor is a VLAN frame with MAC tag.
11	OFERR	R/W	Overflow Error When this bit is set, the received frame is damaged due to buffer overflow in Rx FIFO.
12	LERR	R/W	Length Error When this bit is set, the actual length of the received frame does not match the length/type field. This bit is valid only when RXDES0[5]=0.
13	SADDRF	R/W	Source Address Filter Fail When this bit is set, the SA field of the frame does not pass the SA filter in the MAC.
14	DESERR	R/W	Descriptor Error When this bit is set, it indicates that the frame is truncated because the frame is not suitable for the current descriptor buffer, and DMA has no next descriptor. The frame is truncated. Note: This field is valid only when the last descriptor (RXDES0[8]) is set.
15	ERRS	R/W	Error Summary The value is OR operation result of the following bits: RXDES0[0]: PERR_ESA RXDES0[1]: CERR RXDES0[3]: RERR RXDES0[4]: RXWDTTO RXDES0[6]: LC RXDES0[7]: IPCERR_TSV RXDES0[11]: OFERR RXDES0[14]: DESERR
29:16	FL	R/W	Frame Length This bit field indicates the byte length of the received frame transmitted to the host memory. This bit is valid only only when RXDES0[8]=1 and RXDES0[14])=0. When RXDES0[8]=0 and ERRS=0, it indicates the cumulative number of bytes that have been transmitted to the current frame.
30	ADDRF	R/W	Destination Address Filter Fail When this bit is set, it indicates the frame that fails DA filtering in MAC.

Field	Name	R/W	Description
31	OWN	R/W	Own 0: This describer belongs to CPU 1: This describer belongs to DMA This bit will be cleared when DMA completes frame receiving or the allocated buffer in the descriptor is full.

Table 149 Configuration in Normal Descriptor Format

1							
Bit 0 (PERRC_ESA)	Bit 5 (FT)	Bit 7 (IPCERR_TSV)	Frame state				
0	0	0	IEEE 802.3 type frame				
1	0	1	Type frame which is neither IPv4 nor IPv6				
0	1	0	IPv4/IPv6 type frame; checksum error is not detected				
1	1	0	IPv4/IPv6 type frame; payload checksum error is detected				
0	1	1	IPv4/IPv6 type frame; IP header checksum error is detected				
1	1	1	IPv4/IPv6 type frame; IP header and payload checksum error are detected				
1	0	0	IPv4/IPv6 type frame; there is no IP header checksum error, and the payload check bypasses because the payload is not supported				
0	0	1	Reserved				

Receive descriptor word 1 (RXDES1)

Field	Name	Name R/W Description				
12:0	RXBS1	R/W	Receive Buffer 1 Size 0: DMA will ignore this buffer and use the buffer 2 or the next descriptor according to the value of RXCH bit. Other: It indicates the size of the first data buffer. The buffer size must be a multiple of 4, 8, or 16, depending on the bus width, even if the value of the buffer 2 address pointer is not aligned. When the buffer size is not a multiple of 4, 8, or 16, the generated behavior is undefined.			
13		Reserved				
14	RXCH	R/W	Second Address Chained When this bit is set, the second address in the descriptor is the address of the next descriptor, not the address of the second buffer. Ignore the value of RXBS2. RXER has priority over RXCH.			
15	RXER	R/W	Receive End of Ring When this bit is set, it indicates that the descriptor list has reached the final descriptor. DMA will return the base address of the descriptor list and create a descriptor ring.			

Field	Name	R/W	Description		
28:16	RXBS2	R/W	Receive Buffer 2 Size It indicates the size of the second data buffer. The buffer size must be a multiple of 4, 8, or 16, depending on the bus width, even if the value of the buffer 1 address pointer is not aligned. When the buffer size is not a multiple of 4, 8, or 16, the generated behavior is undefined. This bit field will be invalid if RXCH bit is set.		
30:29		Reserved			
31	DINTC	R/W	Interrupt on Completion Disable When this bit is set, it will prevent the setting of RXFLG bit and make the received frame end in the buffer indicated by the descriptor, so as to disable causing the host interrupt.		

Receive descriptor word 2 (RXDES2)

Field	Name	R/W	Description
			Receive Buffer 1 Address Pointer / Receive Frame Timestamp Low
			It indicates the location of the data in the memory to the DMA. When all data have been transmitted, the DMA can use these bits to return the timestamp data.
31:0	RXADDR1_RXFTSL	R/W	RXADDR1: When RXDES0[OWN]=1, these bits indicate physical address of the buffer 1. Except when the starting point of the frame is stored by using the value of RXDES2, the address is generated by DMA by using the configured value. During the start of transmitted frame, the DMA will perform write operation when RXDES2[3:0]=0, but the frame data will be shifted according to the actual buffer address pointer. When the address pointer points to the buffer where the middle or last part of the frame is stored, the DMA will ignore RXDES2[3:0]. There are no restrictions on buffer address alignment.
			RXFTSL: Before RXDES0[OWN] is cleared to zero, the DMA will update this field with the 32 least significant bits of the timestamp captured for the corresponding transmitted frame. The bit field contains a timestamp only when the timestamp function of this frame is activated and LS=1.

Receive descriptor word 3 (RXDES3)

Field	Name	R/W	Description
31:0	RXADDR2_RXFTSH	R/W	Receive Buffer 2 Address Pointer (Next Descriptor Address) / Receive Frame Timestamp High It indicates the location of the data in the memory to the DMA. When all data have been transmitted, the DMA can use these bits to return the timestamp data. RXADDR1: When RXDES0[OWN]=1 and the descriptor ring structure is used, these bits indicate the physical address of buffer 2. If RXDES[24]=1, this address contains the pointer of the physical register where the next descriptor is located. The buffer address pointer matches the bus width only when RXDES1[24]=1. When RXDES[24]=0, except when the starting point of the frame is stored by using the value of RXDES2, the address is generated by DMA by using the configured value. When the address pointer points to the buffer where the middle or last part of the frame is stored, the DMA will ignore RXDES2[3:0], and there are no restrictions on buffer address alignment. RXFTSH: Before RXDES0[OWN] is cleared to zero, the DMA will update this field with the 32 least significant bits of the timestamp captured for the corresponding transmitted frame. The bit field contains a timestamp only when the timestamp function of this frame is activated and LS=1.

28.3.4.11 Functional description of enhanced receive descriptor

If the timestamp or IPv4 checksum offload is activated, the enhanced descriptor must be used. The enhanced descriptor consists of eight 32-bit words, which is twice the normal size of the descriptor. Definitions of RXDES0, RXDES1, RXDES2 and RXDES3 are the same as those of general receive descriptor. RXDES4 includes extended state, and RXDES6 and RXDES7 include timestamp.

When selecting the enhanced descriptor mode, 32-byte memory need to be allocated for each descriptor. If the timestamp or IPv4 checksum offload is not used, the enhanced descriptor format can be disabled, and the software can use a general descriptor with a default size of 16 bytes.

Receive descriptor word 4 (RXDES4)

It is valid only when there is a state related to IPv4 checksum or timestamp.

Field	Name	R/W	Description
2:0	IPPT	R/W	IP payload type If IPv4 checksum offload is activated, it indicates the payload type encapsulated in IP datagram. These bits are "00" when there is an IP header error or there is a segmented IP. 000: Unknown, or IP payload not processed 001: UDP 010: TCP 011: ICMP 1xx: Reserved

Field	Name	R/W	Description	
3	IPHERR	R/W	IP header error When this bit is set, the 16-bit IPv4 header checksum calculated by the core does not match the received checksum, or the IP datagram version does not match the Ethernet type value.	
4	IPPERR	R/W	IP payload error When this bit is set, the 16-bit IP payload checksum calculated by the core does not match the received checksum. When the TCP, UDP or ICMP segment length does not match the payload length value in the IP header field, it will also be set to 1.	
5	IPCBP	R/W	IP checksum bypassed When this bit is set, the checksum offload engine will be bypassed.	
6	IPV4P	R/W	receive IPv4 packet When this bit is set, an IPv4 packet is received.	
7	IPV6P	R/W	receive IPv6 packet When this bit is set, an IPv6 packet is received.	
11:8	PTPMT	R/W	PTP message type 0000: No PTP message received 0001: SYNC (all clock types) 0010: Follow_Up (all clock types) 0011: Delay_Req (all clock types) 0100: Delay_Resp (all clock types) 0101: Pdelay_Req (in point-to-point transparent clock) or Announce (in ordinary clock or boundary clock) 0110: Pdelay_Resp (in point-to-point transparent clock) or Management (in ordinary clock or boundary clock) 0111: Pdelay_Resp_Follow_Up (in point-to-point transparent clock) or Signaling (in ordinary clock or boundary clock) 1xxx: Reserved	
12	PTPFT	R/W	PTP frame type 0: Transmit through UDP-IPv4 or UDP-IPv6 1: Transmit through Ethernet Valid only when the message type is non-zero. The type of packet received can be identified by bit 6 or bit 7.	
13	PTPV	R/W	PTP version Version format used by the received PTP message 0: Version 1 1: Version 2 Valid only when the message type is non-zero.	
31:14	Reserved			

Receive descriptor word 5 (RXDES5)

Field	Name	R/W	Description
31:0			Reserved

Receive descriptor word 6 (RXDES6)

Field	Name	R/W	Description
31:0	RXFTSL	R/W	Receive Frame Timestamp Low This bit field will be updated by the DMA with the 32 least significant bits of the timestamp captured for the corresponding received frame. DMA updates the bit field only for the last descriptor of the received frame. When this bit field and RXFTSH are set at the same time, it is regarded that the timestamp has been damaged.

Receive descriptor word 7 (RXDES7)

Field	Name	R/W	Description
31:0	RXFTSH	R/W	Receive Frame Timestamp High This bit field will be updated by the DMA with the 32 most significant bits of the timestamp captured for the corresponding received frame. DMA updates the bit field only for the last descriptor of the received frame. When this bit field and RXFTSL are set at the same time, it is regarded that the timestamp has been damaged.

28.3.4.12 **DMA interrupt**

There are two groups of interrupts: normal interrupt and abnormal interrupt. The interrupt can be cleared by writing to the corresponding bit of ETH_DMASTS register. When all enabled interrupts in the group are cleared, the summary bit will also be cleared to zero. If the interrupt is caused by the MAC core, the PMTFLG or TSTFLG bits in the ETH_DMASTS register will be set to high level.

28.3.5 Ethernet interrupt

The Ethernet controller has two interrupt vectors: one for normal Ethernet operation and one for Ethernet wake-up events only when mapped to EINT 19. The first Ethernet vector is reserved for interrupts generated by MAC and DMA. The second is reserved for interrupts generated by PMT when a wake-up event occurs. The mapping of the wake-up event to EINT 19 makes the core exit the low-power mode and generate an interrupt.

When the Ethernet wake-up event mapped to EINT 19 occurs and both MAC PMT interrupt and EINT 19 interrupt with rising edge detection are enabled, two interrupts will be generated.

28.4 MAC register address mapping

Table 150 Register Address Mapping

	11 9	
Register name	Description	Offset address
MAC_CFG	Configuration register	0x00
MAC_FRAF	Frame filter register	0x04
MAC_HTH	Hash table high-bit register	0x08

Register name	Description	Offset address
MAC_HTL	Hash table low-bit register	0x0C
MAC_ADDR	MII address register	0x10
MAC_DATA	MII data regisster	0x14
MAC_FCTRL	Receive flow control register	0x18
MAC_VLANT	VLAN tag register	0x1C
MAC_REMWKUPFFL	Remote wake-up frame filter register	0x28
MAC_PMTCTRLSTS	PMT control and state register	0x2C
MAC_DBG	Debug register	0x34
MAC_ISTS	Interrupt state register	0x38
MAC_IMASK	Interrupt mask register	0x3C
MAC_ADDR0H	MAC address 0 high register	0x40
MAC_ADDR0L	MAC address 0 low register	0x44
MAC_ADDR1H	MAC address 1 high register	0x48
MAC_ADDR1L	MAC address 1 low register	0x4C
MAC_ADDR2H	MAC address 2 high register	0x50
MAC_ADDR2L	MAC address 2 low register	0x54
MAC_ADDR3H	MAC address 3 high register	0x58
MAC_ADDR3L	MAC address 3 low register	0x5C

28.5 MAC register functional description

28.5.1 Configuration register (MAC_CFG)

Offset address: 0x00 Reset value: 0x0000 8000

Field	Name	R/W	Description
1:0	Reserved		
2	RXEN	R/W	Receiver Enable The receiving state machine of MAC can receive frames from MII. After this bit is set, the receiving state machine of MAC will be turned off after the current frame is received, and will receive no frame from the MII.
3	TXEN	R/W	Transmitter Enable The transmitting state machine of MAC can transmit on MII. After this bit is set, the transmitting state machine of MAC will be turned off after the current frame is transmitted, and will transmit no frame.

Field	Name	R/W	Description
4	DC	R/W	Deferral Check The deferral check function enables MAC. When the delay of the transmitting state machine exceeds the mode of 24288 bits multiplied by 10 or 100 Mbps, the MAC will identify the frame aborted state, and set the excessive delay error in the transmitted frame state. When the bit is reset, the bit will disable the deferral check function until the CRS signal becomes an invalid signal, and the MAC will be delayed. This bit is applicable only in half-duplex mode.
6:5	BL	R/W	Back off Limit This bit determines the random integer (r) of the time delay (4096-bit time for 1000Mbps and 512-bit time for 10/100Mbps) that the MAC waits before retransmission attempt when retrying after collision. This bit is applicable only in half-duplex mode. 00: k=min(n, 10) 01: k=min(n, 8) 10: k=min(n, 4) 11: k= min(n, 1) Wherein, n=the number of retransmission attempts. The value range of random integer r is 0≤r<2k
7	ACS	R/W	Automatic Pad or CRC Stripping Only when the bit length of MAC is less than 1536 bytes, will Pad or FCS be removed when the frame comes in. All received frames with bit length greater than or equal to 1536 bytes are passed to the application program without removing Pad or FCS. When this bit is reset, the MAC will transmit all incoming frames to the host without modification.
8			Reserved
9	DISR	R/W	Disable Retry MAC will try to transmit once only. When a collision occurs to the MII interface, the MAC will ignore transmission of the current frame and report the abortion of a frame with a large collision error in the transmitted frame state. When this bit is reset, retry the MAC according to the setting of BL bit. This bit is applicable only in half-duplex mode.
10	IPC	R/W	IPv4 Checksum Offload The MAC calculates all 16-bit 1 complement sum of all received Ethernet frame payloads. It also checks whether the IPv4 header checksum of the received Ethernet frame is correct, and gives the state in the receiving state word. This function is disabled when this bit is reset.
11	DM	R/W	Duplex Mode MAC works in full-duplex mode and can transmit and receive at the same time.
12	LBM	R/W	Loopback Mode When this bit is set, the MAC will run in loopback mode on the MII. The MII receive clock input (RX_CLK) needs to work in loopback mode normally, because there is no loopback in the transmit clock.

Disable Receive Own When it is confirmed that phy_txen_o is in half-duplex mode, MAC will disable receiving frames. When this bit is reset, MAC will receive all packets transmitted by PHY. This bit is not applicable if the MAC is working in full-duplex mode. Speed select 0: 10Mbps 1: 100Mbps 1:	Field	Name	R/W	Description
DISRXO RW When it is confirmed that phy_txen_o is in half-duplex mode, MAC will disable receiving frames. When this bit is reset, MAC will receive all packets transmitted by PHY. This bit is not applicable if the MAC is working in full-duplex mode. Speed select 0: 10Mbps 1: 100Mbps 1:	rieia	Name	IT./VV	Description
15 Reserved 16 DISCRS RW Disable Carrier Sense During Transmission When it is set to high, the MAC transmitter will ignore the MII CRS signal during frame transmission in half-duplex mode. This request results in no error due to carrier loss or no carrier in such transmission process. When it is set to low, the MAC transmitter will generate a carrier sense error and can even abort the transmission. 19:17 IFG RW IFG RW One Shittime One Shitti	13	DISRXO	R/W	When it is confirmed that phy_txen_o is in half-duplex mode, MAC will disable receiving frames. When this bit is reset, MAC will receive all packets transmitted by PHY. This bit is not applicable if the MAC is
Disable Carrier Sense During Transmission When it is set to high, the MAC transmitter will ignore the MII CRS signal during frame transmission in half-duplex mode. This request results in no error due to carrier loss or no carrier in such transmission process. When it is set to low, the MAC transmitter will generate a carrier sense error and can even abort the transmission. 19:17 IFG RW Inter-Frame Gap These bits are used to control the minimum gap between frames during transmission. 000: 96-bit time 001: 88-bit time 001: 88-bit time in half-duplex mode, the minimum IFG can only be configured as 64 bits (IFG=100), and lower value will not be considered. Reserved Jabber Disable The MAC disables the Jabber timer on transmitting end. MAC can transmit up to 16384 bytes frames. When this bit is reset, if the application program transmiss more than 2048 bytes of data during transmission, the MAC will cut off the transmitter. Watchdog Disable The MAC disables the watchdog timer on the receiving end. The MAC can receive up to 16384 bytes of frames. When this bit is reset, the MAC does not allow the received frame to exceed 2048 bytes or the watchdog timeout register. After the watchdog limits the number of bytes, the MAC will disable receiving any bytes. Reserved CRC Stripping for Type Frames The last 4 bytes of all Ethernet type frames are removed and deleted before they are forwarded to the application program.	14	SSEL	R/W	0: 10Mbps
When it is set to high, the MAC transmitter will ignore the MII CRS signal during frame transmission in half-duplex mode. This request results in no error due to carrier loss or no carrier in such transmission process. When it is set to low, the MAC transmitter will generate a carrier sense error and can even abort the transmission. Inter-Frame Gap These bits are used to control the minimum gap between frames during transmission. 000: 96-bit time 010: 88-bit time 010: 80-bit time In half-duplex mode, the minimum IFG can only be configured as 64 bits (IFG=100), and lower value will not be considered. 21:20 Reserved Jabber Disable The MAC disables the Jabber timer on transmitting end. MAC can transmit up to 16384 bytes frames. When this bit is reset, if the application program transmits more than 2048 bytes of data during transmission, the MAC will cut off the transmitter. Watchdog Disable The MAC disables the watchdog timer on the receiving end. The MAC can receive up to 16384 bytes of frames. When this bit is reset, the MAC does not allow the received frame to exceed 2048 bytes or the watchdog timeout register. After the watchdog limits the number of bytes, the MAC will disable receiving any bytes. Reserved CRC Stripping for Type Frames The last 4 bytes of all Ethernet type frames are removed and deleted before they are forwarded to the application program.	15	Reserved		
These bits are used to control the minimum gap between frames during transmission. 000: 96-bit time 001: 88-bit time 010: 80-bit time 111: 40-bit time In half-duplex mode, the minimum IFG can only be configured as 64 bits (IFG=100), and lower value will not be considered. 21:20 Reserved Jabber Disable The MAC disables the Jabber timer on transmitting end. MAC can transmit up to 16384 bytes frames. When this bit is reset, if the application program transmits more than 2048 bytes of data during transmission, the MAC will cut off the transmitter. Watchdog Disable The MAC disables the watchdog timer on the receiving end. The MAC can receive up to 16384 bytes of frames. When this bit is reset, the MAC does not allow the received frame to exceed 2048 bytes or the watchdog timeout register. After the watchdog limits the number of bytes, the MAC will disable receiving any bytes. CRC Stripping for Type Frames The last 4 bytes of all Ethernet type frames are removed and deleted before they are forwarded to the application program.	16	DISCRS	R/W	When it is set to high, the MAC transmitter will ignore the MII CRS signal during frame transmission in half-duplex mode. This request results in no error due to carrier loss or no carrier in such transmission process. When it is set to low, the MAC transmitter will generate a
Jabber Disable The MAC disables the Jabber timer on transmitting end. MAC can transmit up to 16384 bytes frames. When this bit is reset, if the application program transmits more than 2048 bytes of data during transmission, the MAC will cut off the transmitter. Watchdog Disable The MAC disables the watchdog timer on the receiving end. The MAC can receive up to 16384 bytes of frames. When this bit is reset, the MAC does not allow the received frame to exceed 2048 bytes or the watchdog timeout register. After the watchdog limits the number of bytes, the MAC will disable receiving any bytes. Reserved CRC Stripping for Type Frames The last 4 bytes of all Ethernet type frames are removed and deleted before they are forwarded to the application program.	19:17	IFG	R/W	These bits are used to control the minimum gap between frames during transmission. 000: 96-bit time 001: 88-bit time 010: 80-bit time 111: 40-bit time In half-duplex mode, the minimum IFG can only be configured as 64 bits
The MAC disables the Jabber timer on transmitting end. MAC can transmit up to 16384 bytes frames. When this bit is reset, if the application program transmits more than 2048 bytes of data during transmission, the MAC will cut off the transmitter. Watchdog Disable The MAC disables the watchdog timer on the receiving end. The MAC can receive up to 16384 bytes of frames. When this bit is reset, the MAC does not allow the received frame to exceed 2048 bytes or the watchdog timeout register. After the watchdog limits the number of bytes, the MAC will disable receiving any bytes. CRC Stripping for Type Frames The last 4 bytes of all Ethernet type frames are removed and deleted before they are forwarded to the application program.	21:20	Reserved		
The MAC disables the watchdog timer on the receiving end. The MAC can receive up to 16384 bytes of frames. When this bit is reset, the MAC does not allow the received frame to exceed 2048 bytes or the watchdog timeout register. After the watchdog limits the number of bytes, the MAC will disable receiving any bytes. Reserved CRC Stripping for Type Frames The last 4 bytes of all Ethernet type frames are removed and deleted before they are forwarded to the application program.	22	JDIS	R/W	The MAC disables the Jabber timer on transmitting end. MAC can transmit up to 16384 bytes frames. When this bit is reset, if the application program transmits more than 2048 bytes of data during
CRC Stripping for Type Frames The last 4 bytes of all Ethernet type frames are removed and deleted before they are forwarded to the application program.	23	WDTDIS	R/W	The MAC disables the watchdog timer on the receiving end. The MAC can receive up to 16384 bytes of frames. When this bit is reset, the MAC does not allow the received frame to exceed 2048 bytes or the watchdog timeout register. After the watchdog limits the number of
25 CST R/W The last 4 bytes of all Ethernet type frames are removed and deleted before they are forwarded to the application program.	24			Reserved
31:26 Reserved	25	CST	R/W	The last 4 bytes of all Ethernet type frames are removed and deleted
	31:26			Reserved

28.5.2 Frame filter register (MAC_FRAF)

Offset address: 0x04 Reset value: 0x0000 0000

Field	Name	R/W	Description
0	PR	R/W	Promiscuous Mode The address filtering module will pass all incoming frames, regardless of destination address or source address. The SA or DA state bits of the receiving state word are always cleared.
1	HUC	R/W	Hash Unicast The MAC filters the destination address of unicast frames according to the hash table. After reset, the MAC performs perfect destination address filtering on unicast frames, which compares the DA field with the value programmed in the DA register.
2	НМС	R/W	Hash Multicast The MAC filters the destination address of received multicast frames according to the hash table. After reset, the MAC performs perfect destination address filtering on multicast frames, which compares the DA field with the value programmed in the DA register.
3	DAIF	R/W	DA Inverse Filtering The address check block compares the DA addresses of unicast and multicast frames in inverse filtering method. After reset, normal frame filtering will be performed.
4	PM	R/W	Pass All Multicast All received frames whose destination address is multicast address (the first field of the destination address fields is 1) will be delivered. The filtering of multicast frames after reset depends on HMC bit.
5	DISBF	R/W	Disable Broadcast Frames The address filter will filter all incoming broadcast frames. After reset, the address filter will transmit all received broadcast frames.
7:6	PCTRLF	R/W	Pass Control Frames These bits control the forwarding of all control frames (including unicast and multicast pause frames). 00: MAC filters all control frames arriving at the application program. 01: Even if all control frames except pause frame do not pass the address filter, the MAC will also forward them to the application program. 10: Even if the control frames do not pass the address filter, the MAC will also forward them to the application program. 11: MAC forwards the control frames that pass the address filtering. Note: MAC is enabled to full-duplex mode when RXFCTRLEN bit of MAC_FCTRL is set.
8	SAIF	R/W	SA Inverse Filtering The address check block compares the addresses of SA in inverse filtering method. SA frames that match the SA register will be marked as SA address filter failure. After reset, the SA frames that do not match the SA register will be marked as SA address filter failure.
9	SAFEN	R/W	Source Address Filter Enable The MAC compares the SA field of the received frame with the value programmed in the enabled SA register. If the comparison fails, the MAC will discard the frame. After reset, the MAC will forward the received frames to the application program of receiving state for updating SAFEN bit.
10	HPF	R/W	Hash or Perfect Filter

Field	Name	R/W	Description			
			If it matches the perfect filter or Hash filter set for the HMC or HUC bit, it will configure the address filter to pass the frame. When this bit is low and the HUC or HMC bit is set, the frame will be passed only when the Hash filter matches.			
30:11		Reserved				
31	RXA	R/W	Receive All The MAC receiving module will transmit all received frames, regardless of whether they pass the address filter. The result of SA or Da filtering is updated in the corresponding bit of the receiving state word. When this bit is reset, the receiving module will only pass these frames to the application program that passes the SA or DA address filter.			

28.5.3 Hash table high-bit register (MAC_HTH)

Offset address: 0x08
Reset value: 0x0000 0000

Field	Name	R/W	Description
31:0	НТН	R/W	Hash Table High High 32 bits of Hash table.

28.5.4 Hash table low-bit register (MAC_HTL)

Offset address: 0x0C Reset value: 0x0000 0000

Field	Name	R/W	Description
31:0	HTL	R/W	Hash Table Low Low 32 bits of Hash table.

28.5.5 MII address register (MAC_ADDR)

Offset address: 0x10
Reset value: 0x0000 0000

Field	Name	R/W	Description
0	МВ	R/W	MII Busy Write to MAC_HT register and this bit will be valid. During PHY register access period, the software sets this bit to 1, indicating that read or write access is in progress. Therefore, MII data should remain valid in a PHY write operation until the MAC clears this bit. For read operation, MAC_HT is valid after this bit is cleared. Subsequent read and write operation can be performed only after the previous operation is completed.
1	MW	R/W	MII Write For PHY, this bit indicates that this is a write operation using the MII data register. If this bit is not set, it indicates that this is a read operation and the data will be put in the MII data register.

Field	Name	R/W	Description			
4:2	CR	R/W	Clock Range The selection of CR clock range determines the frequency of HCLK and is used to determine the frequency of MDC clock: Select HCLK MDC clock 000: 60-100 MHz-HCLK/42 001: 100-150 MHz-HCLK / 62 010: 20-35 MHz-HCLK/16 011: 35-60 MHz-HCLK/26 100: 150-168 MHz-HCLK/102 101, 110, 111: Reserved			
5		Reserved				
10:6	MR	R/W	MII Register These bits select the required register in the selected PHY devices.			
15:11	PA	R/W	Physical Layer Address It indicates which of the 32 possible PHY devices are being accessed.			
31:16	Reserved					

28.5.6 MII data register (MAC_DATA)

Offset address: 0x14
Reset value: 0x0000 0000

Field	Name	R/W	Description
15:0	MD	R/W	MII Data The 16-bit data value read from PHY after performing the management of read operation, or the 16-bit data value written to PHY before performing the management of write operation.
31:16	Reserved		

28.5.7 Receive flow control register (MAC_FCTRL)

Offset address: 0x18
Reset value: 0x0000 0000

Field	Name	R/W	Description
0	FCTRLB/BPA	R/W	Flow Control Busy/Back Pressure Activate When a pause control frame is initiated in full-duplex mode, this bit should be read as 0 before it is written to the flow control register. Only when the application program sets this bit to 1, can a pause control frame be initialized. During the transmission of the control frame, this bit continues to be set to indicate that the frame transmission is in progress. After the transmission of the pause control frame is completed, the MAC will reset this bit to 0. It cannot be written to the flow control register before this bit is cleared. In half-duplex mode, if the TXFCTRLEN bit is set, the back pressure function will be activated. When this bit is set (and TXFCTRLEN is set), the back pressure will be declared by the MAC core. During back pressure period, when the MAC receives a new frame, the transmitter starts to transmit JAM mode, which causes collision. When MAC is configured as full-duplex mode, BPA will be automatically disabled.

Field	Name	R/W	Description
1	TXFCTRLEN	R/W	Transmit Flow Control Enable In full-duplex mode, when this bit is set, MAC will enable the flow control operation to transmit the pause frame. When this bit is reset, the flow control operation of MAC will be disabled, and MAC will not transmit any pause frame.
			In half-duplex mode, when this bit is set, the MAC will enable back pressure operation. When this bit is reset, the back pressure characteristic will be disabled.
			Receive Flow Control Enable
2	RXFCTRLEN	R/W	When this bit is set, the MAC will decode the received pause frame and disable its transmitter within the specified pause time.
			When this bit is reset, the decoding function of the pause frame will be disabled.
			Unicast Pause Frame Detect
3	UNPFDETE	R/W	When this bit is set, the MAC uses the unique multicast address to detect the pause frames, and also uses the specified unicast address in the MAC_ADDR0H and MAC_ADDR0L registers to detect the pause frame.
			When this bit is reset, the MAC only detects the pause frame of the unique multicast address specified in the 802.3x standard.
			Pause Threshold Select
	PTSEL		Set the threshold of Pause timer for automatic retransmission of pause frames. The threshold should always be less than the pause time configured by bit [31:16]. For example, if PT = 100H (256 slot time) and PTSEL =01, and the second PAUSE frame is initiated at 228 (256-28) slot time after the first PAUSE frame is transmitted, the second Pause frame will be automatically transmitted.
5:4		R/W	Select the threshold
			00: Pause time - 4-slot time
			01: Pause time - 28-slot time
			10: Pause time - 144-slot time 11: Pause time - 256-slot time
			The slot time is defined as the time that the MII interface takes to transmit 512 bits (64 bytes)
6		•	Reserved
			Zero-quanta Pause Disable
7	ZQPDIS	R/W	When this bit is set, it is disabled to automatically generate zero- range pause control frame when the flow control signal of FIFO layer fails.
			When this bit is reset, normal operation of automatic zero-range pause control frame generation is enabled.
15:8			Reserved
			Pause Time
31:16	PT	R/W	This bit saves the value used in the transmission of control frame. If this bit is configured to be double synchronized to the MII clock domain, continuous write operations should be performed on the register only after at least 4 clock cycles in the target clock domain.

28.5.8 VLAN tag register (MAC_VLANT)

Offset address: 0x1C Reset value: 0x0000 0000

This register contains the IEEE 802.1Q VLAN tag, used to identify the VLAN frame. The MAC compares No. 13 and No. 14 bytes of the received frame (length/type) with 0x8100, and compares the next 2 bytes with VLAN tag; if the match is successful, set the receive VLAN bit of the received frame state. The legal length of the frame increases from 1518 bytes to 1522 bytes.

Field	Name	R/W	Description	
15:0	VLANTID	R/W	VLAN Tag Identifier It contains 802.1Q VLAN tag, which is used to identify VLAN frames and compare them with No. 15 byte and No. 16 byte of the received frame. Bit [15:13] is the user priority, bit [12] is the canonical format indicator, and bit [11:0] is the VLAN identifier of the VLAN tag. When the VLANTCOMP bit is set, only bit [11:0] is used for comparison. If VLANTID is all 0, the MAC does not check the VLAN tag comparison of No. 15 byte and No. 16 byte, and declares all frames with Type value of 0x8100 as VLAN frames.	
16	VLANTCOMP	R/W	12-bit VLAN Tag Comparison When this bit is set, the VLAN identifier of bit 12 instead of the complete 16-bit VLAN tag will be used for comparison and filtering. The VLAN tag bit [11:0] is compared with the corresponding bit in the received VLAN tag frame. When this bit is reset, all 16 bits of No. 15 and No. 16 bytes of the received VLAN frame will be used for comparison.	
31:17	Reserved			

28.5.9 Remote wake-up frame filter register (MAC_REMWKUPFFL)

Offset address: 0x28
Reset value: 0x0000 0000

The application program will write/read the remote wake-up frame filter register through this address. In fact, the wake-up frame filter register is eight (opaque) wake-up frame filter registers. Eight continuous write operations to this address of the offset (0x0028) will write/read all wake-up frame filter registers. This register contains the high 16 bits of the seventh MAC address.

Wake-up frame filter register x (MAC_WKUPFFLx) (x=0-3)

Field	Name	R/W	Description
31:0	FLXBMASK	R/W	Filter x Byte Mask This register defines which bytes of the frame are detected by the filter x to determine whether the frame is a wake-up frame. MSB[31] must be zero. Bit y[30:0] is byte mask. If the bit y (the number of bytes) of byte mask is set to 1, the filter x offset + y of the incoming frame will be processed by the CRC module; otherwise, the filter x offset + y will be ignored.

Wake-up frame filter register 4 (MAC_WKUPFFL4)

Field	Name	R/W	Description		
rieid	Name	FK/VV	Description		
3:0	FL0COM	R/W	Filter 0 Command This 4-bit command controls filter x operation. Bit 3 specifies the address type and defines the destination address type of the mode. When this bit is set to 1, the mode is applicable only to multicast frames. When this bit is reset, the mode is applicable only to unicast frames. Bit 2 and Bit 1 are reserved bits. Bit 0 is the enable bit of filter X; if bit 0 is set to 1, filter x will be enabled.		
7:4			Reserved		
11:8	FL1COM	R/W	Filter 1 Command This 4-bit command controls filter x operation. Bit 3 specifies the address type and defines the destination address type of the mode. When this bit is set to 1, the mode is applicable only to multicast frames. When this bit is reset, the mode is applicable only to unicast frames. Bit 2 and Bit 1 are reserved bits. Bit 0 is the enable bit of filter X; if bit 0 is set to 1, filter x will be enabled.		
15:12	Reserved				
19:16	FL2COM	R/W	Filter 2 Command This 4-bit command controls filter x operation. Bit 3 specifies the address type and defines the destination address type of the mode. When this bit is set to 1, the mode is applicable only to multicast frames. When this bit is reset, the mode is applicable only to unicast frames. Bit 2 and Bit 1 are reserved bits. Bit 0 is the enable bit of filter X; if bit 0 is set to 1, filter x will be enabled.		
23:20	Reserved				
27:24	FL3COM	R/W	Filter 3 Command This 4-bit command controls filter x operation. Bit 3 specifies the address type and defines the destination address type of the mode. When this bit is set to 1, the mode is applicable only to multicast frames. When this bit is reset, the mode is applicable only to unicast frames. Bit 2 and Bit 1 are reserved bits. Bit 0 is the enable bit of filter X; if bit 0 is set to 1, filter x will be enabled.		
31:28			Reserved		

Wake-up frame filter register 5 (MAC_WKUPFFL5)

Field	Name	R/W	Description
7:0	FL0OFF	R/W	Filter 0 Offset This register defines the offset (within the frame range) of the frame to be detected by the filter x. This 8-bit mode offset is the offset of the first byte of the filter x to be detected. The minimum allowable value is 12, which indicates the 13th byte of the frame (the offset value 0 indicates the first byte of the frame).
15:8	FL10FF	R/W	Filter 1 Offset This register defines the offset (within the frame range) of the frame to be detected by the filter x. This 8-bit mode offset is the offset of the first byte of the filter x to be detected. The minimum allowable value is 12, which indicates the 13th byte of the frame (the offset value 0 indicates the first byte of the frame).

Field	Name	R/W	Description
23:16	FL2OFF	R/W	Filter 2 Offset This register defines the offset (within the frame range) of the frame to be detected by the filter x. This 8-bit mode offset is the offset of the first byte of the filter x to be detected. The minimum allowable value is 12, which indicates the 13th byte of the frame (the offset value 0 indicates the first byte of the frame).
31:24	FL3OFF	R/W	Filter 3 Offset This register defines the offset (within the frame range) of the frame to be detected by the filter x. This 8-bit mode offset is the offset of the first byte of the filter x to be detected. The minimum allowable value is 12, which indicates the 13th byte of the frame (the offset value 0 indicates the first byte of the frame).

Wake-up frame filter register 6 (MAC_WKUPFFL6)

	Trains ap trains into regions o (iii to _rivis)					
Field	Name	R/W	Description			
15:0	FL0CRC16	R/W	Filter 0 CRC-16 This register contains the CRC_16 value calculated according to the mode, and the byte mask programmed for wake-up filter register module.			
31:16	FL1CRC16	R/W	Filter 1 CRC-16 This register contains the CRC_16 value calculated according to the mode, and the byte mask programmed for wake-up filter register module.			

Wake-up frame filter register 7 (MAC_WKUPFFL7)

Field	Name	R/W	Description
15:0	FL2CRC16	R/W	Filter 2 CRC-16 This register contains the CRC_16 value calculated according to the mode, and the byte mask programmed for wake-up filter register module.
31:16	FL3CRC16	R/W	Filter 3 CRC-16 This register contains the CRC_16 value calculated according to the mode, and the byte mask programmed for wake-up filter register module.

28.5.10 PMT control and state register (MAC_PMTCTRLSTS)

Offset address: 0x2C Reset value: 0x0000 0000

This register will configure the wake-up time request and monitor the wake-up

event.

Field	Name	R/W	Description		
0	PD	R/S	Power Down When this bit is set to 1, all received frames will be discarded. When receiving the magic packet or wake-up frame, this bit will be automatically cleared to zero and the power-down mode will be disabled. After this bit is cleared to zero, the received frame will be forwarded to the application program. This bit can be set to 1 only when the magic packet is enabled or the wake-up frame bit is set to 1.		
1	MPEN	R/W	Magic Packet Enable When this bit is set to 1, this bit will enable the power management event generated due to receiving of a magic packet.		
2	WKUPFEN	R/W	Wakeup Frame Enable When this bit is set to 1, this bit will enable the power management event generated due to receiving of a wake-up frame.		
4:3		Reserved			
5	MPRX	RC_R	Magic Packet Received When this bit is set to 1, it indicates that the power management event is generated due to receiving of a magic packet. This bit can be cleared to zero by reading the register.		
6	WKUPFRX	RC_R	Wakeup Frame Received When this bit is set to 1, it indicates that the power management event is generated due to receiving of a wake-up frame. This bit can be cleared to zero by reading the register.		
8:7			Reserved		
9	GUN	R/W	Global Unicast When this bit is set to 1, it will enable any filtered unicast packet confirmed by MAC address to a wake-up frame.		
30:10	Reserved				
31	WKUPFRST	R/S	Wakeup Frame Filter Register Pointer Reset When this bit is set to 1, it will reset the remote wake-up frame filter register pointer to 000b. It will be automatically cleared to zero after 1 clock cycle.		

28.5.11 Debug register (MAC_DBG)

Offset address: 0x34 Reset value: 0x0000 0000

This register gives the status of all main modules of transmitting and receiving data path and FIFO. When it is set to all zero, it indicates that the MAC core is idle (FIFO is empty) and there is no activity in the data path.

Field	Name	R/W	Description
0	RPESTS	R	MAC MII Receive Protocol Engine Status When set to high, it indicates that the MAC MII receiving protocol engine is actively receiving data instead of in IDLE state.

Field	Name	R/W	Description
2:1	RFCFCSTS	R	MAC Receive Frame FIFO Controller Status When set to high, it indicates that the FIFO read/write controller of the MAC receive frame FIFO controller is active. 0: Write controller status 1: Read controller status
3			Reserved
4	RWCSTS	R	RX FIFO Write Controller Active Status When set to high, it indicates that the RX FIFO write controller is valid and transmitting the received frame to FIFO.
6:5	RRCSTS	R	RX FIFO Read Controller State 00: IDLE state 01: Read frame data 10: Read frame status (or timestamp) 11: Refresh frame data and status
7			Reserved
9:8	RXFSTS	R	RX FIFO full - level Status 00: RX FIFO is empty 01: RX FIFO fill level is below the flow control failure threshold 10: RX FIFO fill level is above the flow control activation threshold 11: RX FIFO is full
15:10			Reserved
16	TPESTS	R	MAC MII Transmit Protocol Engine Status When set to high, it indicates that the MAC MII transmitting protocol engine is actively transmitting data instead of in idle state.
18:17	TFCSTS	R	MAC Transmit Frame Controller Status 00: IDLE state 01: Wait for the previous frame or IFG or return to the state of end of rollback cycle 10: Generate and transmit the pause frame (in full-duplex mode) 11: Transmit input frame
19	TXPAUSED	R	MAC Transmitter in Pause When set to high, it indicates that the MAC transmitter is in a pause state (in full-duplex mode), so no frames will be transmitted.
21:20	TRCSTS	R	TX FIFO Read Controller Status 00: IDLE state 01: Read status (transmit data to MAC transmitter) 10: Wait for TX status from MAC transmitter 11: Write the received TX status or refresh TX FIFO
22	TWCSTS	R	TX FIFO Write Controller Status When set to high, it indicates that TX FIFO write controller is active and transmitting data to TX FIFO.
23			Reserved
24	TXFSTS	R	TX FIFO Not Empty Status When set to high, it indicates that TX FIFO is not empty and there are still some data waiting to be transmitted.

Field	Name	R/W	Description
25	TXSTSFSTS	R	TX Status FIFO Full Status When set to high, it indicates that TX FIFO is full. Therefore, no more frames can be received for transmission.
31:26	Reserved		

28.5.12 Interrupt state register (MAC_ISTS)

Offset address: 0x38

Reset value: 0x0000 0000

Field	Name	R/W	Description	
2:0	Reserved			
			PMT Interrupt Status	
3	PMTIS	R	This bit is set when a magic packet or remote wake-up frame is received in power-off mode. When bit [6:5] is cleared due to read operation of PMT control and state register, this bit will be cleared.	
			MMC Interrupt Statusg	
4	MMCIS	R	When any bit [6:5] is set to high, this bit will be set to high and it can be cleared only when all these bits are low.	
			MMC Receive Interrupt Status	
5	MMCRXIS	R	When an interrupt is generated in the MMC receive interrupt register, this bit will be set to high. When all bits in the interrupt register are cleared, this bit will also be cleared.	
			MMC Transmit Interrupt Status	
6	MMCTXIS	R	When an interrupt is generated in the MMC transmit interrupt register, this bit will be set to high. When all bits in the interrupt register are cleared, this bit will also be cleared.	
8:7	Reserved			
			Timestamp Interrupt Status	
9	TSIS	R	When the system time value is equal to or exceeds the value specified in the target time register, this bit will be set to 1. It will be cleared to zero when reading this register.	
15:10			Reserved	

28.5.13 Interrupt mask register (MAC_IMASK)

Offset address: 0x3C

Reset value: 0x0000 0000

Field	Name	R/W	Description
2:0			Reserved
3	PMTIM	R/W	PMT Interrupt Mask When this bit is set, the PMT interrupt status bit is set in the register "interrupt state register", so this bit disables generation of interrupt signal.
8:4			Reserved

Field	Name	R/W	Description
9	TSTIM	R/W	Time Stamp Trigger Interrupt Mask If this bit is set to 1, generation of timestamp interrupts will be disabled.
15:10	Reserved		

28.5.14 MAC address 0 high register (MAC_ADDR0H)

Offset address: 0x40 Reset value: 0x0010 FFFF

Field	Name	R/W	Description	
15:0	ADDR0H	R/W	MAC address 0 high bit [47:32] It contains the first 16 bits (47:32) of the first 6 bytes of MAC address 0. The MAC uses this field to filter the received frames and inserts the MAC address in the transmission flow control (pause) frame.	
30:16	Reserved			
31	AL1	R	Always 1	

28.5.15 MAC address 0 low register (MAC_ADDR0L)

Offset address: 0x44

Reset value: 0xFFFF FFFF

Field	Name	R/W	Description
31:0	ADDR0L	R/W	MAC Address 0 low bit [31:0] (MAC Address 1) This bit field contains the low 32 bits of the first 6-byte MAC address 0. This is the frame used by MAC to filter the received frames and insert the MAC address in the transmission flow control (pause) frame.

28.5.16 MAC address 1 high register (MAC_ADDR1H)

Offset address: 0x48
Reset value: 0x0000 FFFF

Field	Name	R/W	Description
15:0	ADDR1H	R/W	MAC address 1 high bit [47:32] It contains the first 16 bits (47:32) of the first 6-byte MAC address 1. The MAC uses this field to filter the received frames and inserts the MAC address in the transmission flow control (pause) frame.
23:16	Reserved		
29:24	MASKBCTRL	R/W	Mask Byte Control These bits are used to compare the mask control bits of 1 byte of each MAC address. When they are set to high level, the MAC core will not compare the corresponding bytes of the received DA/SA with the contents of the MAC address 1 register. Each bit is used to control the mask of bytes, as follows: Bit 29: ADDR1H [15:8] Bit 28: ADDR1H [7:0] Bit 27: ADDR1L [31:24]

Field	Name	R/W	Description
			Bit 24: ADDR1L [7:0]
			Address Select
30	ADDRSEL	R/W	0: Compare the MAC address 1 [47:0] with the DA field of the received frame
			1: Compare the MAC address 1 [47:0] with the SA field of the received frame
			Address Enable
31	ADDREN	R/W	0: The address filter will ignore the address used for filtering
			1: The address filter uses the MAC address 1 for filtering

28.5.17 MAC address 1 low register (MAC_ADDR1L)

Offset address: 0x4C

Reset value: 0xFFFF FFFF

Field	Name	R/W	Description
31:0	ADDR1L	R/W	MAC Address 1 low bit [31:0] This bit field contains the low 32 bits of the first 6-byte MAC address 1. If the application does not load the content of this bit field after initialization, the content will not be defined.

28.5.18 MAC address 2 high register (MAC_ADDR2H)

Offset address: 0x50 Reset value: 0x0000 FFFF

Field	Name	R/W	Description
15:0	ADDR2H	R/W	MAC address 2 high bit [47:32] (MAC Address 2) It contains the first 16 bits (47:32) of the first 6 bytes of MAC address 2.
23:16			Reserved
29:24	MASKBCTRL	R/W	Mask Byte Control These bits are used to compare the mask control bits of 2 bytes of each MAC address. When they are set to high level, the MAC core will not compare the corresponding bytes of the received DA/SA with the contents of the MAC address 2 register. Each bit is used to control the mask of bytes, as follows: Bit 29: ADDR2H [15:8] Bit 28: ADDR2H [7:0] Bit 27: ADDR2L [31:24] Bit 24: ADDR2L [7:0]
30	ADDRSEL	R/W	Address Select 0: Compare the MAC address 2 [47:0] with the DA field of the received frame 1: Compare the MAC address 2 [47:0] with the SA field of the received frame
31	ADDREN	R/W	Address Enable 0: The address filter will ignore the address used for filtering 1: The address filter uses the MAC address 2 for filtering

28.5.19 MAC address 2 low register (MAC_ADDR2L)

Offset address: 0x54 Reset value: 0xFFFF FFFF

Field	Name	R/W	Description
31:0	ADDR2L	R/W	MAC Address 2 low bit [31:0] (MAC Address 2) This bit field contains the low 32 bits of the first 6-byte MAC address 2. If the application does not load the content of this bit field after initialization, the content will not be defined.

28.5.20 MAC address 3 high register (MAC_ADDR3H)

Offset address: 0x58 Reset value: 0x0000 FFFF

Field	Name	R/W	Description
15:0	ADDR3H	R/W	MAC address 3 high bit [47:32] (MAC Address 3) It contains the first 16 bits (47:32) of the first 6-byte MAC address 3.
23:16			Reserved
29:24	Mask Byte Control These bits are used to compare the mask control bits of 3 bytes each MAC address. When they are set to high level, the MAC cowill not compare the corresponding bytes of the received DA/SA with the contents of the MAC address 3 register. Each bit is used control the mask of bytes, as follows: Bit 29: ADDR3H [15:8] Bit 28: ADDR3H [7:0] Bit 27: ADDR3L [31:24] Bit 24: ADDR3L [7:0]		
30	ADDRSEL	R/W	Address Select 0: Compare the MAC address 3 [47:0] with the DA field of the received frame 1: Compare the MAC address 3 [47:0] with the SA field of the received frame
31	ADDREN	R/W	Address Enable 0: The address filter will ignore the address used for filtering 1: The address filter uses the MAC address 3 for filtering

28.5.21 MAC address 3 low register (MAC_ADDR3L)

Offset address: 0x5C Reset value: 0xFFFF FFFF

Field	Name	R/W	Description
31:0	ADDR3L	R/W	MAC Address 3 low bit [31:0] (MAC Address 3) This bit field contains the low 32 bits of the first 6-byte MAC address 3. If the application does not load the content of this bit field after initialization, the content will not be defined.

28.6 MMC register address mapping

Table 151 MMC Register Address Mapping

Register name	Description	Offset address
MMC_CTRL	Control register	0x100
MMC_RXINT	Receive interrupt register	0x104
MMC_TXINT	Transmit interrupt register	0x108
MMC_RXINTMASK	Mask receive interrupt register	0x10C
MMC_TXINTMASK	Mask transmit interrupt register	0x110
MMC_TXGFSCCNT	Transmitted good frames single collision counter register	0x14C
MMC_TXGFMCCNT	Transmitted good frames more collision counter register	0x150
MMC_TXGFCNT	Transmitted good frames counter register	0x168
MMC_RXFCECNT	Received Frames CRC Error Counter register	0x194
MMC_RXFAECNT	Received frame alignment error counter register	0x198
MMC_RXGUNCNT	Received good unicast frame counter register	0x1C4

28.7 MMC register functional description

28.7.1 Control register (MMC_CTRL)

Offset address: 0x100 Reset value: 0x0000 0000

Field	Name	R/W	Description
0	CNTRST	R/W	Counter Reset When this bit is set, all counters will be reset. This bit will be automatically cleared to zero after 1 clock cycle
1	CNTSTOPRO	R/W	Counter Stop Rollover When this bit is set, the counter will not return to zero when it reaches its maximum value.
2	RSTOR	R/W	Reset on read When this bit is set, after reading the MMC counter, this counter will be reset. The counter will be cleared to zero after reading the least significant byte channel.
3	MCNTF	R/W	MMC Counter Freeze When this bit is set, all MMC counters will be frozen so that they remain at the current value. (Only after this bit is cleared to zero, will the MMC counter be updated due to the existence of transmitted or received frames)

Field	Name	R/W	Description
4	MCNTP	R/W	MMC Counter Preset When this bit is set, all counters will be initialized or preset to almost full value or almost half value according to the above bit 5. This bit will be automatically cleared to zero after 1 clock cycle. This bit, together with bit 5, is used to debug and test the generation of interrupt which is caused because the MMC counter changes to half the full value or full value.
5	MCNTVALP	R/W	MMC Counter Value Preset When MCNTP bit is set to 1: When MCNTVALP is low, all MMC counters will be preset to almost half the value. All frame counters are preset to 0x7FFF_FFF0 (half value -16). When MCNTVALP is high, all MMC counters will be preset to almost full value. All frame counters are preset to 0xFFFF_FFF0 (full value -16).
31:6	Reserved		

28.7.2 Receive interrupt register (MMC_RXINT)

Offset address: 0x104 Reset value: 0x0000 0000

Field	Name	R/W	Description	
4:0		Reserved		
5	RXFCE	RC_R	Received Frames CRC Error This bit will be set when the received frame counter has a CRC error and reaches half of its maximum value.	
6	RXFAE	RC_R	Received Frames Alignment Error This bit will be set when the received frame counter has an alignment error and reaches half of its maximum value.	
16:7	Reserved			
17	RXGUNF RC_R Received Good Unicast Frames This bit will be set when the received good unicast frame counter reaches half of its maximum value.			
31:18			Reserved	

28.7.3 Transmit interrupt register (MMC_TXINT)

Offset address: 0x108 Reset value: 0x0000 0000

Field	Name	R/W	Description
13:0	Reserved		
14	TXGFSCOL RC_R Transmitted Good Frames Single Collision TXGFSCOL This bit will be set when the good frame counter transmitted after a single collision reaches half of its maximum value.		
15	TXGFMCOL RC_R This b		Transmitted Good Frames More Single Collision This bit will be set when the good frame counter transmitted after multiple collisions reach half of its maximum value.

Field	Name	R/W	Description
20:16	Reserved		
21	TXGF	RC_R	Transmitted Good Frames This bit will be set when the transmitted good frame counter reaches half of its maximum value.
31:22	Reserved		

28.7.4 Mask receive interrupt register (MMC_RXINTMASK)

Offset address: 0x10C Reset value: 0x0000 0000

Field	Name	R/W	Description
4:0			Reserved
5	RXFCEM R/W RAW Received Frames CRC Error Mask When this bit is set, the interrupt will be masked when the received frame counter has a CRC error and reaches half of its maximum value.		When this bit is set, the interrupt will be masked when the received frame counter has a CRC error and reaches half of its maximum
6	RAFAEIVI R/VV		When this bit is set, the interrupt will be masked when the received frame counter has an alignment error and reaches half of its
16:7	Reserved		
17	RXGUNFM R/W Received Good Unicast Frames Mask When this bit is set, the interrupt will be masked when the receive good unicast frame counter reaches half of its maximum value.		When this bit is set, the interrupt will be masked when the received
31:18	Reserved		

28.7.5 Mask transmit interrupt register (MMC_TXINTMASK)

Offset address: 0x110
Reset value: 0x0000 0000

Field	Name R/W Description		Description	
13:0		Reserved		
14	TXGFSCOLM R/W		Transmitted Good Frames Single Collision Mask When this bit is set, the interrupt will be masked when the good frame counter transmitted after single collision reaches half of its maximum value.	
15	TXGFMCOLM R/W		Transmitted Good Frames More Single Collision Mask When this bit is set, the interrupt will be masked when the good frame counter transmitted after multiple collisions reaches half of its maximum value.	
20:16		Reserved		
21	Transmitted Good Frames Mask R/W When this bit is set, the interrupt will be masked when the transmitted good frame counter reaches half of its maximum va			
31:22	Reserved			

28.7.6 Transmitted good frames single collision counter register (MMC_TXGFSCCNT)

Offset address: 0x14C Reset value: 0x0000 0000

Field	Name	R/W	Description
31:0 TXGFSCCNT	R	Transmitted Good Frames Single Collision Counter	
	K	Transmitted good frames single collision counter.	

28.7.7 Transmitted good frames more collision counter register (MMC_TXGFMCCNT)

Offset address: 0x150 Reset value: 0x0000 0000

Field	Name	R/W	Description
31:0	TXGFMCCNT	R	Transmitted Good Frames More Collision Counter Transmitted good frames more collision counter register.

28.7.8 Transmitted good frames counter register (MMC_TXGFCNT)

Offset address: 0x168
Reset value: 0x0000 0000

Field	Name	R/W	Description
31:0	31:0 TXGFCNT	R	Transmitted Good Frames Counter
31:0	IAGECINI	K	Transmitted good frames counter.

28.7.9 Received Frames CRC Error Counter register (MMC_RXFCECNT)

Offset address: 0x194 Reset value: 0x0000 0000

Field	Name	R/W	Description
31:0	31:0 RXFCFCNT	R	Received Frames CRC Error Counter
01.0	100 02011	10	Received Frames CRC Error Counter.

28.7.10 Received frame alignment error counter register (MMC_RXFAECNT)

Offset address: 0x198 Reset value: 0x0000 0000

Field	Name	R/W	Description
31:0	RXFAECNT	R	Received Frames Alignment Error Counter
31.0	RXFAEGNI	K	Received Frames Alignment Error Counter.

28.7.11 Received good unicast frame counter register (MMC_RXGUNCNT)

Offset address: 0x1C4
Reset value: 0x0000 0000

Field	Name	R/W	Description
31:0	RXGUNCNT	Ω	Received Good Unicast Frames Counter
31.0	TOOGOTON	1	Received Good Unicast Frames Counter.

28.8 PTP register address mapping

Used to support the register of precision network clock synchronization which is in accordance with IEEE 1588 standard.

Table 152 PTP Register Address Mapping

Register name	Description	Offset address
PTP_TSCTRL	Timestamp control register	0x700
PTP_SUBSECI	Subsecond increment register	0x704
PTP_TSH	Timestamp high bit register	0x708
PTP_TSL	Timestamp low bit register	0x70C
PTP_TSHUD	Timestamp high bit update register	0x710
PTP_TSLUD	Timestamp low bit update register	0x714
PTP_TSA	Timestamp addend register	0x718
PTP_TTSH	Target timestamp high bit register	0x71C
PTP_TTSL	Target timestamp low bit register	0x720
PTP_TSSTS	Timestamp state register	0x728
PTP_PPSCTRL	PPS control register	0x72C

28.9 PTP register functional description

28.9.1 Timestamp control register (PTP_TSCTRL)

Offset address: 0x700 Reset value: 0x0000 2000

Field	Name	R/W	Description
0	TSEN	R/W	Time Stamp Enable 0: Disable 1: Enable Since the maintained system time is suspended, after this bit is set to high level, it will be always necessary to initialize the timestamp function (system time).
1	TSUDSEL	R/W	Time Stamp Update Mode Select Select the method of updating the system timestamp 0: Rough update 1: Precision update
2	TSSTINIT	R/W	Time Stamp System Time Initialize When this bit is set, the system time will be initialized with the value specified in the timestamp high-bit update register and timestamp low-bit update register. Before this bit is set, it must be read as zero. After initialization, this bit will be cleared to zero.

Field	Name	R/W	Description
3	TSSTUD	R/W	ime Stamp System Time Update When this bit is set, the system time will be updated with the value specified in the timestamp high-bit update register and timestamp low-bit update register. TSSTINIT and TSSTUD must be read as zero before this bit is set. After the update is completed, this bit will be cleared to zero.
4	TSTRGIEN	R/W	Time Stamp Trigger Interrupt Enable When this bit is set, if the value written in the target time register is less than the system time, a timestamp interrupt will be generated. This bit will be cleared to zero when a timestamp interrupt is triggered.
5	TSADDUD	R/W	Time Stamp Addend Register Update When this bit is set, the contents of the timestamp addend register will be updated to PTP for precision calibration. After the update is completed, this bit will be cleared to zero. Before this bit is set, it must be read as zero.
7:6			Reserved
8	TSSNEN	R/W	Time Stamp Snapshot for Received Frames Enable When this bit is set, all frames received by the core will enable timestamp snapshot.
9	TSSUBRO	R/W	Time Stamp Subsecond Rollover 0: The rollover value of the subsecond register reaches 0x7FFF FFFF. The subsecond increment is programmed according to the PTP reference clock frequency and the value of this bit. 1: If the subsecond counter value reaches 0x3B9A C9FF (decimal 999 999 999) and the number of timestamp (high-bit) seconds increases, the timestamp low-bit register will flip.
10	LISTVSEL	R/W	Listening Version Select Select the version format of listening PTP packet 0: Version 1 1: Version 2
11	TSSPTPEN	R/W	Time Stamp Snapshot for PTP Ethernet Frames Enable When this bit is set, the timestamp snapshot of the frame containing PTP message in the Ethernet frame will be taken. By default, take the snapshot of UDP IP Ethernet PTP packets.
12	TSS6EN	R/W	Time stamp snapshot for IPv6 frames Enable When this bit is set, the timestamp snapshot of IPv6 frames will be taken.
13	TSS4EN	R/W	Time Stamp Snapshot for IPv4 Frames Enable When this bit is set, the timestamp snapshot of IP4 frames will be taken.
14	TSSMESEL	R/W	Time Stamp Snapshot for Message Select 0: Take snapshots of all messages except Announce, Management and Signaling 1: Take a timestamp snapshot of the event message (SYNC Delay_Re, Pdelay_Req or Pdelay_Resp)

Field	Name R/W		Description			
15	TSSMNSEL	R/W	Time Stamp Snapshot for Master Node Select 0: Slave node 1: Master node			
17:16	TSCLKNSEL	R/W	Time stamp Clock Node Select 00: Ordinary clock 01: Boundary clock 10: End-to-end transparent clock 11: Point-to-point transparent clock			
18	TSSPTPFMACEN	R/W	Time Stamp PTP Frame Filtering MAC Address Enable When this bit is set and PTP is transmitted directly through Ethernet, this bit will filter PTP frames by using MAC address.			
31:19	Reserved					

Table 153 Timestamp Snapshot Message

TSCLKNSEL	TSSMNSEL	TSSMESEL	Snapshot message
	Irrelevant	0	SYNC, Follow_Up, Delay_Req, Delay_Resp
0X	1	1	Delay_Req
	0	1	SYNC
10		0	SYNC, Follow_Up, Delay_Req, Delay_Resp
10	×	1	SYNC, Follow_Up
11		0	SYNC, Follow_Up, Delay_Req, Delay_Resp, Pdelay_Req, Pdelay_Resp
		1	SYNC, Pdelay_Req, Pdelay_Resp

Note: ×=not applicable

28.9.2 Subsecond increment register (PTP_SUBSECI)

Offset address: 0x704 Reset value: 0x0000 0000

Field	Name	R/W	Description		
7:0	STSUBSECI	R/W	System Time Subseconds Increment It will be added to the system time subsecond value at the time of each update.		
31:8	Reserved				

28.9.3 Timestamp high bit register (PTP_TSH)

Offset address: 0x708 Reset value: 0x0000 0000

Field	Name	R/W	Description
31:0	STSEC R	P	System Time Second Value
31.0		11	System second time.

28.9.4 Timestamp low bit register (PTP_TSL)

Offset address: 0x70C

Reset value: 0x0000 0000

Field	Name	R/W	Description
30:0	STSUBSEC	R	System Time Subseconds Value System subsecond time, with precision of 0.46ns.
31	STSEL	R	System Time Select This bit indicates positive and negative values of the system time. 0: Positive 1: Negative Since the system time should always be positive, this bit is generally zero.

28.9.5 Timestamp high bit update register (PTP_TSHUD)

Offset address: 0x710 Reset value: 0x0000 0000

Field	Name	R/W	Description	
31:0 TSUD	TSUDSEC	R/W	Time Stamp Update Second Value	
31.0	TOODSEC	17/77	The second time to be initialized or added to the system time.	

28.9.6 Timestamp low bit update register (PTP_TSLUD)

Offset address: 0x714 Reset value: 0x0000 0000

Field	Name	R/W	Description
30:0	TSUDSUBSEC	R/W	Time Stamp Update Subseconds Value The subsecond time to be initialized or added to the system time. The precision is 0.46ns.
31	TSUDSEL	R/W	Time Stamp Update Select This bit indicates positive and negative values of the system time. 0: Positive 1: Negative When TSSTINIT bit is set, this bit is 0. When TSSTUD bit and this bit are set to 1 at the same time, the value of the timestamp update register shall be subtracted from the system time. Otherwise, it will be added to the system time.

28.9.7 Timestamp addend register (PTP_TSA)

Offset address: 0x718
Reset value: 0x0000 0000

Field	Name	R/W	Description
31:0	TSA	R/W	Time Stamp Addend Value The 32-bit time value to be added to the accumulator register, used for time synchronization.

28.9.8 Target timestamp high bit register (PTP_TTSH)

Offset address: 0x71C Reset value: 0x0000 0000

Field	Name	R/W	Description
31:0	TTSH	R/W	Target Time Stamp High Value Storage second time. When the value of the timestamp matches or exceeds two target timestamp registers at the same time, the MAC will generate an interrupt.

28.9.9 Target timestamp low bit register (PTP_TTSL)

Offset address: 0x720 Reset value: 0x0000 0000

Field	Name	R/W	Description
31:0	TTSL	R/W	Target Time Stamp Low Value Storage nanosecond time. When the value of the timestamp matches or exceeds two target timestamp registers at the same time, the MAC will generate an interrupt.

28.9.10 Timestamp state register (PTP_TSSTS)

Offset address: 0x728 Reset value: 0x0000 0000

Field	Name	R/W	Description		
0	TSSECOVR	R	Time Stamp Second Value Overflow When this bit is set, the second value of the timestamp has overflowed, exceeding 0xFFFF FFFF.		
1	TTSRD	R	Target Time Stamp Value Reached When this bit is set, the system time value is greater than or equal to the value of PTP_TTS register.		
31:2	Reserved				

28.9.11 PPS control register (PTP_PPSCTRL)

Offset address: 0x72C Reset value: 0x0000 0000

Field	Name	R/W	Description
			PPS Frequency Selection
			PPS output frequency is set to 2PPSFSELHz
3:0			0000: 1Hz; the binary flip pulse width is 125ms, and the digital flip pulse width is 100ms
			0001: 2Hz, binary flip; the duty cycle is 50% (digital flip is not recommended) 0010: 4Hz, binary flip; the duty cycle is 50% (digital flip is not recommended)
	PPSFSEL	R	
			0011: 8Hz, binary flip; the duty cycle is 50% (digital flip is not recommended)
			0100: 16Hz, binary flip; the duty cycle is 50% (digital flip is not recommended)
			1111: 32768Hz, binary flip; the duty cycle is 50% (digital flip is not recommended)

Field	Name	R/W	Description	
			Note: As PPS output has irregular waveform at higher frequency, do not use the PPS output with frequency other than 1Hz as much as possible when using digital flip.	
31:4	Reserved			

28.10 DMA register address mapping

Table 154 DMA Register Address Mapping

Register name	Description	Offset address
ETH_DMABMOD	DMA mode register	0x1000
ETH_DMATXPD	Transmit poll demand register	0x1004
ETH_DMARXPD	Receive poll demand register	0x1008
ETH_DMARXDLADDR	Receive descriptor list address register	0x100C
ETH_DMATXDLADDR	Transmit descriptor list address register	0x1010
ETH_DMASTS	State register	0x1014
ETH_DMAOPMOD	Operation mode register	0x1018
ETH_DMAINTEN	Interrupt enable register	0x101C
ETH_DMAMFABOCNT	Missed frame and buffer overflow counter register	0x1020
ETH_DMARXFLGWDT	Receive interrupt watchdog timer register	0x1024
ETH_DMAHTXD	Current host transmit descriptor register	0x1048
ETH_DMAHRXD	Current host receive descriptor register	0x104C
ETH_DMAHTXBADDR	Current host transmit buffer address register	0x1050
ETH_DMAHRXBADDR	Current host receive buffer address register	0x1054

28.11 DMA register functional description

28.11.1 DMA bus mode register (ETH_DMABMOD)

Offset address: 0x1000 Reset value: 0x0002 0101

Field	Name	R/W	Description
0	SWR	R/W	Software Reset When this bit is set, the MAC DMA controller will reset the MAC logic and all internal registers. It will be cleared automatically after all clock domains are reset. You should read a 0 value in this bit before reprogramming any registers.
1	DAS	R/W	DMA Arbitration Scheme It specifies the arbitration scheme between the transmitting and receiving paths of channel 0. 0: Weighted round robin scheduling of Rx:Tx is used, given in [15:14]

Field	Name	R/W	Description
			1: The priority of Rx is higher than that of Tx
6:2	DSL	R/W	Descriptor Skip Length This bit specifies the number of Word, Dword, or Lword skipped between two unlinked descriptors Address skip starts from the end of the current descriptor to the beginning of the next descriptor. When the DSL value is equal to 0, DMA will regard the descriptor table as continuous in ring mode.
7	EDFEN	R/W	Enhanced Descriptor Format Enable When this bit is set, enable the enhanced descriptor format and increase the descriptor size to 32 bytes. If the timestamp function or IPv4 checksum offload has been activated, this bit must be set to 1.
13:8	PBL	R/W	Programmable Burst Length These bits indicate the maximum number of beats to be transmitted in a DMA transaction. This is the maximum value used in a single block read and write. Each time the burst transmission is started on the host bus, DMA will always attempt to follow the burst specified in PBL. PBL can be programmed with allowable value 1, 2, 4, 8, 16 and 32. Any other value may result in undefined behaviors. When USP is set to high level, the PBL value is only applicable to Tx DMA transactions. The PBL value has the following limitations: the maximum number of possible beats is limited by the size of Tx FIFO and Rx FIFO of MTL layer and the width of data bus on DMA. FIFO has a limitation, namely,
15:14	PR	R/W	the maximum beat supported is half the FIFO depth unless specified. Priority Ratio These bits control the priority ratio of weighted round robin arbitration between Rx direct memory access and Tx direct memory access. These bits are valid only when bit [1] is reset. 00: Priority ratio is 1:1 01: Priority ratio is 2:1 10: Priority ratio is 3:1 11: Priority ratio is 4:1
16	FB	R/W	Fixed Burst This bit controls whether the AHB main interface performs fixed burst transmission. After it is set, at the beginning of normal burst transmission, the AHB interface only uses SINGLE, INCR4, INCR8 or INCR16. When it is reset, the AHB interface uses single and INCR burst transmission operations.
22:17	RPBL	R/W	Receive DMA programmable burst length (Rx DMA PBL) This bit field indicates the maximum number of beats to transmitted in a Rx DMA transaction. This is the maximum value used in a single block read and write. Each time the burst transmission is started on the host bus, Rx DMA will always attempt to follow the burst specified in RPBL. RPBL can be programmed with allowable value 1, 2, 4, 8, 16 and 32. Any other value may result in undefined behaviors. This field is valid only when USP is set to high level.
23	USP	R/W	Use Separate PBL When set to high level, this bit configures Rx DMA using the value configured in bit [22:17] as PBL. The PBL value in bit [13:8] is applicable only to Tx DMA operations.

Field	Name	R/W	Description	
			When reset to low level, the PBL value in bit [13:8] is applicable to two kinds of DMA engines.	
24	PBLx4	R/W	PBLx4 Mode When set to high level, this bit will multiply the programmed PBL value by four times. Therefore, the DMA will transmit data at a maximum beam number of 4, 8, 16, 32, 64 and 128 according to the PBL value.	
25	AAL	R/W	Address-Aligned Beats When this bit is set to high level and the FB bit is equal to 1, the AHB interface will generate all bursts aligned with the LS bit of the start address. If the FB bit is equal to 0, the first burst (the start address of the access data buffer) is misaligned, but the subsequent bursts are aligned to this address.	
26	МВ	R/W	Mixed Burst When this bit is set to high level and the FB bit is set to low level, the AHB main interface will start all burst INCR with a length of more than 16, and it will recover to a fixed burst with a burst length of 16 or less.	
31:27	Reserved			

28.11.2 Transmit poll demand register (ETH_DMATXPD)

Offset address: 0x1004 Reset value: 0x0000 0000

Field	Name	R/W	Description
31:0	TXPD	R/W	Transmit Poll Demand When these bits are written with any value, DMA will read the current descriptor pointed to by the ETH_DMAHTXD register. If the descriptor is not available, the pending state will be transmitted and returned and the bit [2] of the ETH_DMASTS register will be set. If the descriptor is available, continue to transmit.

28.11.3 Receive poll demand register (ETH_DMARXPD)

Offset address: 0x1008 Reset value: 0x0000 0000

Field	Name	R/W	Description
31:0	RXPD	R/W	Receive Poll Demand When these bits are written with any value, DMA will read the current descriptor pointed to by the ETH_DMAHRXD register. If the descriptor is not available (owned by the host), the pending state will be transmitted and returned and the bit [7] of the ETH_DMASTS register will be set. If the descriptor is available, Rx DMA will return to active state.

28.11.4 Receive descriptor list address register (ETH_DMARXDLADDR)

Offset address: 0x100C Reset value: 0x0000 0000

Field	Name	R/W	Description
31:0	RXSTA	R/W	Start of Receive List This field contains the base address of the first descriptor in the receive descriptor list. LSB bits [1:0, 2:0, or 3:0] of 32-bit, 64-bit, or 128-bit bus width is ignored and is regarded as all zero by DMA. Therefore, these LSB bits are read-only.

28.11.5 Transmit descriptor list address register (ETH_DMATXDLADDR)

Offset address: 0x1010 Reset value: 0x0000 0000

Field	Name	R/W	Description
31:0	TXSTA	R/W	Start of Transmit List This field contains the base address of the first descriptor in the receive descriptor list. LSB bits [1:0, 2:0, or 3:0] of 32-bit, 64-bit, or 128-bit bus width is ignored and is regarded as all zero by DMA. Therefore, these LSB bits are read-only.

28.11.6 State register (ETH_DMASTS)

Offset address: 0x1014 Reset value: 0x0000 0000

Field	Name	R/W	Description
0	TXFLG	RC_W1	Transmit Flag Frame transmission has been completed and TXDES1[31] bit in the first descriptor is set to 1.
1	TXSFLG	RC_W1	Transmit Stopped Flag This bit is set when the transmission stops.
2	TXBU	RC_W1	Transmit Buffer Unavailable This bit indicates that the host owns the next descriptor in the transmit list and DMA cannot get it. Transmission pauses. Bit [22:20] explains the state conversion of the transmission process. To resume processing of the transmit descriptor, the host should change the ownership of the descriptor by setting TXDES0 [31], and then issue a transmit poll demand command.
3	TXJTO	RC_W1	Transmit Jabber Timeout This bit indicates that the transmit Jabber timer times out, and the transmission process will be terminated and in the stop state. This will cause Jabber timeout and the TXDES0 [14] flag bit to be set.
4	RXOVF	RC_W1	Receive Overflow This bit indicates that the receive buffer overflows during frame receiving. If part of the frame is transmitted to the application program, the overflow state will be set in RXDES0 [11].
5	TXUNF	RC_W1	Transmit Underflow This bit indicates that the transmit buffer underflows during frame transmission. Transmission is suspended and the underflow error TXDES0 [1] is set.
6	RXFLG	RC_W1	Receive Flag Frame receiving is completed, and the specific frame state information is updated in the descriptor. Receive and keep running.

Field	Name	R/W	Description
7	RXBU	RC_W1	Receive Buffer Unavailable This bit indicates that the host owns the next descriptor in the receive list and DMA cannot get it. The receiving process is suspended. To resume processing of the receive descriptor, the host should change the ownership of the descriptor and issue a receive poll demand command. If no receive poll demand is issued, the receiving process will be resumed when the next confirmed incoming frame is received. This bit is set only when the current receive descriptor is owned by DMA.
8	RXSFLG	RC_W1	Receive Stopped Flag This bit will be set to 1 when the receiving process enters the stop state.
9	RXWTOFLG	RC_W1	Receive Watchdog Timeout Flag This bit is will be set to 1 when the length of the received frame is greater than 2048 bytes.
10	ETXFLG	RC_W1	Early Transmit Flag The frame to be transmitted has been completely transmitted to the transmit FIFO.
12:11			Reserved
13	FBERRFLG	RC_W1	Fatal Bus Error Flag This bit indicates that a bus error has occurred, as described in bit [25:23]. When this bit is set, the corresponding DMA engine will disable all its bus access.
14	ERXFLG	RC_W1	Early Receive Flag This bit indicates that DMA fills the first data buffer of the packet. When the software writes 1 to this bit or bit [6] of this register is set, this bit will be cleared.
15	AINTS	RC_W1	Abnormal Interrupt Summary When the corresponding interrupt bit is enabled in ETH_DMAINTEN register, the value of abnormal interrupt summary bit is the logic or operation result of the following bits: ETH_DMASTS[1]: Stop in transmission proces ETH_DMASTS[3]: Transmit Jabber timeout ETH_DMASTS[4]: Receive overflow ETH_DMASTS[5]: Transmit underflow ETH_DMASTS[7]: Receive buffer is unavailable ETH_DMASTS[8]: Stop in receiving proces ETH_DMASTS[8]: Receive watchdog timeout ETH_DMASTS[9]: Receive watchdog timeout ETH_DMASTS[10]: Early transmit interrupt ETH_DMASTS[13]: Fatal bus error Only the unmasked bit affects the abnormal interrupt summary bit. This is a sticky bit and it must be cleared each time the corresponding bit that causes this bit to be set is cleared.
16	NINTS	RC_W1	Normal Interrupt Summary When the corresponding interrupt bit is enabled in ETH_DMAINTEN register, the value of normal interrupt summary bit is the logic or operation result of the following bits: ETH_DMASTS[0]: Transmit interrupt

Field	Name	R/W	Description			
			ETH_DMASTS[2]: Transmit buffer is unavailable			
			ETH_DMASTS[6]: Receive interrupt			
			ETH_DMASTS[14]: Early receive interrupt			
			Only the unmasked bit affects the normal interrupt summary bit. This is a sticky bit and it must be cleared each time the corresponding bit that causes this bit to be set is cleared.			
			Receive Process State			
			This field indicates the receive DMA FSM state. This field does not generate any interrupt.			
			000: Stop: Issue the reset or stop receiving command			
			001: Run: get the receive and transmit descriptors			
19:17	RXSTS	R	010: Reserved			
10.17	10.010		011: Run: wait for receiving message			
			100: Pending: the receive descriptor is unavailable			
			101: Run: disable the receive descriptor			
			110: Reserved			
			111: Run: in the progress of transmitting the received packet data from receive buffer to host memory			
			Transmit Process State			
	TXSTS	R	This field indicates the transmit DMA FSM state. This field does not generate any interrupt.			
			000: Stop: issue the reset or stop transmission command			
			001: Run: get the transmit descriptor			
22:20			010: Run: waiting state			
			011: Run: read data from host memory buffer and queue the transmit buffer (Tx FIFO)			
			100, 101: Reserved			
			110: Suspended: the transmit descriptor is unavailable or the transmit buffer underflows			
			111: Run: disable the transmit descriptor			
			Error Bits			
			This field indicates the type of error that causes the bus error, such as the error response of the AHB interface. This field is valid only when the bit [13] is set. This field does not generate any interrupt.			
25:23	ERRB	R	000: An error occurs in transmission process of Rx DMA write data			
			011: An error occurs in transmission process of Tx DMA read data			
			100: An error occurs in Rx DMA descriptor write access			
			101: An error occurs in Tx DMA descriptor write access			
			110: An error occurs in Rx DMA descriptor read access			
			111: An error occurs in Tx DMA descriptor read access			
26	Reserved					
			MMC Flag			
27	MMCFLG	R	This bit reflects an interrupt event in the MMC module of MAC. The software must read the corresponding register in the MAC to obtain the exact cause of the interrupt, and clear the interrupt			

Field	Name	R/W	Description		
			source to clear this bit to 0. When this bit is high, an interrupt will be generated after it is enabled.		
28	PMTFLG	R	PMT Flag This bit indicates an interrupt event in the PMT module of MAC. The software must read the PMT control and state register in the MAC to obtain the exact cause of the interrupt and clear its source to clear this bit to 0. When this bit is high, an interrupt will be generated after it is enabled.		
29	TSTFLG	R	Timestamp Trigger Flag This bit indicates an interrupt event in the timestamp generator block of the MAC. The software must read the corresponding register in the MAC to obtain the exact cause of the interrupt, and clear its source to clear the bit to 0. When this bit is high, an interrupt will be generated after it is enabled.		
31:30	Reserved				

28.11.7 Operation mode register (ETH_DMAOPMOD)

Offset address: 0x1018 Reset value: 0x0000 0000

Field	Name	R/W	Description		
0		Reserved			
1	STRX	R/W	Start or Stop Receive When this bit is set, the receiving process will be in running state. DMA attempts to obtain the descriptor from the receive list and process the incoming frames. Try to obtain the descriptor from the current location in the list, and this location is the address set by the ETH_DMARXDLADDR register, or the location reserved when stopping before the receiving process. If DMA does not own this descriptor, receive will be suspended and ETH_DMASTS[7][will be set. The "Start receiving" command is valid only after receiving stops. If the command is issued before the ETH_DMARXDLADDR register is set, DMA behavior is unpredictable. When this bit is cleared, Rx DMA operation will stop after transmission of the current frame. The location of next descriptor in the receive list will be saved and become the current location after restarting the receiving process. The stop receiving command is valid only when the receiving process is in "running" or "suspended" state.		
2	OSECF	R/W	Operate on Second Frame When this bit is set, it indicates that DMA is processing the second frame of transmitted data, even before obtaining the state of the first frame.		
4:3	RXTHCTRL	R/W	Receive Threshold Control These two bits control the threshold level of the receive FIFO. When transmitting to the DMA starts, the frame size of receive FIFO is greater than the threshold. In addition, the complete frame with the length less than the threshold will be transmitted automatically. When the configured "receive FIFO size" is 128 bytes, 11 will not be used. These bits are valid only when the RXSF bit is 0 and will be ignored when the RXSF bit is 1		

			SEMICONDUCTOR SEMICONDUCTOR
Field	Name	R/W	Description
			00: 64
			01: 32
			10: 96 11: 128
_			
5		ı	Reserved
			Forward Undersized Good Frames
6	FUF	R/W	When it is set, Rx FIFO will forward small frames, including padding bytes and CRC. When it is reset, Rx FIFO will discard all frames less
	1 01	1000	than 64 bytes unless a frame has been transmitted because the
			receiving threshold is low, such as RTC=01.
			Forward Error Frames
			When this bit is reset, Rx FIFO will discard the frames with error state.
_	FEDDE	D 44/	However, if the start byte pointer of the frame has been transferred to
7	FERRF	R/W	the read controller end (in threshold mode), the frame will not be discarded.
			If the start byte of the frame is not transmitted (output) on the ARI bus,
			Rx FIFO will discard the error frame.
12:8			Reserved
			Start or Stop Transmission Command
			When this bit is set, the transmission will be put in the running state,
			and DMA will check the transmit list of the current location to obtain the
			frame to be transmitted. The descriptor tries to obtain from the current location in the list or from the previous location reserved when the
			transmission stops. If the DMA does not own the current descriptor, the
			transmission will enter the suspended state and the ETH_DMASTS[2]
13	STTX	R/W	will be set. This command will take effect only when the transmission
			stops. If the command is issued before the ETH_DMATXDLADDR register is set, DMA behavior is unpredictable.
			When this bit is reset, the transmission process will stop after
			transmission of the current frame is completed. The location of next
			descriptor in the transmit list will be saved and when transmission is
			restarted, it will become the current location. The stop transmission
			command is valid only when transmission of the current frame is completed or the transmission is in the "suspended" state.
			Transmit Threshold Control
			These bits control the threshold level of the transmit FIFO. At the
			beginning of transmission, the frame size in the transmit FIFO is
			greater than the threshold. In addition, the complete frame with the
			length less than the threshold will also be transmitted. These bits are
			used only when the bit [21] is reset. 000: 64
16:14	TXTHCTRL	R/W	001: 128
			010: 192
			011: 256
			100: 40
			101: 32
			110: 24
			111: 16
19:17		•	Reserved

Field	Name	R/W	Description		
20	FTXF	R/W	Flush Transmit FIFO When this bit is set, the transmit FIFO controller logic will be reset to its default value, so all data in Tx FIFO will be lost or refreshed. This bit will be cleared internally when the refresh operation is completed. Before this bit is cleared, it should not be written into the operation mode register.		
21	TXSF	R/W	Transmit Store and Forward When this bit is set, transmission will start if there is a complete frame in the transmit FIFO. When this bit is set, the TTC value specified in bit [16:14] will be ignored. This bit can be replaced only when transmission stops.		
23:22		Reserved			
24	DISFRXF	R/W	Disable Flushing of Received Frames When this bit is set, Rx DMA will not refresh any frames because the receive descriptor or buffer is not available as it normally does when this bit is reset.		
25	RXSF	R/W	Receive Store and Forward When this bit is set, the frame can be read after a complete frame is written to Rx FIFO, and the RTC bit will be ignored. When this bit is reset, Rx FIFO will run in pass-through mode, limited by the threshold specified by the RTC bit.		
26	DISDT	R/W	Disable Dropping of TCP/IP Checksum Error Frames When this bit is set, the MAC will not discard the error frames detected only by the receive checksum offload engine. Such a frame has no error in the Ethernet frame received by the MAC, and only has errors in the encapsulated load. When this bit is reset, if the FERRF bit is reset, all error frames will be discarded.		
31:27	Reserved				

28.11.8 Interrupt enable register (ETH_DMAINTEN)

Offset address: 0x101C Reset value: 0x0000 0000

Field	Name	R/W	Description
0	TXIEN	R/W	Transmit Interrupt Enable When this bit is set to 1 through bit [16], the transmit interrupt will be enabled. When this bit is reset, the transmit interrupt will be disabled.
1	TXSEN	R/W	Transmit Stopped Enable When this bit is set to 1 through bit [15], the transmit stop interrupt will be enabled. When this bit is reset, the transmit stop interrupt will be disabled
2	TXBUEN	R/W	Transmit Buffer Unavailable Enable When this bit is set to 1 through bit [16], the transmit buffer unavailable interrupt will be enabled. When this bit is reset, the transmit buffer unavailable interrupt will be disabled.
3	TXJTOEN	R/W	Transmit Jabber Timeout Enable When this bit is set to 1 through bit [15], the transmit Jabber timeout interrupt will be enabled. When this bit is reset, the transmit Jabber timeout interrupt will be disabled.

Field	Name	R/W	Description	
4	RXOVFEN	R/W	Receive Overflow Interrupt Enable When this bit is set to 1 through bit [15], the receive overflow interrupt will be enabled. When this bit is reset, the overflow interrupt will be disabled.	
5	TXUNFEN	R/W	Transmit Underflow Interrupt Enable When this bit is set to 1 through bit [15], the transmit underflow interrupt will be enabled. When this bit is reset, the underflow interrupt will be disabled.	
6	RXIEN	R/W	Receive Interrupt Enable When this bit is set to 1 through bit [16], the receive interrupt will be enabled. When this bit is reset, the receive interrupt will be disabled.	
7	RXBUEN	R/W	Receive Buffer Unavailable Enable When this bit is set to 1 through bit [15], the receive buffer unavailable interrupt will be enabled. When this bit is reset, the receive buffer unavailable interrupt will be disabled.	
8	RXSEN	R/W	Receive Stopped Enable When this bit is set to 1 through bit [15], the receive stop interrupt will be enabled. When this bit is reset, the receive stop interrupt will be disabled.	
9	RXWTOEN	R/W	Receive Watchdog Timeout Enable When this bit is set to 1 through bit [15], the receive watchdog timeout interrupt will be enabled. When this bit is reset, the receive watchdog timeout interrupt will be disabled.	
10	ETXIEN	R/W	Early Transmit Interrupt Enable When this bit is set to 1 through bit [15], the early transmit interrupt will be enabled. When this bit is reset, the early transmit interrupt will be disabled.	
12:11			Reserved	
13	FBERREN	R/W	Fatal Bus Error Enable When this bit is set to 1 through bit [15], the fatal bus error interrupt will be enabled. When this bit is reset, the fatal bus error interrupt will be disabled.	
14	ERXIEN	R/W	Early Receive Interrupt Enable When this bit is set to 1 through bit [16], the early receive interrupt will be enabled. When this bit is reset, the early receive interrupt will be disabled.	
15	AINTSEN	R/W	Abnormal Interrupt Summary Enable When this bit is set, the abnormal interrupt summary will be enabled. When this bit is reset, the abnormal interrupt summary will be disabled. This bit can enable the following interrupts: ETH_DMASTS[1]: Stop in transmission proces ETH_DMASTS[3]: Transmit Jabber timeout ETH_DMASTS[4]: Receive overflow ETH_DMASTS[5]: Transmit underflow ETH_DMASTS[7]: Receive buffer is unavailable ETH_DMASTS[8]: Stop in receiving proces ETH_DMASTS[9]: Receive watchdog timeout ETH_DMASTS[10]: Early transmit interrupt	

Field	Name	R/W Description			
			ETH_DMASTS[13]: Fatal bus error		
	NINTSEN		Normal Interrupt Summary Enable		
40		R/W	When this bit is set, the normal interrupt summary will be enabled. When this bit is reset, the normal interrupt summary will be disabled. This bit can enable the following interrupts:		
16			ETH_DMASTS[0]: Transmit interrupt		
			ETH_DMASTS[2]: Transmit buffer is unavailable		
			ETH_DMASTS[6]: Receive interrupt		
			ETH_DMASTS[14]: Early receive interrupt		
31:17	Reserved				

28.11.9 Missed frame and buffer overflow counter register (ETH_DMAMFABOCNT)

Offset address: 0x1020 Reset value: 0x0000 0000

Field	Name	R/W	Description		
15:0	MISFCNT	RC_R	Controller Missed Frame Counter It indicates the number of frames lost by the controller because the host receive buffer is not available. This counter will increase each time the DMA discards an incoming frame.		
16	MISFCNTOVF	RC_R	Overflow Bit for Missed Frame Counter		
27:17	AMISFCNT	RC_R	Application Missed Frame Counter It indicates the number of frames lost by application program.		
28	OVFCNTOVF	RC_R	Overflow Bit for FIFO Overflow Counter		
31:29	Reserved				

28.11.10 Receive flag watchdog timer register (ETH_DMARXFLGWDT)

Offset address: 0x1024 Reset value: 0x0000 0000

Field	Name	R/W	Description
7:0	RXWDTCNT	R/W	RXFLG Watchdog Timer Count This bit indicates the number of system clock cycles for setting the watchdog timer is multiplied by 256. The watchdog timer is triggered by the value set by the program after Rx DMA completes the transmission of a frame in which the RXFLG state bit is not set, because of the setting in the corresponding descriptor RXDES1[31]. After the watchdog timer times out, set the RXFLG bit to stop the timer. Because RXFLG automatically sets RXDES1[31] of the received frame, the RXFLG bit is set to high level, and the watchdog timer is reset.
31:8	Reserved		

28.11.11 Current host transmit descriptor register (ETH_DMAHTXD)

Offset address: 0x1048 Reset value: 0x0000 0000

Field	Name	R/W	Description			
0	HTXDADDRP	R	Host Transmit Descriptor Address Pointer Pointer updaged by DMA during operation.			
31:1	Reserved					

28.11.12 Current host receive descriptor register (ETH_DMAHRXD)

Offset address: 0x104C Reset value: 0x0000 0000

Field	Name	R/W	Description			
0	HRXDADDRP	R	Host Receive Descriptor Address Pointer Pointer updaged by DMA during operation.			
31:1	Reserved					

28.11.13 Current host transmit buffer address register (ETH_DMAHTXBADDR)

Offset address: 0x1050 Reset value: 0x0000 0000

Field	Name	R/W	Description
0	HTXBADDRP	R	Host Transmit Buffer Address Pointer Pointer updaged by DMA during operation.
31:1	Reserved		

28.11.14 Current host receive buffer address register (ETH_DMAHRXBADDR)

Offset address: 0x1054 Reset value: 0x0000 0000

Field	Name	R/W	Description
0	HRXBADDRP	R	Host Receive Buffer Address Pointer Pointer updaged by DMA during operation.
31:1	Reserved		

29 Analog-to-digital converter (ADC)

29.1 Full name and abbreviation description of terms

Table 155 Full Name and Abbreviation Description of ADC Terms

Full name in English	English abbreviation
Analog watchdog	AWD
Conversion	С
Injected	INJ
Regular	REG
Start	S
Scan	SCAN
Single	SINGLE
Automatic	Α
Group	G
Discontinuous	DISC
Count	CNT
Dual	DUAL
Continuous	С
Calibration	CAL
Reset	RST
Alignment	ALIGN
External	EXT
Event	E
Trigger	TRG
Temperature	Т
Sensor	S
Time	TIM
Sample	SMP
Offset	OF
High	Н
Low	L
Threshold	Т
Sequence	SEQ

Full name in English	English abbreviation
Length	LEN
Regular Channels	REG
Injected Channel	INJ
Injected Group	INJG
Automatic	A
Conversion	С
Analog Watchdog	AWD
Discontinuous Mode	DISC
Scan Mode	SCAN
Continuous Conversion	CONTC
Single Conversion	SINGLEC
External	EXT
External Trigger	EXTTRG
Sample Time	SMPTIM
Sequence	SEQ
Number	NUM

29.2 Introduction

The series product has 3 ADC with 12-bit precision. Each ADC has up to 16 external channels and 3 internal channels, and the A/D conversion modes of each channel include single, continuous, scan or discontinuous. ADC conversion results can be left-aligned or right-aligned and stored in 16-bit data register.

29.3 Main characteristics

- (1) ADC power supply requirements: From 2.4V to 3.6V during full-speed operation; 1.8V during low-speed operation.
- (2) ADC input range: V_{REF-} ≤VIN ≤V_{REF+}.
- (3) 12-bit, 10-bit, 8-bit or 6-bit resolutions are configurable.
- (4) ADC conversion time
 - Formula: TCONV=samplting time+12 cycles
 - The sampling time is controlled by SMPCYCCFGx[2:0], the minimum sample cycle is 3, and when ADCCLK=30MHz, the sample time is 3 cycles: TCONV=3 cycles+12 cycles=15 cycles=0.5µs.

- (5) Mode input channel category
 - External GPIO input channel
 - One internal temperature sensor (V_{SENSE}) input channel
 - One internal reference voltage (V_{REFINT}) input channel
 - One internal backup voltage (V_{BAT}) input channel
- (6) Channel conversion mode
 - Single channel conversion mode: single conversion mode, continuous conversion mode
 - Input channel classification: regular channel, injected channel
 - One-group channel conversion mode: scan mode, discontinuous mode and injected channel management
 - ADC mode: Independent ADC mode, and dual/triple ADC mode
- (7) Trigger mode
 - On-chip timer signal trigger
 - External pin
- (8) Data register
 - Regular data register
 - Injected data register
 - General regular data register
- (9) Interrupt
 - End of conversion interrupt
 - Analog watchdog interrupt
 - Overflow interrupt
- (10) DMA request supporting regular data conversion
- (11) Data alignment
 - Configurable data alignment of DALIGNCFG bit of data register ADC_CTRL2 is left or right alignment.

29.4 Functional description

29.4.1 ADC pins

Table 156 ADC Pins

Name	Description	Signal type
V _{REF+}	High-end/Positive electrode reference voltage used by ADC, 1.8V≤V _{REF+} ≤V _{DDA}	Input, analog reference positive electrode

Name	Description	Signal type
V _{DDA}	Equivalent to analog power supply of V_{DD} and: $2.4V \le V_{DDA} \le V_{DD}$ (3.6V) during full-speed operation, $1.8V \le V_{DDA} \le V_{DD}$ (3.6V) during low-speed operation	Input, analog power supply
V _{REF} -	Low-end/Negative reference voltage used by ADC, V _{REF} -=V _{SSA}	Input, analog reference negative electrode
V _{SSA}	Equivalent to analog power supply of V _{ss}	Input, analog power ground
ADCx_IN[15:0]	16 analog input channels	Analog input signal

29.4.2 ADC conversion mode

The product has multiple built-in ADC and channels (refer to the data manual for the specific number), which can be combined into a variety of conversion modes.

Multiple built-in ADC; according to the number of ADC, the conversion mode can be classified into independent ADC mode and dual ADC mode; multiple built-in channels, which can be classified into two groups, namely regular channel and injected channel. The internal conversion mode of each group can be divided into scan mode and discontinuous mode; for the internal channels of each group, the conversion mode is divided into single conversion mode and continuous conversion mode.

In the application, according to the actual application requirements, the number of ADC, the number of conversion channels and the conversion mode of each channel, the ADC conversion mode meeting the requirements can be designed.

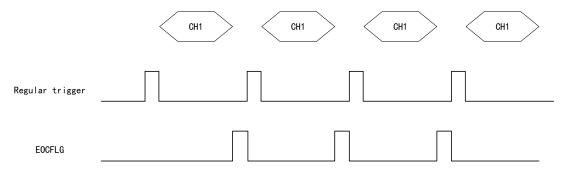
29.4.2.1 Conversion mode of single ADC and single channel

Single ADC channel

Single ADC and single channel are not enabled by external trigger software. The conversion mode is single and continuous concurrent disabling of scan. The result of data conversion is right alignment. After the single ADC conversion is completed, the interrupt is triggered, and data is read in the interrupt service function, not using DMA transmission.

Single conversion mode

In this mode, for single channel, only one conversion is performed for this channel, and for multiple channels, only one conversion is performed for this group of channels .

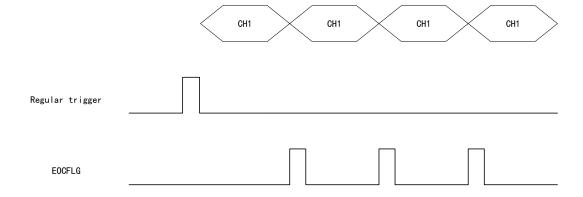

This mode is started by the ADCEN bit of configuration register ADC_CTRL2 or is started by external trigger.

After one conversion of regular channel is over, the converted data will be stored in 16-bit ADC_REGDATA register, and EOCFLG bit will be set to 1. If configuration EOCIEN bit is set to 1, an interrupt will be generated.

After one conversion of injected channel is over, the converted data will be stored in 16-bit ADC_INJDATA1 register, and INJEOCFLG bit will be set to 1. If configuration INJEOCIEN bit is set to 1, an interrupt will be generated.

Figure 122 Single Conversion Mode Timing Diagram

Continuous conversion mode


In this mode, for single channel, continuous conversion is conducted for this channel.

This mode is started by the ADCEN bit of configuration register ADC_CTRL2 or is started by external trigger.

After the conversion of one regular channel is over, the converted data will be stored in 16-bit ADC_REGDATA register, and EOCFLG bit will be set to 1. If configuration EOCIEN bit is set to 1, an interrupt will be generated.

After the conversion of one injected channel is over, the converted data will be stored in 16-bit ADC_INJDATA1 register, and INJEOCFLG bit will be set to 1. If configuration INJEOCIEN bit is set to 1, an interrupt will be generated.

Figure 123 Continuous Conversion Mode Timing Diagram

29.4.2.2 Conversion mode of single ADC and one group of channels

Single ADC and multiple channels

Enable the scan mode under single-ADC multi-channel condition, the conversion is triggered by software rather than externally, the result of data conversion is right aligned, and the data of ADC conversion results are transmitted to the memory by DMA.

Classification of analog input channels

Regular channel group

- The regular group consists of 16 channels
- Regular channel conversion sequence is determined by the register ADC REGSEQx
- The total number of conversion channels of regular group is determined by REGSEQLEN bit of configuration register ADC REGSEQ1

Injected channel group

- The injected group consists of 4 channels
- Injected channel conversion sequence is determined by the register ADC INJSEQ
- The total number of conversion channels of injected group is determined by INJSEQLEN bit of configuration register ADC_INJSEQ

Internal input channel

Temperature sensor:

- The temperature sensor is used to measure the internal temperature of the chip
- The temperature sensor selects ADC1 IN16 input channel
- Start through TSVREFEN bit of the configuration register ADC CTRL2

Internal reference voltage V_{REFINT}:

- The internal reference voltage is used to provide a stable voltage output for ADC
- Internal reference voltage V_{REFINT} is used to select ADC1_IN17 input channel

Internal backup voltage V_{BAT}:

 Internal backup voltage V_{BAT} is used to select ADC1_IN18 input channel

Channel conversion sequence

Configuration of regular sequence registers:

- Configure REGSEQC1~REGSEQC6 bits of the register
 ADC REGSEQ3 to set No. 1~6 conversion channels
- Configure REGSEQC7~REGSEQC12 bits of the register
 ADC REGSEQ2 to set No. 7~12 conversion channels
- Configure REGSEQC13~REGSEQC16 bits of the register
 ADC REGSEQ1 to set No. 13~16 conversion channels
- Configure REGSEQLEN of the register ADC_REGSEQ1 to set the number of channels for conversion

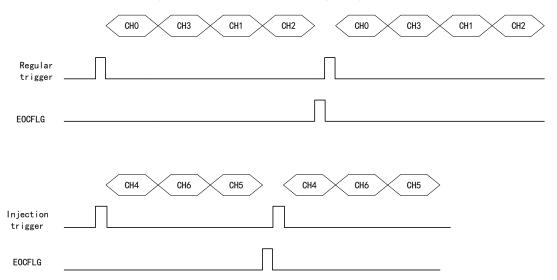
Configuration of injected sequence register:

- Configure INJSEQC1~INJSEQC4 bit of the register ADC_INJSEQ to set No. 1~4 conversion channels
- Configure INJSEQLEN of the register ADC_INJSEQ to set the number of channels for conversion
- If the value of INJSEQLEN is less than 4, the conversion sequence will be different and start from (4-INJSEQLEN).

Channel conversion mode

Scan Mode

This mode is applicable to one group of channels, which is equivalent to a single conversion on each channel of one group of channels.

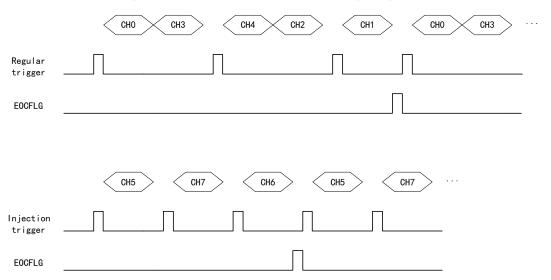

This mode is started by SCANEN bit of configuration register ADC_CTRL1, and after startup, ADC scans all channels which are arranged according to the sequence register ADC_REGSEQ or the ADC_INJSEQ, and after each channel conversion is completed, it will be automatically converted to the next channel of the group.

If the configuration CONTCEN bit is set to 1, the conversion will continue from the first channel of the group when the last channel of the group completes conversion.

If the configuration DMAEN bit is set to 1, the DMA controller will transmit the converted data of regular channel to SRAM every time the channel conversion is completed.

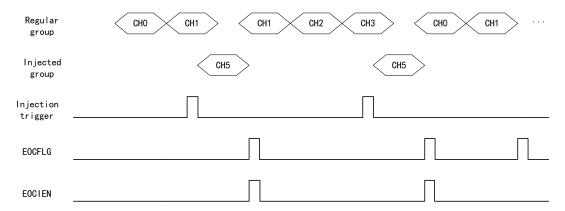
Figure 124 Scan Mode Timing Diagram

Discontinuous mode


This mode is suitable for a group of channels, which is equivalent to continuous conversion of multiple channels in a group of channels.

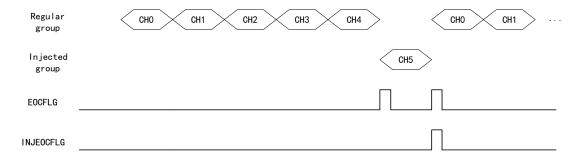
For regular groups, this mode is started by REGDISCEN bit of configuration register ADC_CTRL1; after startup, conduct short sequence conversion of n channels (n<=8), and n is determined by DISCNUMCFG[2:0] of configuration register ADC_CTRL1; next round of conversion of n channels can be started through software control or external trigger source and when the conversion of all channels of this group is completed, EOCFLG bit will be set to 1.

For injected groups, this mode is enabled by INJDISCEN bit of configuration register ADC_CTRL1; after startup, one channel will be converted according to the configuration sequence of the sequence register; conversion of next channels can be started by software control or external trigger source and when the conversion of all channels of this group is completed, EOCFLG bit and INJEOCFLG bit will be set to 1.


Figure 125 Discontinuous Mode Timing Diagram

Injected channel management

Trigger injection: Start by clearing INJGACEN bit of the register ADC_CTRL1 and configuring the SCANEN bit. If a software trigger or external trigger is generated during the conversion of regular group channels, the injected conversion will be triggered. At this time, the regular channel conversion will stop, the injected channel sequence will start conversion, and after the injected group channel conversion is completed, the regular group channel conversion will be recovered.


Figure 126 Trigger Injection Timing Diagram

Automatic injection: Start by INJGACEN bit of configuration register ADC_CTRL1; after conversion of the regular group channels is completed, the injected group channels will start conversion automatically; in the automatic injection mode, external trigger of the injected group channels must be disabled; if the CONTCEN bit of the register ADC_CTRL2 is also configured, all channels of regular group and injection group will convert continuously.

Figure 127 Automatic Injection Timing Diagram

29.4.2.3 Dual or triple ADC mode and conversion mode of one group of channels

For products with two or more ADC modules, dual or triple ADC mode is used. ADC1 is the master ADC by default, while others are the slave ADC by default, and the ADC mode is set by configuring ADCMSEL bit in ADC1_CCTRL register.

When the configuration is triggered by external event, it is required to set it to trigger only the master ADC, and then configure the slave ADC to be triggered by software. (External trigger of master and slave must occur at the same time)

There are six possible dual or triple ADC modes:

(1) Simultaneous regular mode

The simultaneous regular mode means multiple ADC convert a regular channel group at the same time. Two ADC cannot convert one channel at the same time. The external trigger event is determined by REGEXTTRGSEL of the register ADC1 CTRL2.

EOCFLG interrupt will be generated after all ADC regular channels are converted. Dual ADC mode: After conversion is over, a DMA transmission request will be generated, and the ADC1 converted data are stored in low 16 bits of the register ADC1_REGDATA, while the ADC2 converted data are stored in high 16 bits of the register ADC_REGDATA. Triple ADC mode: After conversion is over, three DMA requests will be generated to transmit ADC1, ADC2 and ADC3 converted data to the memory.

(2) Simultaneous injection mode

The simultaneous injection mode means multiple ADC convert an injected channel group at the same time. Two ADC cannot convert one channel at the same time. The external trigger event is determined by INJGEXTTRGSEL of the register ADC1_CTRL2.

After ADC conversion is over, the converted data will be stroed in the register ADC_INJDATAx of each ADC interface.

INJEOCFLG interrupt will be generated after all ADC injected channels are

converted.

(3) Alternate mode

The alternate mode means multiple ADC convert a regular channel group alternately. The external trigger event is determined by REGEXTTRGSEL of the register ADC1 CTRL2.

Dual ADC mode: After triggering, ADC1 starts first, ADC2 starts after delay, and the delay is configured through SMPDEL2 bit of the register ADC_CCTRL. After the conversion is completed, an EOCFLG interrupt will be generated, and then a DMA request will be generated, and the data will be transmitted in DMA mode 2. Triple ADC mode: After triggering, ADC1 starts first, ADC2 starts after delay, ADC3 starts after delay of ADC2 conversion, and the delay is configured through SMPDEL2 bit of register ADC_CCTRL. Every two conversions are made, a DMA request will be generated and the data will be transmitted in DMA mode 2.

(4) Alternate trigger mode

The alternate trigger mode means multiple ADC trigger and convert an injected channel group alternately. The external trigger event is determined by INJGEXTTRGSEL of the register ADC1 CTRL2.

Dual ADC mode: When the first trigger is generated, convert all channels of injection group in ADC1, and when the second trigger is generated, convert all channels of injection group in ADC2, and after each ADC completes conversion, generate an INJEOCFLG interruption. Triple ADC mode: When the first trigger is generated, convert all channels of injection group in ADC1, and when the second trigger is generated, convert all channels of injection group in ADC2, and when the third trigger is generated, convert all channels of injection group in ADC3, and after each ADC completes conversion, generate an INJEOCFLG interrupt.

(5) Mixed simultaneous regular/injection mode

The mixed simultaneous regular/injection mode means after the simultaneous regular mode is interrupted, the simultaneous injection mode will be enabled.

In this mode, a sequence of the same length must be converted or a trigger interval time must be set to complete the conversion of a longer sequence.

(6) Mixed simultaneous regular + alternate trigger mode

The mixed simultaneous regular + alternate trigger mode means after the simultaneous regular mode is interrupted, the alternate trigger mode will be enabled.

In this mode, a sequence of the same length must be converted or a trigger interval time must be set to complete the conversion of a longer sequence.

29.4.3 External trigger

Register configuration of external trigger is as follows:

- The external event trigger of regular group channel is enabled by REGEXTTRGSEL bit of configuration register ADC_CTRL2
- The external event trigger of injected group channel is started by INJGEXTTRGSEL bit of configuration register ADC_CTRL2.

Table 157 External Trigger of Regular Channel

Trigger source	REGEXTTRGSEL[3:0]	Trigger type
TMR1_CC1	0000	
TMR1_CC2	0001	
TMR1_CC3	0010	
TMR2_CC2	0011	
TMR2_CC3	0100	
TMR2_CC4	0101	
TMR2_TRGO	0110	
TMR3_CC1	0111	Internal signal from on-chip timer
TMR3_TRGO	1000	
TMR4_CC4	1001	
TMR5_CC1	1010	
TMR5_CC2	1011	
TMR5_CC3	1100	
TMR8_CC1	1101	
TMR8_TRGO	1110	
EINT Line 11	1111	External pin

Table 158 External Trigger of Injected Channel

Trigger source	INJGEXTTRGSEL[3:0]	Trigger type
TMR1_CC4	0000	
TMR1_TRGO	0001	
TMR2_CC1	0010	
TMR2_TRGO	0011	Internal signal from an abin timer
TMR3_CC2	0100	Internal signal from on-chip timer
TMR3_CC4	0101	
TMR4_CC1	0110	
TMR4_CC2	0111	

Trigger source	INJGEXTTRGSEL[3:0]	Trigger type
TMR4_CC3	1000	
TMR4_TRGO	1001	
TMR5_CC4	1010	
TMR5_TRGO	1011	
TMR8_CC2	1100	
TMR8_CC3	1101	
TMR8_CC4	1110	
EINT Line 15	1111	External pin

29.4.4 Data register

29.4.4.1 Regular data register

ADC_REGDATA is a 32-bit ADC regular data register. In single-ADC mode, only the lower 16 bits are used to store the converted data. In dual-ADC mode, the lower 16 bits are used to store the converted data of ADC1 while the higher 16 bits are used to store the converted data of ADC2. The data are left aligned or right aligned.

It is determined by DALIGNCFG bit of configuration register ADC_CTRL2 whether to use DMA transmission. There are at most 16 regular channels, but only one regular data register. Therefore, data coverage will occur in multichannel conversion, and DMA transmission is needed at this time.

29.4.4.2 Injection data memory

ADC_INJDATAx (x=1,2,3,4) is ADC injected data register, and there are four 32-bit registers, of which the low 16 bits are effective and the high 16 bits are reserved. There are at most four injected channels and four injection data registers, so data coverage will not occur in multi-channel conversion. The data are left aligned or right aligned.

29.4.4.3 General regular data memory

ADC_ CDATA is a general regular data register of ADC, and is only applicable to dual or triple mode. DMA is generally required to cooperate with data transmission in dual or triple mode.

29.4.5 Interrupt

29.4.5.1 End of conversion interrupt

Interrupt of end of conversion of regular group channels

An interrupt will be generated by the end of conversion of regular channels; read the value of the regular data register in the interrupt function.

Determine by EOCFLG bit of configuration register ADC_STS.

Interrupt of end of conversion of injected group channels

An interrupt will be generated after the conversion of injected channels is completed; read the value of the regular data register in the interrupt function.

Determine by INJEOCFLG bit of configuration register ADC_STS.

29.4.5.2 Analog watchdog interrupt

If the input analog voltage is not within the threshold range, an analog watchdog interrupt will be generated.

Determine by configuring AWDFLG bit of the register ADC_STS.

29.4.5.3 Overflow interrupt

When the conversion data is lost (overflow), an overflow interrupt will be generated.

Determine by OVRFLG bit of configuration register ADC STS.

29.4.6 **DMA**

DMA request will be generated after the conversion of regular channels is completed; the converted data result can be transmitted to the memory from the ADC REGDATA register.

29.5 Register address mapping

Table 159 ADC Register Address Mapping

Register name	Description	Offset address
ADC_STS	ADC state register	0x00
ADC_CTRL1	ADC control register 1	0x04
ADC_CTRL2	ADC control register 2	0x08
ADC_SMPTIM1	ADC sampling time register 1	0x0C
ADC_SMPTIM2	ADC sampling time register 2	0x10
ADC_INJDOFx	ADC injected channel data offset register x	0x14-0x20
ADC_AWDHT	Analog watchdog high-threshold register	0x24
ADC_AWDLT	Analog watchdog low-threshold register	0x28
ADC_REGSEQ1	ADC regular sequence register 1	0x2C
ADC_REGSEQ2	ADC regular sequence register 2	0x30
ADC_REGSEQ3	ADC regular sequence register 3	0x34
ADC_INJSEQ	ADC injected sequence register	0x38

Register name	Description	Offset address
ADC_INJDATAx	ADC injected data register X	0x3C-0x48
ADC_REGDATA	ADC regular data register	0x4C
ADC_CSTS	ADC general-purpose state register	0x00
ADC_CCTRL	ADC general-purpose control register	0x04
ADC CDATA	Applicable to dual and triple mode general rule data	0x08
NBO_ODAIA	registers	0,00

29.6 Register functional description

29.6.1 ADC state register (ADC_STS)

Offset address: 0x00
Reset value: 0x0000 0000

	Treset value. 0x0000 0000				
Field	Name	R/W	Description		
0	AWDFLG	RC_W0	Analog Watchdog Occur Flag This bit is set to 1 by hardware and cleared by software, indicating whether an analog watchdog event occurs. 0: No occurrence 1: Occurred		
1	EOCFLG	RC_W0	Regular Channel End Of Conversion Flag 0: Not completed 1: Completed		
2	INJEOCFLG	RC_W0	Injected Channel End Of Conversion Flag 0: Not completed 1: Completed		
3	INJCSFLG	RC_W0	Injected Channel Conversion Start Flag 0: Not start 1: Start		
4	REGCSFLG	RC_W0	Regular Channel Conversion Start Flag 0: Not start 1: Start		
5	OVRFLG	RC_W0	Overrun Flag 0: Not occur 1: Occurred		
31:6	Reserved				

29.6.2 ADC control register 1 (ADC_CTRL1)

Offset address: 0x04 Reset value: 0x0000 0000

Field	Name	R/W	Description
4:0	AWDCHSEL	R/W	Analog Watchdog Channel Select 00000: ADC analog input channel 0 00001: ADC analog input channel 1 01111: ADC analog input channel 15 10000: ADC analog input channel 16 10001: ADC analog input channel 17 10010: ADC analog input channel 18 Other value: Reserved
5	EOCIEN	R/W	EOC Interrupt Enable Used to enable the generation of interrupt after the conversion is completed. 0: Disable 1: Enable
6	AWDIEN	R/W	Analog Watchdog Interrupt Enable If the bit is set and in scan mode, when the watchdog detects that the value exceeds the threshold, an interrupt will be generated and the scan will be aborted. 0: Disable 1: Enable
7	INJEOCIEN	R/W	Interrupt Enable For Injected Channels End Of Conversion Flag 0: Disable 1: Enable
8	SCANEN	R/W	Scan Mode Enable In the scan mode, convert the channel selected by ADC_REGSEQX or ADC_INJSEQX register. 0: Disable 1: Enable Note: If EOCIEN or INJEOCIEN bit is set respectively, EOC or INJEOC interrupt will be generated only after the last channel is converted.
9	AWDSGLEN	R/W	Enable The Watchdog On A Single Channel In Scan Mode This channel is specified by AWDCHSEL[4:0] bit. 0: Enable on all channels 1: Enable on a single channel;
10	INJGACEN	R/W	Automatic Injected Group Conversion Enable Used to enable automatic conversion of injected channels after the conversion of regular channel group is completed. 0: Disable 1: Enable
11	REGDISCEN	R/W	Discontinuous Mode On Regular Channels Enable 0: Disable 1: Enable
12	INJDISCEN	R/W	Discontinuous Mode On Injected Channels Enable 0: Disable 1: Enable

Field	Name	R/W	Description
			Discontinuous Mode Channel Number Configure
			000: One channel
15:13	DISCNUMCFG	R/W	001: Two channels
			111: Eight channels
21:16			Reserved
			Enable the Analog Watchdog Function On the Injected Channels
22	INJAWDEN	R/W	0: Disable
			1: Enable
			Enable the Analog Watchdog Function On the Regular Channels
23	REGAWDEN	R/W	0: Disable
			1: Enable
			Resolution Selection
			00: 12 bits
25:24	RESSEL	R/W	01: 10 bits
			10: 8 bits
			11: 6 bits
			Overrun Interrupt Enable
26	OVRIEN	R/W	0: Disable
			1: Enable
31:27	Reserved		

29.6.3 ADC control register 2 (ADC_CTRL2)

Offset address: 0x08

Reset value: 0x0000 0000

Field	Name	R/W	Description
0	ADCEN	R/W	ADC Enable 0: Disable ADC conversion and enter the power-down mode 1: Enable ADC and start conversion
1	CONTCEN	R/W	Continuous Conversion Mode Enable 0: Single conversion mode 1: Continuous conversion mode
7:2	Reserved		
8	DMAEN	R/W	DMA Mode Enable 0: Disable 1: Enable
9	DMADISSEL	R/W	DMA disable selection 0: No new DMA request will be issued after the last transmission 1: DMA request will be issued whenever data conversion occurs and DMA is enabled
10	EOCSEL	R/W	End of conversion selection 0: EOCFLG bit will be set to 1 at the end of each regular conversion sequence

Field	Name	R/W	Description
11010		1000	EOCFLG bit will be set to 1 at the end of each regular conversion
11	DALIGNCFG	R/W	Data Alignment Mode Configure 0: Right alignment 1: Left alignment
15:12			Reserved
19:16	INJGEXTTRGSEL	R/W	Select the External Trigger Event to Start the Injected Group Conversion 0000: CC4 event of timer 1 0001: TRGO event of timer 2 0011: TRGO event of timer 2 0011: TRGO event of timer 2 0100: CC2 event of timer 3 0101: CC4 event of timer 3 0110: CC1 event of timer 4 1011: CC2 event of timer 4 1000: CC3 event of timer 4 1001: TRGO event of timer 4 1010: CC4 event of timer 5 1011: TRGO event of timer 5 1100: CC2 event of timer 8 1111: EINT Line 15 Enable the External Trigger for Injected Channels
21:20	INJEXTTRGEN	R/W	00: Trigger detection is disabled01: Trigger detection on rising edge10: Trigger detection on falling edge11: Trigger detection on rising edge and falling edge
22	INJSWSC	R/W	Start Conversion of Injected Channels 0: Reset state 1: Start conversion of injected channels
23			Reserved
27:24	REGEXTTRGSEL	R/W	Select the External Trigger Event to Start the Regular Group Conversion 0000: CC1 event of timer 1 0001: CC2 event of timer 1 0010: CC3 event of timer 2 0100: CC3 event of timer 2 0101: CC4 event of timer 2 0111: CC4 event of timer 2 0111: CC1 event of timer 3 1000: TRGO event of timer 3 1001: CC4 event of timer 4 1010: CC1 event of timer 5 1101: CC2 event of timer 5 1101: CC3 event of timer 8 1111: EINT Line 11

Field	Name	R/W	Description		
29:28	REGEXTTRGEN	R/W	Enable the External Trigger for Regular Channels 00: Trigger detection is disabled 01: Trigger detection on rising edge 10: Trigger detection on falling edge 11: Trigger detection on rising edge and falling edge		
30	REGSWSC	R/W	Start Conversion of Regular Channels 0: Reset state 1: Start conversion of regular channels		
31	Reserved				

29.6.4 ADC sampling time register 1 (ADC_SMPTIM1)

Offset address: 0x0C Reset value: 0x0000 0000

Field	Name	R/W	Description
			Channel x Sample Cycles Configure 000: 3 cycles 001: 15 cycles
26:0	SMPCYCCFGx[2:0]	R/W	010: 28 cycles 011: 56 cycles
			100: 84 cycles 101: 112 cycles
			110: 144 cycles 111: 480 cycles
31:27	Reserved		

29.6.5 ADC sampling time register 2 (ADC_SMPTIM2)

Offset address: 0x10
Reset value: 0x0000 0000

Field	Name	R/W	Description		
29:0	SMPCYCCFGx[2:0]	R/W	Channel x Sample Cycles Configure 000: 3 cycles 001: 15 cycles 010: 28 cycles 011: 56 cycles 100: 84 cycles 101: 112 cycles 110: 144 cycles 111: 480 cycles		
31:30	Reserved				

29.6.6 ADC injected channel data offset register x (ADC_INJDOFx) (x=1..4)

Offset address: 0x14-0x20 Reset value: 0x0000 0000

Field	Name	R/W	Description
		R/W	Data Offset For Injected Channel x
11:0	:0 INJDOFx		When converting the injected channels, these bits define the values to
11.0			be subtracted from the original converted data, and the result of the
			conversion can be read in the ADC_INJDATAx register.
31:12	Reserved		

29.6.7 Analog watchdog high-threshold register (ADC_AWDHT)

Offset address: 0x24 Reset value: 0x0000 0FFF

Field	Name	R/W	Description	
11:0	AWDHT[11:0]	R/W	Analog Watchdog High Threshold	
31:12	Reserved			

29.6.8 Analog watchdog low-threshold register (ADC_AWDLT)

Offset address: 0x28 Reset value: 0x0000 0000

Field	Name	R/W	Description		
11:10	AWDLT[11:0]	R/W	Analog Watchdog Low Threshold		
31:12	Reserved				

29.6.9 ADC regular sequence register 1 (ADC_REGSEQ1)

Offset address: 0x2C Reset value: 0x0000 0000

Field	Name	R/W	Description		
4:0	REGSEQC13	R/W	13 th Conversion In Regular Sequence Define the channel number of No. 13 conversion in regular sequence (0~17)		
9:5	REGSEQC14	R/W	14 th Conversion In Regular Sequence Refer to the description of REGSEQC13.		
14:10	REGSEQC15	R/W	15 th Conversion In Regular Sequence Refer to the description of REGSEQC13.		
19:15	REGSEQC16	R/W	16 th Conversion In Regular Sequence Refer to the description of REGSEQC13.		
23:20	REGSEQLEN	R/W	Regular Channel Sequence Length These bits are defined by software as the number of channels in regular channel conversion sequence. 0000: One conversion 0001: Two conversions 1111: 16 conversions		
31:24	Reserved				

29.6.10 ADC regular sequence register 2 (ADC_REGSEQ2)

Offset address: 0x30 Reset value: 0x0000 000

Field	Name	R/W	Description		
4.0	DE005007	R/W	7 th Conversion In Regular Sequence		
4:0	REGSEQC7	IK/VV	Refer to the description of REGSEQC13.		
9:5	REGSEQC8	R/W	8 th Conversion In Regular Sequence		
9.5	9:5 REGSEQUE	IT/VV	Refer to the description of REGSEQC13.		
14:10	DECOECOS	REGSEQC9 R/W	9 th Conversion In Regular Sequence		
14.10	REGSEQUE		Refer to the description of REGSEQC13.		
19:15	REGSEQC10	R/W	10 th Conversion In Regular Sequence		
19.15	REGSEQUIO	EGSEQCIU R/W	Refer to the description of REGSEQC13.		
24:20	REGSEQC11	R/W	11 th Conversion In Regular Sequence		
24.20	REGSEQUII	IT/VV	Refer to the description of REGSEQC13.		
29:25	REGSEQC12	R/W	12 th Conversion In Regular Sequence		
29.20	REGSEQUIZ	FX/VV	Refer to the description of REGSEQC13.		
31:30	Reserved				

29.6.11 ADC regular sequence register 3 (ADC_REGSEQ3)

Offset address: 0x34
Reset value: 0x0000 0000

Field	Name	R/W	Description	
4:0	4.0 PE00E004	R/W	1 st Conversion In Regular Sequence	
4.0	REGSEQC1	FK/VV	Refer to the description of REGSEQC13.	
			2 nd conversion in regular sequence (2 nd Conversion In Regular	
9:5	REGSEQC2	R/W	Sequence)	
			Refer to the description of REGSEQC13.	
14:10	DECCEOC3	R/W	3 rd Conversion In Regular Sequence	
14.10	REGSEQC3	R/VV	Refer to the description of REGSEQC13.	
19:15	REGSEQC4	R/W	4 th Conversion In Regular Sequence	
19.15	REGSEQU4		Refer to the description of REGSEQC13.	
24:20	REGSEQC5	R/W	5 th Conversion In Regular Sequence	
24.20	REGSEQUS	FK/VV	Refer to the description of REGSEQC13.	
29:25	REGSEQC6	R/W	6 th Conversion In Regular Sequence	
29.20	REGGEQUO		Refer to the description of REGSEQC13.	
31:30	Reserved			

29.6.12 ADC injected sequence register (ADC_INJSEQ)

Offset address: 0x38 Reset value: 0x0000 0000

Field	Name	R/W	Description		
4:0	INJSEQC1	R/W	1st Conversion In Injected Sequence Define the channel number of No. 1 conversion in injected sequence		
9:5	INJSEQC2	R/W	(0~17) 2 nd Conversion In Injected Sequence		
14:10	INJSEQC3	R/W	3 rd Conversion In Injected Sequence)		
19:15	INJSEQC4	R/W	4 th Conversion In Injected Sequence) n Injected Sequence)		
21:20	INJSEQLEN	R/W	Injected Channel Sequence Length These bits are defined by software as the number of channels in injected channel conversion sequence, and the conversion sequence is: INJSEQC(4-INJSEQLEN) →INJSEQ (5-INJSEQLEN) →INJSEQC(6-INJSEQLEN) →INJSEQC(7-INJSEQLEN); the details are as follows: 00: One conversion, only converting INJSEQC4 01: Two conversions; the conversion sequence is INJSEQC3→INJSEQC4 10: Three conversions; the conversion sequence is INJSEQC2→INJSEQC3→INJSEQC4 11: Four conversions; the conversion sequence is INJSEQC1→INJSEQC3→INJSEQC3→INJSEQC4		
31:22	Reserved				

29.6.13 ADC injected data register x (ADC_INJDATAx) (x= 1..4)

Offset address: 0x3C-0x48 Reset value: 0x0000 0000

Field	Name	R/W	Description	
15:0	INJDATA	R	Injected Conversion Data	
			Conversion result of injected channel, read-only.	
31:16	Reserved			

29.6.14 ADC regular data register (ADC_REGDATA)

Offset address: 0x4C Reset value: 0x0000 0000

Field	Name	R/W	Description	
15:0	REGDATA	R	Regular Conversion Data Conversion result of regular channel, read-only.	
31:16	Reserved			

29.6.15 ADC general-purpose state register (ADC_CSTS)

Offset address: 0x00 (this offset address is only related to ADC1 base address+0x300)

Reset value: 0x0000 0000

Field	Name	R/W	Description
0	AWDFLG1	R	Analog Watchdog Flag of ADC1
1	EOCFLG1	R	End of Conversion Flag of ADC1
2	INJEOCFLG1	R	Injected Channel End Of Conversion Flag of ADC1
3	INJCSFLG1	R	Injected Channel Start Flag of ADC1
4	REGCSFLG1	R	Regular Channel Start Flag of ADC1
5	OVRFLG1	R	Overrun Flag of ADC1
7:6			Reserved
8	AWDFLG2	R	Analog Watchdog Flag of ADC2
9	EOCFLG2	R	End of Conversion Flag of ADC2
10	INJEOCFLG2	R	Injected Channel End Of Conversion Flag of ADC2
11	INJCSFLG2	R	Injected Channel Start Flag of ADC2
12	REGCSFLG2	R	Regular Channel Start Flag of ADC2
13	OVRFLG2	R	Overrun Flag of ADC2
15:14			Reserved
16	AWDFLG3	R	Analog Watchdog Flag of ADC3
17	EOCFLG3	R	End of Conversion Flag of ADC3
18	INJEOCFLG3	R	Injected Channel End Of Conversion Flag of ADC3
19	INJCSFLG3	R	Injected Channel Start Flag of ADC3
20	REGCSFLG3	R	Regular Channel Start Flag of ADC3
21	OVRFLG3	R	Overrun Flag of ADC3
31:22			Reserved

29.6.16 ADC general-purpose control register (ADC_CCTRL)

Offset address: 0x04 (this offset address is only related to ADC1 base address+0x300)

Reset value: 0x0000 0000

Field	Name	R/W	Description
4:0	ADCMSEL	R/W	ADC mode selection All ADC are independent 00000: Independent mode Dual mode: ADC1 and ADC2 work together, while ADC3 is independent 0001: Regular simultaneous+ injected simultaneous combined mode 00010: Regular simultaneous+ alternate trigger combined mode 00011: Reserved 00101: Only injected simultaneous mode 00110: Only regular simultaneous mode

Field	Name	R/W	Description
			00111: Only alternate mode
			01001: Only alternate trigger mode
			Triple mode: ADC1, ADC2 and ADC3 work together
			10001: Regular simultaneous+ injected simultaneous combined
			mode 10010: Regular simultaneous+ alternate trigger combined mode
			10011: Reserved
			10101: Only injected simultaneous mode
			10110: Only regular simultaneous mode
			10111: Only alternate mode 11001: Only alternate trigger mode
7:5			Reserved
			Delay Between 2 Sampling Phases
			These bits are used in dual or triple alternate mode.
			0000: 5*Tadcclk
11:8	SMPDEL2	R/W	0001: 6*T _{ADCCLK}
			0010: 7*Tadcclk
			1111: 20*TADCCLK
12			Reserved
		IA DICCEL DAM	DMA Disable Selection
13	DMADISSEL		0: No new DMA request will be issued after the last transmission
13	DIVIADISSEL	R/W	1: DMA request will be issued whenever data conversion occurs and
			DMAMODE=01, 10 or 11
			DMA Mode
			00: DMA mode is disabled
15:14	DMAMODE	R/W	01: DMA mode 1 is enabled
			10: DMA mode 2 is enabled
			11: DMA mode 3 is enabled
			ADC Prescaler
			00: PCLK2 2 divided frequency
17:16	ADCPRE R/W 01: PCLK2 4 divi	01: PCLK2 4 divided frequency	
			10: PCLK2 6 divided frequency
			11: PCLK2 8 divided frequency
21:18			Reserved
			V _{BAT} Enable
22	VBATEN	R/W	0: Disable
			1: Enable
			Temperature Sensor And V _{REFINT} Enable
23	TSVREFEN	R/W	0: Disable
			1: Enable
31:24			Reserved

29.6.17 Applicable to dual and triple mode general rule data registers (ADC_CDATA)

Offset address: 0x08 (this offset address is only related to ADC1 base address+0x300)

Reset value: 0x0000 0000

Field	Name	R/W	Description
15:0	DATA1	R	1st Data Item Of A Pair Of Regular Conversions In dual mode, these bits include regular data of ADC1 In triple mode, these bits include regular data of ADC1, ADC3 and ADC2
31:16	DATA2	R	2nd Data Item Of A Pair Of Regular Conversions In dual mode, these bits include regular data of ADC2 In triple mode, these bits include regular data of ADC1, ADC3 and ADC2

30 Digital-to-analog converter (DAC)

30.1 Full name and abbreviation description of terms

Table 160 Full Name and Abbreviation Description of DAC Terms

Full name in English	English abbreviation
Linear Feedback Shift Register	LFSR

30.2 Introduction

DAC is a digital/analog converter that can be configured to input 8-bit or 12-bit data and output voltage. When 12-bit data is input, the data can be set to be left aligned or right aligned. It has two-way DAC output channels, which do not affect each other; each channel has multiple trigger sources to trigger conversion; a single channel can trigger conversion output, or both channels can trigger conversion output at the same time. Both channels can generate noise waveform and triangle waveform independently.

30.3 Structure block diagram

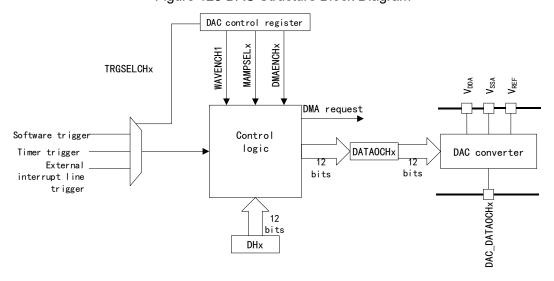


Figure 128 DAC Structure Block Diagram

30.4 Functional description

30.4.1 DAC conversion and trigger source

DAC output can obtain corresponding voltage value by calculating the data in DAC_DATAOCHx register. However, it is impossible to write data directly to DAC_DATAOCHx register, and it is required to write to DAC_DHx register and then through corresponding trigger, load the data in DAC_DHx to

DAC DATAOCHX.

When the channel trigger is disabled (TRGENCHx bit in the register DAC_CTRL is set to 0), write the value in DAC_DHx register and it will be automatically transferred to DAC DATAOCHx after one APB1 clock cycle.

When the channel trigger is enabled (TRGENCHx bit in the register DAC_CTRL is set to 1), write the value in DAC_DHx register and it will be transferred to DAC_DATAOCHx after different clock cycles according to the selected trigger source. Three types of trigger sources can be selected:

- Timer update event
- External interrupt trigger
- Software trigger

When the update event and external interrupt of the timer are selected as the trigger source, the transmission will be completed after three APB clock cycles; when software trigger is selected, the transmission will be completed after one APB1 clock cycle.

When transmitting the data to DAC_DATAOCHx register, after a period of time, the digital quantity will be outputted after it is converted linearly into analog voltage. The intermediate conversion time will vary according to the power supply voltage and the analog output load.

30.4.2 **DAC reference voltage and output**

DAC uses V_{REF} as reference voltage and by grounding the V_{SSA} , the output voltage range of DAC can be obtained, namely: $0-V_{REF}$.

DAC output calculation formula is: DAC output=V_{REF} * (DATAOCHx/4095).

30.4.3 **DAC data format**

Single-channel DAC

The registers that are written in three modes are as follows

- 8-bit data right aligned: DAC DH8Rx[7:0]
- 12-bit data left aligned: DAC DH12Lx[15:4]
- 12-bit data right aligned: DAC_DH12Rx[11:0]

Double-channel DAC

The registers that are written in three modes are as follows

- 8-bit data right aligned: DAC_DH8RD[15:0]
- 12-bit data left aligned: DAC_DH12LDUAL[15:4], DAC_DH12LDUAL[31:20]
- 12-bit data right aligned: DAC_DH12RDUAL[11:0], DAC_DH12RDUAL[27:16]

30.4.4 DAC waveform generation

Each channel of DAC can independently generate noise and triangle wave.

30.4.5 **DAC double-channel conversion**

When two channels work at the same time, the written data can be written to the common registers: DH8RDUAL, DH12RDUAL and DH12LDUAL, so as to effectively use the bus bandwidth.

Dual-channel conversion can be divided into independent conversion and synchronous conversion. The specific configuration and description are as follows.

30.4.5.1 Independent trigger

Waveform generator disabled

- (1) Enable two-channel trigger mode;
- (2) Configure two channels and use different trigger sources.

Use the same LFSR

- (1) Enable two-channel trigger mode;
- (2) Configure two channels and use different trigger sources;
- (3) Enable the noise generation function of two channels, and set the same LFSR mask value.

Use different LFSR

- (1) Enable two-channel trigger mode;
- (2) Configure two channels and use different trigger sources;
- (3) Enable the noise generation function of two channels, and set different LFSR mask values.

Generate the same triangle wave

- (1) Enable two-channel trigger mode;
- (2) Configure two channels and use different trigger sources;
- (3) Enable the triangle wave generation function of two channels, and set the same triangular amplitude.

Generate different triangle wave

(1) Enable two-channel trigger mode;

- (2) Configure two channels and use different trigger sources;
- (3) Enable the triangle wave generation function of two channels, and set different triangular amplitudes.

30.4.5.2 Synchronous trigger

Synchronous software startup

Disable the trigger mode of two channels; after writing data, wait for one APB1 clock cycle and then transfer to DAC_DATAOCH1 and DAC_DATAOCH2 registers at the same time.

Waveform generator disabled

- (1) Enable two-channel trigger mode;
- (2) Configure two channels and use the same trigger source.

Use the same LFSR

- (1) Enable two-channel trigger mode;
- (2) Configure two channels and use the same trigger source;
- (3) Enable the noise generation function of two channels, and set the same LFSR mask value.

Use different LFSR

- (1) Enable two-channel trigger mode;
- (2) Configure two channels and use the same trigger source;
- (3) Enable the noise generation function of two channels, and set different LFSR mask values.

Generate the same triangle wave

- (1) Enable two-channel trigger mode;
- (2) Configure two channels and use the same trigger source;
- (3) Enable the triangle wave generation function of two channels, and set the same triangular amplitude.

Use different triangle wave

- (1) Enable two-channel trigger mode;
- (2) Configure two channels and use the same trigger source;

(3) Enable the triangle wave generation function of two channels, and set different triangular amplitudes.

30.5 Register address mapping

Table 161 DAC Register Address Mapping

Register name	Description	Offset address
DAC_CTRL	DAC control register	0x00
DAC_SWTRG	DAC software Trigger Register	0x04
DAC_DH12R1	DAC Channel 1 12-bit right-aligned data holding register	0x08
DAC_DH12L1	DAC Channel 1 12-bit left-aligned data holding register	0x0C
DAC_DH8R1	DAC Channel 1 8-bit right-aligned data holding register	0x10
DAC_DH12R2	DAC Channel 2 12-bit right-aligned data holding register	0x14
DAC_DH12L2	DAC Channel 2 12-bit left-aligned data holding register	0x18
DAC_DH8R2	DAC Channel 2 8-bit right-aligned data holding register	0x1C
DAC_DH12RDUAL	Dual-DAC 12-bit right-aligned data holding register	0x20
DAC_DH12LDUAL	Dual-DAC 12-bit left-aligned data holding register	0x24
DAC_DH8RDUAL	8-bit right-aligned data holding register of double DAC	0x28
DAC_DATAOCH1	DAC Channel 1 data output register	0x2C
DAC_DATAOCH2	DAC Channel 2 data output register	0x30
DAC_STS	DAC state register	0x34

30.6 Register functional description

30.6.1 DAC control register (DAC_CTRL)

Offset address: 0x00
Reset value: 0x0000 0000

Field	Name	R/W	Description
			DAC Channel1 Enable
0	ENCH1	R/W	0: Disable
			1: Enable
			DAC Channel1 Output Buffer Disable
1	BUFFDCH1	R/W	0: Enable
			1: Disable
			DAC Channel1 Trigger Enable
2	TRGENCH1	R/W	0: Disable
			1: Enable
			DAC Channel1 Trigger Source Select
5:3	TRGSELCH1	R/W	The trigger source can be selected through this register when Channel 1 trigger is enabled (TRGENCH1=1).
			Chamber 1 anggot to chables (11.021.10111 1).

Field	Name	R/W	Description		
			000: TMR6 TRGO event		
			001: TMR8 TRGO event		
			010: TMR7 TRGO event		
			011: TMR5 TRGO event		
			100: TMR2 TRGO event		
			101: TMR4 TRGO event		
			110: External interrupt line 9		
			111: Software trigger		
			DAC Channel1 Noise/Triangle Wave Generation Enable		
7:6	WAVENCH1	R/W	00: Waveform is not generated		
7.0	WWWEITOITI	10,00	01: Noise waveform is generated		
			1x: Triangle waveform is generated		
			Select DAC Channel1 LFSR Bit Mask/Triangle Wave Amplitude Selector		
			In the mode of "generating LFSR noise", select the bit to mask LFSR through this bit;		
			In the mode of "generating triangle wave", select the amplitude of triangle wave through this bit.		
			0000: Unmask LFSR bit 0/triangle wave amplitude is 1		
			0001: Unmask LFSR bit [1:0]/triangle wave amplitude is 3		
44.0	MANADOELOUA		0010: Unmask LFSR bit [2:0]/triangle wave amplitude is 7		
11:8	MAMPSELCH1	R/W	0011: Unmask LFSR bit [3:0]/triangle wave amplitude is 15		
			0100: Unmask LFSR bit [4:0]/triangle wave amplitude is 31		
			0101: Unmask LFSR bit [5:0]/triangle wave amplitude is 63		
			0110: Unmask LFSR bit [6:0]/triangle wave amplitude is 127		
			0111: Unmask LFSR bit [7:0]/triangle wave amplitude is 255		
			1000: Unmask LFSR bit [8:0]/triangle wave amplitude is 511		
			1001: Unmask LFSR bit [9:0]/triangle wave amplitude is 1023		
			1010: Unmask LFSR bit [10:0]/triangle wave amplitude is 2047		
			≥1011: Unmask LFSR bit [11:0] / triangle wave amplitude is 4095		
			DAC Channel1 DMA Enable		
12	DMAENCH1	R/W	0: Disable		
			1: Enable		
			DAC Channel1 DMA Underrun Interrupt Enable		
13	DMAUDIEN1	R/W	0: Disable		
			1: Enable		
15:14					
			DAC Channel2 Enable		
16	ENCH2	R/W	0: Disable		
			1: Enable		
			DAC Channel2 Output Buffer Disable		
17	BUFFDCH2	R/W	0: Enable		
			1: Disable		
			DAC Channel2 Trigger Enable		
18	TRGENCH2	R/W	0: Disable		
			1: Enable		

Field	Name	R/W	Description
21:19	TRGSELCH2	R/W	DAC Channel2 Trigger Source Select The trigger source can be selected through this register when Channel 2 trigger is enabled (TRGENCH2=1) 000: TMR6 TRGO event 001: TMR8 TRGO event 010: TMR7 TRGO event 101: TMR5 TRGO event 100: TMR2 TRGO event 110: External interrupt line 9 111: Software trigger
23:22	WAVENCH2	R/W	DAC Channel2 Noise/Triangle Wave Generation Enable 00: Waveform is not generated 01: Noise waveform is generated 1x: Triangle waveform is generated
27:24	MAMPSELCH2	R/W	Select DAC Channel2 LFSR Bit Mask/Triangle Wave Amplitude Selector In the mode of "generating LFSR noise", select the bit to mask LFSR through this bit; In the mode of "generating triangle wave", select the amplitude of triangle wave through this bit. 0000: Unmask LFSR bit 0/triangle wave amplitude is 1 0001: Unmask LFSR bit [1:0]/triangle wave amplitude is 3 0010: Unmask LFSR bit [2:0]/triangle wave amplitude is 7 0011: Unmask LFSR bit [3:0]/triangle wave amplitude is 15 0100: Unmask LFSR bit [4:0]/triangle wave amplitude is 31 0101: Unmask LFSR bit [5:0]/triangle wave amplitude is 63 0110: Unmask LFSR bit [6:0]/triangle wave amplitude is 127 0111: Unmask LFSR bit [7:0]/triangle wave amplitude is 511 1001: Unmask LFSR bit [9:0]/triangle wave amplitude is 1023 1010: Unmask LFSR bit [10:0]/triangle wave amplitude is 2047 ≥1011: Unmask LFSR bit [11:0] / triangle wave amplitude is 4095
28	DMAENCH2	R/W	DAC Channel2 DMA Enable 0: Disable 1: Enable
29	DMAUDIEN2	R/W	DAC Channel2 DMA Underrun Interrupt Enable 0: Disable 1: Enable
31:30			Reserved

30.6.2 DAC software trigger register (DAC_SWTRG)

Offset address: 0x04 Reset value: 0x0000 0000

Field	Name	R/W	Description
0	SWTRG1	W	DAC Channel1 Software Trigger Enable This bit can be set to 1 and cleared by software; once the data in the register DAC_DH1 is transferred to the register DAC_DATAOCH1, this bit will be cleared by hardware. 0: Disable 1: Enable
1	SWTRG2	W	DAC Channel2 Software Trigger Enable This bit can be set to 1 and cleared by software; once the data in the register DAC_DH2 is transferred to the register DAC_DATAOCH2, this bit will be cleared by hardware. 0: Disable 1: Enable
31:2	Reserved		

30.6.3 DAC Channel 1 12-bit right-aligned data holding register (DAC_DH12R1)

Offset address: 0x08 Reset value: 0x0000 0000

Field	Name	R/W	Description			
11:0	DATA	R/W	DAC Channel1 12-bit Right-Aligned Data This bit is written by the software, representing the data of 12-bit DAC channel 1.			
31:12		Reserved				

30.6.4 DAC Channel 1 12-bit left-aligned data holding register (DAC_DH12L1)

Offset address: 0x0C Reset value: 0x0000 0000

Field	Name	R/W	Description
3:0			Reserved
15:4	DATA	R/W	DAC Channel1 12-Bit Left-Aligned Data
31:16			Reserved

30.6.5 DAC Channel 1 8-bit right-aligned data holding register (DAC_DH8R1)

Offset address: 0x10 Reset value: 0x0000 0000

Field	Name	R/W	Description
7:0	DATA	R/W	DAC Channel1 8-bit Right-Aligned Data
31:8			Reserved

30.6.6 DAC Channel 2 12-bit right-aligned data holding register (DAC_DH12R2)

Offset address: 0x14
Reset value: 0x0000 0000

Field	Name	R/W	Description
11:0	DATA	R/W	DAC Channel2 12-bit Right-Aligned Data
31:12			Reserved

30.6.7 DAC Channel 2 12-bit left-aligned data holding register (DAC_DH12L2)

Offset address: 0x18
Reset value: 0x0000 0000

Field	Name	R/W	Description
3:0			Reserved
15:4	DATA	R/W	DAC Channel2 12-Bit Left-Aligned Data
31:16			Reserved

30.6.8 DAC Channel 2 8-bit right-aligned data holding register (DAC_DH8R2)

Offset address: 0x1C Reset value: 0x0000 0000

Field	Name	R/W	Description
7:0	DATA	R/W	DAC Channel2 8-bit Right-Aligned Data
31:8			Reserved

30.6.9 **Dual-DAC 12-bit right-aligned data holding register** (DAC_DH12RDUAL)

Offset address: 0x20 Reset value: 0x0000 0000

Field	Name	R/W	Description			
11:0	DATACH1	R/W	DAC Channel1 12-bit Right-Aligned Data			
15:12		Reserved				
27:16	DATACH2	ATACH2 R/W DAC Channel2 12-bit Right-Aligned Data				
31:28		Reserved				

30.6.10 Dual-DAC 12-bit left-aligned data holding register (DAC_DH12LDUAL)

Offset address: 0x24
Reset value: 0x0000 0000

Field	Name	R/W	Description		
3:0			Reserved		

Field	Name	R/W	Description		
15:4	DATACH1	R/W	DAC Channel1 12-Bit Left-Aligned Data		
19:16		Reserved			
31:20	DATACH2	R/W	DAC Channel212-Bit Left-Aligned Data		

30.6.11 Dual-DAC 8-bit right-aligned data holding register (DAC_DH8RDUAL)

Offset address: 0x28
Reset value: 0x0000 0000

Field	Name	R/W	Description		
7:0	DATACH1	R/W	DAC Channel1 8-bit Right-Aligned Data		
15:8	DATACH2	R/W	DAC Channel2 8-bit Right-Aligned Data		
31:16		Reserved			

30.6.12 DAC Channel 1 data output register (DAC_DATAOCH1)

Offset address: 0x2C Reset value: 0x0000 0000

Field	Name	R/W	Description
11:0	DATA	R	DAC Channel1 Data Output
31:12			Reserved

30.6.13 DAC Channel 2 data output register (DAC_DATAOCH2)

Offset address: 0x30 Reset value: 0x0000 0000

Field	Name	R/W	Description	
11:0	DATA	R	DAC Channel2 Data Output	
31:12		Reserved		

30.6.14 DAC state register (DAC_STS)

Offset address: 0x34 Reset value: 0x0000 0000

Field	Name	R/W	Description			
12:0			Reserved			
			DAC Channel1 DMA Underrun Flag			
13	DMAUDFLG1	RC_W1	0: Not occur			
			1: Occurred			
28:14		Reserved				
			DAC Channel2 DMA Underrun Flag			
29	DMAUDFLG2	RC_W1	0: Not occur			
			1: Occurred			
31:30	Reserved					

31 Random number generator (RNG)

31.1 Introduction

RNG is a random number generator, which provides a 32-bit random number in the master reading based on continuous analog noise.

31.2 Main characteristics

- (1) Provide 32-bit random number generated by the analog generator
- (2) The interval between two consecutive random numbers is 40 PLLCLK48 clock signal cycles
- (3) Monitor RNG entropy to mark abnormal behaviors
- (4) Disabling RNG can reduce the power consumption

31.3 Functional description

The random number generator is realized by analog circuit. This circuit provides seeds for the linear feedback shift register to generate 32-bit random numbers.

Multiple ring oscillators form an analog circuit, and the seeds are generated by XOR operation through the frequency output by the oscillator. PLLCLK48 is dedicated clock of RNG_LFSR, and it provides clock information for it at a constant frequency, so the quality of random numbers has nothing to do with the frequency of HCLK. After RNG_LFSR introduces a large number of seeds, the content will be transferred to RNG_DATA register. Meanwhile, the system will monitor the seeds and PLLCLK48. The status bit in RNG_STS register indicates the time when an abnormal sequence occurs on the seed or the PLLCLK48 clock frequency is too low. An interrupt will be generated when an error is detected.

31.3.1 Enable RNG

The setting sequence of enabling RNG is as follows:

- (1) Enable interrupt and an interrupt will be generated when the random number is ready or an error occurs.
- (2) A random number will be generated when RNG_CTRL[RNGEN]=1. At this time, the analog part, RNG_LFSR and error detector will be activated.
- (3) At the time of each interrupt, when CLKERINT bit and FSINT bit of RNG_STS register are set to 0 and DATARDY=1, RNG_DATA register can be read.

Do not use the first random number generated after RNGEN bit is set, and it should be saved for comparison with the next random number. Each random number needs to be compared with the previous random number. If any pair is equal, it means that the continuous random number generator test fails.

31.3.2 Error state

31.3.2.1 Clock error

When a clock error occurs because the PLLCLK48 clock is incorrect, RNG cannot generate random numbers again. Check whether the clock controller is configured correctly to provide RNG clock and clear CLKERINT bit. RNG can work normally when CLKERCSTS=0. The clock error does not affect the last random number, so the random number in RNG DATA register can be used.

31.3.2.2 Seed error

In case of a seed error, the interrupt random number will be generated as long as FSCSTS=1. Since the entropy may be insufficient, if there are already data in RNG DATA register, the generated interrupt random number cannot be used.

RNGEN bit shall be set after FSINT bit is cleared to reinitialize and restart RNG.

31.4 Register address mapping

Table 162 RNG Register Address Mapping

Register name	Description	Offset address
RNG_CTRL	RNG control register	0x00
RNG_STS	RNG state register	0x04
RNG_DATA	RNG data register	0x08

31.5 Register functional description

31.5.1 RNG control register (RNG_CTRL)

Offset address: 0x00

Reset value: 0x0000 0000

Field	Name	R/W	Description		
1:0	Reserved				
2	RNGEN	RNG Enable R/W 0: Disable 1: Enable			
3					

Field	Name	R/W	Description
31:4			Reserved

31.5.2 RNG state register (RNG_STS)

Offset address: 0x04
Reset value: 0x0000 0000

Field	Name	R/W	Description				
0	DATARDY	R	Data Ready 0: RNG_ Data register is not ready, and the random data is not available 1: RNG_ Data register is ready, and the random data is available An interrupt will be pending when INTEN=1. After reading RNG_DATA register, this bit will be cleared to zero until a new valid value is figured out.				
1	CLKERCSTS	R	RNGCLK Error Current Status 0: PLLCLK48 clock is detected. If CLKERINT bit is set to 1, it means that clock error has been detected and recovered to normal. 1: PLLCLK48 clock is not detected				
2	FSCSTS	R	Faulty Sequence Current Status 0: Sequence error is not detected. If FSINT bit is set to 1, it means that faulty sequence has been detected and recovered to normal. 1: More than 64 0/1 or more than 32 alternate 0 and 1 are detected				
4:3		Reserved					
5	CLKERINT	RC_W0	RNGCLK Error Interrupt Status 0: PLLCLK48 clock is detected 1: PLLCLK48 clock is not detected This bit can be set at the same time with CLKERCSTS bit and be cleared by writing 0. An interrupt will be pending when INTEN=1.				
6	FSINT	RC_W0	Faulty Sequence Interrupt Status 0: Faulty sequence is not detected. 1: More than 64 0/1 or more than 32 alternate 0 and 1 are detected This bit can be set at the same time with FSCSTS bit and be cleared by writing 0. An interrupt will be pending when INTEN=1.				
31:7	Reserved						

31.5.3 RNG data register (RNG_DATA)

Offset address: 0x08 Reset value: 0x0000 0000

This register is read-only and provides 32-bit random number when reading. This register can be read only when DATARDY bit is set to 1; after reading, this register will provide new random number within 40 PLLCLK48 clock cycles.

Field	Name	R/W	Description		
31:0	DATA	R	Random Data 32-bit data number.		

32 CRYP

Note: Only APM32F415xG/APM32F417xExG series products have such module.

32.1 Introduction

The encryption processor can encrypt and decrypt the data to be transmitted with DES, triple DES or AES algorithms.

32.2 Main characteristics

- (1) Support DES, TDES and AES encryption and decryption operations
- (2) DES/TDES
 - Support ECB and CBC link algorithms
 - Support 64-bit, 128-bit, and 92-bit keys
 - Support the use of 2×32-bit initialization vector (IV) in CBC mode
- (3) AES
 - Support ECB, CBC and CTR link algorithms
 - Support 128-bit, 192-bit and 256-bit keys
 - Support the use of 4×32-bit initialization vector (IV) in CBC mode
- (4) Common points of DES/TDES and AES
 - Adopt IN and OUT FIFO
 - Adopt automatic data flow control and support DMA
 - Adopt data exchange logic and support 1-bit, 8-bit, 16-bit or 32-bit data

32.3 Interrupt

32.3.1 Output FIFO service interrupt

When there are one or more data items in the output FIFO, the output FIFO service interrupt will be generated. Perform read operation to the output FIFO until all valid words are read, and this interrupt can be cleared.

Set OUTMISTS bit of CRYP_MINTSTS register to 1 and an output FIFO service interrupt will be generated.

32.3.2 Input FIFO service interrupt

When there are less than four words in the input FIFO, an input FIFO service interrupt will be generated. Perform write operation to the input FIFO until there are no less than four words in the FIFO, and the interrupt can be cleared.

Set INMISTS bit of CRYP_MINTSTS register to 1 and set CRYPEN bit of CRYP_CTRL register to 1, and an input FIFO service interrupt will be

generated.

32.4 DMA

When DMA is used for memory data transmission, data transmission will be carried out in burst mode. The burst length of AES is 4 words, and the burst length of DES/TDES is 2 words and 4 words.

Configure INEN bit and OUTEN bit of CRYP_DMACTRL register to 1 to enable DMA request, all transmissions and processing are managed by the DMA and encryption processor, and the DMA interrupt indicates the end of the processing process.

32.5 Register address mapping

Table 163 CRYP Register Address Mapping

Register name	Description	Offset address
CRYP_CTRL	CRYP control register	0x00
CRYP_STS	CRYP state register	0x04
CRYP_DATAIN	CRYP data input register	0x08
CRYP_DATAOUT	CRYP data output register	0x0C
CRYP_DMACTRL	CRYP DMA control register	0x10
CRYP_INTMASK	CRYP interrupt mask register	0x14
CRYP_INTSTS	CRYP original interrupt state register	0x18
CRYP_MINTSTS	CRYP mask interrupt state register	0x1C
CRYP_K03 (L/R)	CRYP key register	0x20-0x3C
CRYP_IV01 (L/R)	CRYP initialization vector register	0x40-0x4C

32.6 Register functional description

32.6.1 CRYP control register (CRYP_CTRL)

Offset address: 0x00 Reset value: 0x00 0000

Field	Name	R/W	Description		
1:0		Reserved			
2	ALGODIRSEL	R/W	Algorithm Direction Select 0: Encrypt 1: Decrypt		
5:3	ALGOMSEL	R/W	Algorithm Mode Select 000: TDES-ECB 001: TDES-CBC		

Field	Name	R/W	Description		
			010: DES-ECB		
			011: DES-CBC		
			100: AES-ECB		
			101: AES-CBC		
			110: AES-CTR		
			111: Decide AES key according to decryption mode		
			Data Type Select		
			00: 32-bit data		
7:6	DTSEL	R/W	01: 16-bit data or half word		
			10: 8-bit data or byte		
			11: Bit data or bit string		
	KSIZESEL	KSIZESEL R/W	Key Size Select		
			00: 128-bit key length		
9:8			01: 192-bit key length		
			10:256-bit key length		
			11: Reserved		
13:10	Reserved				
			FIFO Flush		
14	FFLUSH	R/W	When CRYPEN bit is 0, write 1 to this bit to refresh IN and OUT FIFO; writing 0 is invalid.		
			When CRYPEN bit is 1, writing 0 or 1 to this bit is invalid.		
			Cryptographic Processor Enable		
15	CRYPEN	CRYPEN R/W	0: Disable		
			1: Enable		
31:16			Reserved		

32.6.2 CRYP state register (CRYP_STS)

Offset address: 0x04 Reset value: 0x00 0003

Field	Name	R/W	Description
			Input FIFO Empty
0	IFEMPT	R	0: Not empty
			1: Empty
			Input FIFO not Full
1	IFFULL	R	0: Full
			1: Not full
	OFEMPT	T R	Output FIFO not Empty
2			0: Empty
			1: Not empty
			Output FIFO Full
3	OFFULL	R	0: Not full
			1: Full
			Busy Bit
4	BUSY	ISY R	0: The CRYP core currently does not process data
			1: The CRYP core is currently processing a data block or preparing a key

Field	Name	R/W	Description
31:5			

32.6.3 CRYP data input register (CRYP_DATAIN)

Offset address: 0x08 Reset value: 0x00 0000

Field	Name	R/W	Description	
31:0	DATAIN	R/W	Data Input Read = Return the contents of the input FIFO when the CRYP bit is 0; otherwise, an uncertain value will be returned Write = Write the contents of the input FIFO	

32.6.4 CRYP data output register (CRYP_DATAOUT)

Offset address: 0x0C Reset value: 0x00 0000

Field	Name	R/W	Description	
31:0	DATAOUT	R	Data Output Read= Read the contents of the OUTput FIFO Write-False operation	

32.6.5 CRYP DMA control register (CRYP_DMACTRL)

Offset address: 0x10
Reset value: 0x0000 0000

Field	Name	R/W	Description			
			DMA Input Enable			
0	INEN	R/W	0: Disable			
			1: Enable			
			DMA Output Enable			
1	OUTEN	TEN R/W	0: Disable			
			1: Enable			
31:2	Reserved					

32.6.6 CRYP interrupt mask register (CRYP_INTMASK)

Offset address: 0x14
Reset value: 0x0000 0000

Field	Name	R/W	Description		
0	INIMASK	R/W	Input FIFO Service Interrupt Mask 0: Mask the input FIFO service interrupt 1: Unmask the input FIFO service interrupt		
1	OUTIMASK	R/W	Output FIFO Service Interrupt Mask 0: Mask the output FIFO service interrupt 1: Unmask the output FIFO service interrupt		
31:2	Reserved				

32.6.7 CRYP original interrupt state register (CRYP_INTSTS)

Offset address: 0x18
Reset value: 0x0000 0001

Field	Name	R/W	Description		
0	INISTS	R	Input FIFO Service Raw Interrupt Status 0: Not suspended 1: Suspended		
1	OUTISTS	R	Output FIFO Service Raw Interrupt Status 0: Not suspended 1: Suspended		
31:2	Reserved				

32.6.8 CRYP mask interrupt state register (CRYP_MINTSTS)

Offset address: 0x1C Reset value: 0x0000 0000

Field	Name	R/W	Description		
0	INMISTS	R	Input FIFO Service Masked Interrupt Status 0: Not suspended 1: The interrupt will be suspended when CRYPEN bit is set to 1		
1	OUTMISTS	R	Output FIFO Service Masked Interrupt Status 0: Not suspended 1: Suspended		
31:2	Reserved				

32.6.9 CRYP key register (CRYP_K0...3 (L/R))

Offset address: 0x20-0x3C Reset value: 0x0000 0000

CRYP_K0L (offset address: 0x20)

Field	Name	R/W	Description
31:0	Bx	W	x=224-255

CRYP_K0R (offset address: 0x24)

Et al.	<u> </u>	D.044	Post defend
Field	Name	R/W	Description
31:0	Bx	W	x=192-223

CRYP_K1L (offset address: 0x28)

Field	Name	R/W	Description
31:0	Ky	W	x=160-191, y=1.32-1.1
31.0	Вх	VV	x=100-191, y=1.32-1.1

CRYP_K1R (offset address: 0x2C)

Field	Name	R/W	Description
31:0	Ky Bx	W	x=128-159, y=1.64-1.33

CRYP_K2L (offset address: 0x2C)

Field	Name	R/W	Description
31:0	Ky	W	x=96-127, y=2.32-2.1
	Bx		

CRYP_K2R (offset address: 0x34)

Field	Name	R/W	Description
31:0	Ky Bx	W	x=64-95, y=2.64-2.33

CRYP_K3L (offset address: 0x38)

Field	Name	R/W	Description
31:0	Ky Bx	W	x=32-63, y=3.32-3.1

CRYP_K3R (offset address: 0x3C)

Field	Name	R/W	Description
31:0	Ky Bx	W	x=0-31, y=3.64-3.33

32.6.10 CRYP initialization vector register (CRYP_IV0...1 (L/R))

Offset address: 0x40-0x4C Reset value: 0x0000 0000

CRYP_IV0L (offset address: 0x40)

Field	Name	R/W	Description
31:0	IVx	R/W	x=31-0

CRYP_IV0R (offset address: 0x44)

1			Ì	
	Field	Name	R/W	Description
	31:0	IVx	R/W	x=63-32

CRYP IV1L (offset address: 0x48)

Field	Name	R/W	Description
31:0	IVx	R/W	x=95-64

CRYP IV1R (offset address: 0x4C)

		•	
Field	Name	R/W	Description
31:0	IVx	R/W	x=127-96

33 Cyclic redundancy check computing unit (CRC)

33.1 Introduction

The cyclic redundancy check (CRC) computing unit can get 32-bit CRC computing result by calculating the input data through a fixed generator polynomial, which is mainly used to detect or verify the correctness and integrity of the data after transmission or saving.

33.2 Functional description

33.2.1 Calculation method

Use CRC-32 (Ethernet) polynomial: 0x4C11DB7

$$(\,X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1\,)$$

33.2.2 Calculation time

The calculation time is four AHB clock cycles.

Every time a new data is written, the result will be a combination of the last calculation result and the new calculation result. (Execute operation for the whole word). Write operation of CPU will be suspended during calculation, so that "Back-to-back" write or continuous "read" -"write" operation can be performed for the register CRC_DATA.

33.3 Register address mapping

Table 164 CRC Register Address Mapping

Register name	Description	Offset address
CRC_DATA	Data register	0x00
CRC_INDATA	Independent data register	0x04
CRC_CTRL	Control register	0x08

33.4 Register functional description

33.4.1 Data register (CRC_DATA)

Offset address: 0x00
Reset value: 0xFFFF FFFF

Field Name R/W Description

31:0 DATA R/W As the input register: Store the new data of CRC calculator when writing.

As the output register: Return the results of CRC computing when reading.

33.4.2 Independent data register (CRC_INDATA)

Offset address: 0x04
Reset value: 0x0000 0000

Field	Name	R/W	Description
7:0	INDATA	R/W	Independent 8bit Data Can be used for temporary storage of 1-byte data. CRC rest generated by RST bit of the register CRC_CTRL has no effect on this register.
31:8	Reserved.		

Note: This register does not take part in calculation and can store any data.

33.4.3 Control register (CRC_CTRL)

Offset address: 0x08
Reset value: 0x0000 0000

Field	Name	R/W	Description
0	RST	W Set CRC Calculation Unit Set CRC_DATA register to 0xFFFF FFFF. It can only set this bit, which shall be automatically cleared by hardware.	
31:1	Reserved		

34 Chip electronic signature

34.1 Introduction

The chip electronic signature is used to match the firmware or external device.

34.2 Register functional description

34.2.1 96-bit unique chip ID of unique device

Base address: 0x1FFF 7A10

Offset address: 0x00

Field	Name	R/W	Description
31:0	U_ID[31:0]	R	Unique identity flag 31:0 bit

Offset address: 0x04

Read-only, the value has been prepared before leaving the factory

Field	Name	R/W	Description
31:0	U_ID[63:32]	R	Unique identity flag 63:32 bits

Offset address: 0x08

Read-only, the value has been prepared before leaving the factory

Field	Name	R/W	Description
31:0	U_ID[95:64]	R	Unique identity flag 95:64 bits

34.2.2 Flash memory capacity register

Base address: 0x1FFF 7A22

Offset address: 0x00

Field	Name	R/W	Description
45.0	E 017E	Б	Flash memory capacity
15:0	F_SIZE	R	Indicate the capacity of main memory area of the product (in KB). For example: 0x0400=1024KB

35 Version History

Table 165 Document Version History

Date	Version	Change History
September, 2021	V1.0	New
		(1) "SCLKSWSTS" changed to "SCLKSELSTS"
April 1, 2022	V1.1	(2) Modify DMC pins
		(3) The APM32F405/415xG model is added
		(1) Modify the Arm trademark
June 17, 2022	V1.2	(2) Add the statement
Julie 17, 2022		(3) Add the note in Chapter3.5.3.1 "Erase/write option byte"
		(4) Modify the configuration example in Chapter4.11.2
	V1.3	(1) Modify the DMC module configuration examples and offset
June 21, 2022		addresses
Julie 21, 2022		(2) Modify the SMC module timing parameters and offset
		addresses
July 22, 2022	V1.4	(1) Modify Flash chapter: Flash unit must be erased into 1
		before writing.
		(2) Modify the note in Chapter3.5.3.1 "Erase/write option byte"

Statement

This document is formulated and published by Geehy Semiconductor Co., Ltd. (hereinafter referred to as "Geehy"). The contents in this document are protected by laws and regulations of trademark, copyright and software copyright. Geehy reserves the right to make corrections and modifications to this document at any time. Please read this document carefully before using Geehy products. Once you use the Geehy product, it means that you (hereinafter referred to as the "users") have known and accepted all the contents of this document. Users shall use the Geehy product in accordance with relevant laws and regulations and the requirements of this document.

1. Ownership

This document can only be used in connection with the corresponding chip products or software products provided by Geehy. Without the prior permission of Geehy, no unit or individual may copy, transcribe, modify, edit or disseminate all or part of the contents of this document for any reason or in any form.

The "极海" or "Geehy" words or graphics with "®" or "TM" in this document are trademarks of Geehy. Other product or service names displayed on Geehy products are the property of their respective owners.

2. No Intellectual Property License

Geehy owns all rights, ownership and intellectual property rights involved in this document.

Geehy shall not be deemed to grant the license or right of any intellectual property to users explicitly or implicitly due to the sale or distribution of Geehy products or this document.

If any third party's products, services or intellectual property are involved in this document, it shall not be deemed that Geehy authorizes users to use the aforesaid third party's products, services or intellectual property, unless otherwise agreed in sales order or sales contract.

3. Version Update

Users can obtain the latest document of the corresponding models when ordering Geehy products.

If the contents in this document are inconsistent with Geehy products, the agreement in thesales order or the sales contract shall prevail.

4. Information Reliability

The relevant data in this document are obtained from batch test by Geehy Laboratory or cooperative third-party testing organization. However, clerical errors in correction or errors caused by differences in testing environment may occur inevitably. Therefore, users should understand that Geehy does not bear any responsibility for such errors that may occur in this document. The relevant data in this document are only used to guide users as performance parameter reference and do not constitute Geehy's guarantee for any product performance.

Users shall select appropriate Geehy products according to their own needs, and effectively verify and test the applicability of Geehy products to confirm that Geehy products meet their own needs, corresponding standards, safety or other reliability requirements. If loses are caused to users due to the user's failure to fully verify and test Geehy products, Geehy will not bear any responsibility.

5. Legality

USERS SHALL ABIDE BY ALL APPLICABLE LOCAL LAWS AND REGULATIONS WHEN USING THIS DOCUMENT AND THE MATCHING GEEHY PRODUCTS. USERS SHALL UNDERSTAND THAT THE PRODUCTS MAY BE RESTRICTED BY THE EXPORT, RE-EXPORT OR OTHER LAWS OF THE COUNTIRIES OF THE PRODUCTS SUPPLIERS, GEEHY, GEEHY DISTRIBUTORS AND USERS. USERS (ON BEHALF OR ITSELF, SUBSIDIARIES AND AFFILIATED ENTERPRISES) SHALL AGREE AND PROMISE TO ABIDE BY ALL APPLICABLE LAWS AND REGULATIONS ON THE EXPORT AND RE-EXPORT OF GEEHY PRODUCTS AND/OR TECHNOLOGIES AND DIRECT PRODUCTS.

6. Disclaimer of Warranty

THIS DOCUMENT IS PROVIDED BY GEEHY "AS IS" AND THERE IS NO WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, TO THE EXTENT PERMITTED BY APPLICABLE LAW.

GEEHY WILL BEAR NO RESPONSIBILITY FOR ANY DISPUTES ARISING FROM THE SUBSEQUENT DESIGN OR USE BY USERS.

7. Limitation of Liability

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL GEEHY OR ANY OTHER PARTY WHO PROVIDE THE DOCUMENT "AS IS", BE LIABLE FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, DIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE DOCUMENT (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY USERS OR THIRD PARTIES).

8. Scope of Application

The information in this document replaces the information provided in all previous versions of the document.

© 2021-2022 Geehy Semiconductor Co., Ltd. - All Rights Reserved